

SBOS155A - AUGUST 1987 - REVISED OCTOBER 2002

High-Speed Precision Difet® OPERATIONAL AMPLIFIER

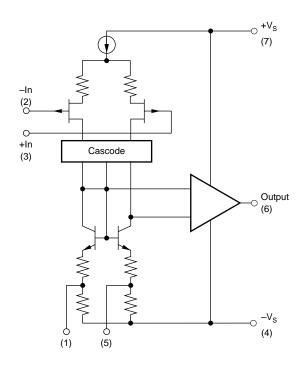
FEATURES

- WIDE BANDWIDTH: 6.5MHz
- HIGH SLEW RATE: 35V/μs
- LOW OFFSET: ±250µV max
- LOW BIAS CURRENT: ±1pA max
- FAST SETTLING TIME: 1µs to 0.01%
- UNITY-GAIN STABLE

DESCRIPTION

The OPA602 is a precision, wide bandwidth FET operational amplifier. Monolithic *Difet* (dielectrically isolated FET) construction provides an unusual combination of high-speed and accuracy.

Its wide-bandwidth design minimizes dynamic errors. High slew rate and fast settling time allow accurate signal processing in pulse and data conversion applications. Wide bandwidth and low distortion minimize AC errors. All specifications are rated with a $1k\Omega$ resistor in parallel with 500pF load. The OPA602 is unity-gain stable and easily drives capacitive loads up to 1500pF.


Laser-trimmed input circuitry provides offset voltage and drift performance normally associated with precision bipolar op amps. **Difet** construction achieves extremely low input bias currents (1pA max) without compromising input voltage noise.

The OPA602's unique input cascode circuitry maintains low input bias current and precise input characteristics over its full input common-mode voltage range.

Difet® Burr-Brown Corp.

APPLICATIONS

- PRECISION INSTRUMENTATION
- OPTOELECTRONICS
- SONAR, ULTRASOUND
- PROFESSIONAL AUDIO EQUIPMENT
- MEDICAL EQUIPMENT
- DATA CONVERSION

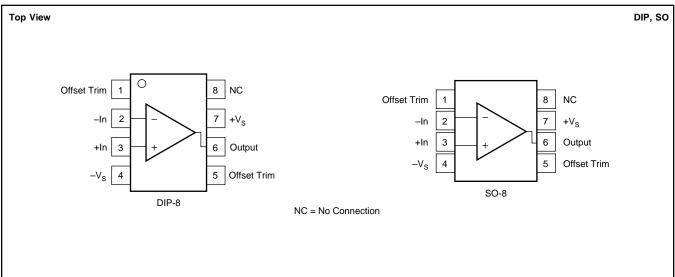
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage	±18V _{DC}
Internal Power Dissipation (T _J ≤ +175°C)	
Differential Input Voltage	Total V _S
Input Voltage Range	±V _S
Storage Temperature Range	
P and U Packages40	0°C to +125°C
Operating Temperature Range	
P and U Packages2	5°C to + 85°C
Lead Temperature	
U Package, SO (3s)	+260°C
Output Short-Circuit to Ground (+25°C)	Continuous
Junction Temperature	+175°C

NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

PACKAGE/ORDERING INFORMATION


This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	OFFSET VOLTAGE MAX (μV) AT 25°C	PACKAGE-LEAD	PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
OPA602AP	±2000	DIP-8	Р	–25°C to +85°C	602AP	602AP	Tubes, 50
OPA602BP	±1000	"	"	"	602BP	602BP	Tubes, 50
OPA602AU	±3000	SO-8	D	–25°C to +85°C	602AU	602AU	Tubes, 100

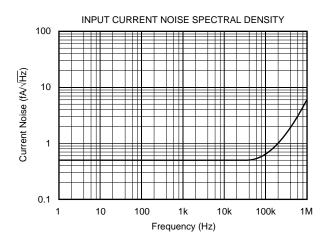
NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.

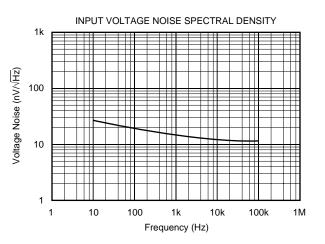
PIN CONFIGURATIONS

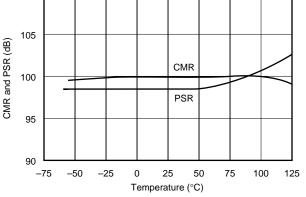
ELECTRICAL CHARACTERISTICS

At $V_S = \pm 15 V_{DC}$ and $T_A = +25^{\circ}C$, unless otherwise noted.

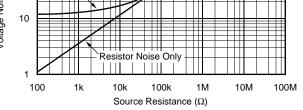
PARAMETERINPUT NOISEVoltage: $f_0 = 10$ Hz $f_0 = 10$ Hz $f_0 = 10$ Hz $f_0 = 1$ KHz $f_0 = 0$ Hz to 10KHz $f_B = 0.1$ Hz to 10HzCurrent: $f_0 = 0.1$ Hz to 20KHzOFFSET VOLTAGEInput Offset Voltage:P PackageU PackageOver Specified TemperatureP, U PackagesAverage Drift ⁽¹⁾ Supply RejectionBIAS CURRENTInput Bias CurrentOver Specified TemperatureOFFSET CURRENTInput Offset CurrentOver Specified Temperature	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	MIN 80	$\begin{array}{c} \textbf{TYP} \\ 23 \\ 19 \\ 13 \\ 12 \\ 1.4 \\ 0.95 \\ 12 \\ 0.6 \\ 0.5 \\ \pm 0.75 \\ \pm 3 \\ 100 \\ \pm 1 \\ \pm 20 \end{array}$	MAX 1 ±1.5 ±5 ±2 ±200	MIN 70	TYP * * * * * * * * * *	MAX 2 3 ±15	UNITS nV/\/Hz nV/\/Hz nV/\/Hz μVrms μVp-p fAp-p fA/\/Hz mV mV mV mV mV μV/°C dB
Voltage: $f_O = 10Hz$ $f_B = 10Hz$ to 10Hz $f_B = 0.1Hz$ to 10HzCurrent: $f_B = 0.1Hz$ to 20KHzOFFSET VOLTAGEInput Offset Voltage:P PackageU PackageOver Specified TemperatureP, U PackagesAverage Drift ⁽¹⁾ Supply RejectionBIAS CURRENTInput Offset CurrentOFFSET CURRENTInput Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	$ \begin{array}{c} 19\\ 13\\ 12\\ 1.4\\ 0.95\\ 12\\ 0.6\\ \end{array} $ $ \begin{array}{c} 0.5\\ \pm 0.75\\ \pm 3\\ 100\\ \end{array} $ $ \pm 1 $	±1.5 ±5 ±2	70	* * * * 1 1 ±1.5 * *	3	nV/\ <u>Hz</u> nV/\ <u>Hz</u> nV/\ <u>Hz</u> μVrms μVp-p fAp- <u>p</u> fA/\ <u>Hz</u> mV mV mV μV/°C
$f_{O} = 10Hz$ $f_{B} = 10Hz to 10Hz$ $f_{B} = 0.1Hz to 10Hz$ $f_{O} = 0.1Hz to 10Hz$ $f_{O} = 0.1Hz to 20Hz$ OFFSET VOLTAGE Input Offset Voltage: P Package U Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	$ \begin{array}{c} 19\\ 13\\ 12\\ 1.4\\ 0.95\\ 12\\ 0.6\\ \end{array} $ $ \begin{array}{c} 0.5\\ \pm 0.75\\ \pm 3\\ 100\\ \end{array} $ $ \pm 1 $	±1.5 ±5 ±2	70	* * * * 1 1 ±1.5 * *	3	nV/\ <u>Hz</u> nV/\ <u>Hz</u> nV/\ <u>Hz</u> μVrms μVp-p fAp- <u>p</u> fA/\ <u>Hz</u> mV mV mV μV/°C
$\label{eq:spectral_states} \begin{split} f_{O} &= 100Hz \\ f_{O} &= 1kHz \\ f_{O} &= 10kHz \\ f_{B} &= 10Hz \ to \ 10kHz \\ f_{B} &= 0.1Hz \ to \ 10Hz \\ f_{O} &= 0.1Hz \ to \ 10Hz \\ f_{O} &= 0.1Hz \ to \ 20kHz \\ \end{split}$	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	$ \begin{array}{c} 19\\ 13\\ 12\\ 1.4\\ 0.95\\ 12\\ 0.6\\ \end{array} $ $ \begin{array}{c} 0.5\\ \pm 0.75\\ \pm 3\\ 100\\ \end{array} $ $ \pm 1 $	±1.5 ±5 ±2	70	* * * * 1 1 ±1.5 * *	3	nV/\ <u>Hz</u> nV/\ <u>Hz</u> nV/\ <u>Hz</u> μVrms μVp-p fAp- <u>p</u> fA/\ <u>Hz</u> mV mV mV μV/°C
$\label{eq:formula} \begin{split} & f_{O} = 1 \text{kHz} \\ & f_{O} = 10 \text{kHz} \\ & f_{B} = 10 \text{Hz} \text{ to } 10 \text{kHz} \\ & f_{B} = 0.1 \text{Hz} \text{ to } 10 \text{Hz} \\ & \text{Current:} \\ & f_{B} = 0.1 \text{Hz} \text{ to } 10 \text{Hz} \\ & f_{O} = 0.1 \text{Hz} \text{ to } 20 \text{kHz} \\ \end{split}$	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	$ \begin{array}{c} 13\\12\\1.4\\0.95\\12\\0.6\\\end{array} $ $ \begin{array}{c} 0.5\\\pm 0.75\\\pm 3\\100\\\end{array} $ $ \pm 1 \end{array} $	±1.5 ±5 ±2	70	* * * * 1 1 ±1.5 * *	3	nV/\ <u>Hz</u> nV/\ <u>Hz</u> μVrms μVp-p fAp- <u>p</u> fA/\ <u>Hz</u> mV mV mV μV/°C
$eq:spectral_$	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	$ \begin{array}{c} 12\\ 1.4\\ 0.95\\ 12\\ 0.6\\ \end{array} $ $ \begin{array}{c} 0.5\\ \pm 0.75\\ \pm 3\\ 100\\ \end{array} $ $ \pm 1 $	±1.5 ±5 ±2	70	* * * 1 1 ±1.5 *	3	nV/√Hz μVrms μVp-p fAp <u>-p</u> fA/√Hz mV mV mV
	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	1.4 0.95 12 0.6 0.5 ±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	* * * 1 1 ±1.5 *	3	μVrms μVp-p fAp <u>-p</u> fA/\Hz mV mV mV μV/°C
$f_{B} = 0.1Hz \text{ to } 10Hz$ Current: $f_{B} = 0.1Hz \text{ to } 10Hz$ $f_{O} = 0.1Hz \text{ to } 20kHz$ OFFSET VOLTAGE Input Offset Voltage: P Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	0.95 12 0.6 0.5 ±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	* * 1 1 ±1.5 *	3	μVp-p fAp- <u>p</u> fA/√Hz mV mV mV μV/°C
Current: $f_B = 0.1Hz$ to 10Hz $f_O = 0.1Hz$ to 20kHz OFFSET VOLTAGE Input Offset Voltage: P Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	12 0.6 0.5 ±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	* * 1 1 ±1.5 *	3	fAp <u>-p</u> fA/√Hz mV mV mV μV/°C
$f_{B} = 0.1Hz \text{ to } 10Hz$ $f_{O} = 0.1Hz \text{ to } 20kHz$ $OFFSET VOLTAGE$ Input Offset Voltage: P Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	0.6 0.5 ±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	* 1 1 ±1.5 *	3	fA/√Hz mV mV μV/°C
fo = 0.1Hz to 20kHz OFFSET VOLTAGE Input Offset Voltage: P Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	0.6 0.5 ±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	* 1 1 ±1.5 *	3	fA/√Hz mV mV μV/°C
OFFSET VOLTAGE Input Offset Voltage: P Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	0.5 ±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	1 1 ±1.5 * *	3	mV mV mV μV/°C
Input Offset Voltage: P Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	1 ±1.5 * *	3	mV mV μV/°C
P Package U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	1 ±1.5 * *	3	mV mV μV/°C
U Package Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	±0.75 ±3 100 ±1	±1.5 ±5 ±2	70	1 ±1.5 * *	3	mV mV μV/°C
Over Specified Temperature P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	±3 100 ±1	±5 ±2	70	±1.5 * *		mV μV/°C
P, U Packages Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	±3 100 ±1	±5 ±2	70	* *	±15	μV/°C
Average Drift ⁽¹⁾ Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	±3 100 ±1	±5 ±2	70	* *	±15	μV/°C
Supply Rejection BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	100 ±1	±2	70	*	±15	
BIAS CURRENT Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current	$\pm V_{S}$ = 12V to 18V V _{CM} = 0V _{DC}	80	±1		70			dB
Input Bias Current Over Specified Temperature OFFSET CURRENT Input Offset Current						10		
Over Specified Temperature OFFSET CURRENT Input Offset Current								
OFFSET CURRENT Input Offset Current	$V_{CM} = 0V_{DC}$		±20	+200		±2	±10	pА
Input Offset Current	$V_{CM} = 0V_{DC}$			±200		±20	±500	pА
•	$V_{CM} = 0V_{DC}$							
Over Specified Temperature			0.5	2		1	10	pА
			20	200		20	500	pА
INPUT IMPEDANCE								
Differential			10 ¹³ 1			*		Ω pF
Common-Mode			10 ¹⁴ 3			*		Ω pF
INPUT VOLTAGE RANGE								
Common-Mode Input Range		±10.2	+13, –11		*	*		V
Common-Mode Rejection	$V_{IN} = \pm 10 V_{DC}$	88	100		75	*		dB
OPEN-LOOP GAIN, DC								
Open-Loop Voltage Gain	$R_L \ge 1k\Omega$	88	100		75	*		dB
FREQUENCY RESPONSE								
Gain Bandwidth	Gain = 100	4	6.5		3.5	*		MHz
Full-Power Response	20Vp-p, $R_L = 1k\Omega$		570			*		kHz
Slew Rate	$V_0 = \pm 10V, R_L = 1k\Omega$	24	35		20	*		V/µs
Settling Time:								
0.1%	Gain = -1 , R _L = $1k\Omega$		0.6			*		μs
0.01%	$C_L = 500 pF$, 10V Step		1.0					μs
RATED OUTPUT	D (1.0							., <i>,</i>
Voltage Output	$R_L = 1k\Omega$	±11.5	+12.9, -13.8		±11	*		V
Current Output	101/	±15	-13.8 ±20		*	N-		
Current Output Output Resistance	V _O = ±10V _{DC} 1MHz, Open Loop	±15			*	*		mA
			80			*		Ω
Load Capacitance Stability	Gain = +1	100	1500		105	*		pF
Short-Circuit Current		±30	±50		±25	*		mA
POWER SUPPLY								V
Rated Voltage			±15			*		V _{DC}
Voltage Range, Derated Performance		±5		±18	*		*	V _{DC}
Current, Quiescent Over Specified Temperature	$I_{O} = 0$ mADC		3 3.5	4 4.5		*	*	mA mA
· · ·			0.0					
TEMPERATURE RANGE Specification	Ambient Temperature	-25		+85	*		*	°C
Operating:	Ambient rempetature	-23		100	L Î			
P, U Packages		-25		+85	*		*	°C
Storage:		-25		100	L Î			U
P, U Packages		-40		+125	*		*	°C
θ_{JA}		200		0	*		°C/W	2

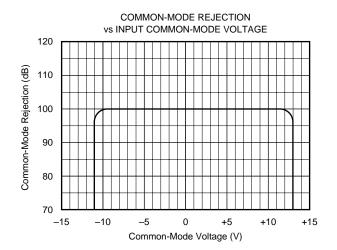

* Same specifications as OPA602BP.

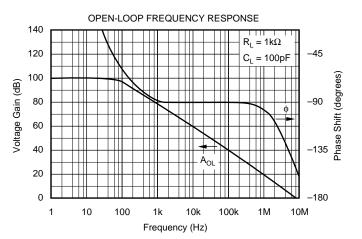

NOTE: (1) OPA602AP, AU ensured by design with a 99% confidence level.


TYPICAL CHARACTERISTICS

At T_A = +25°C and V_S = $\pm 15 V_{DC},$ unless otherwise noted.

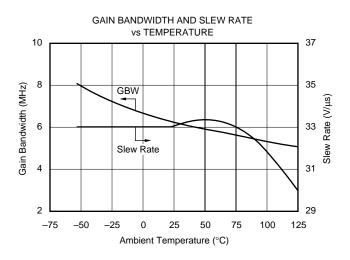

POWER-SUPPLY REJECTION AND COMMON-MODE REJECTION vs TEMPERATURE

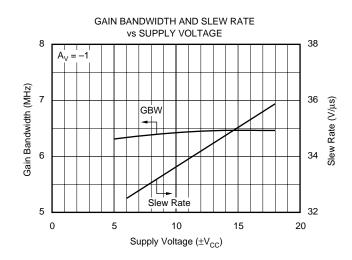


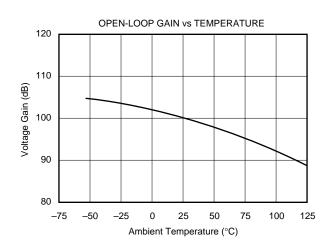

110

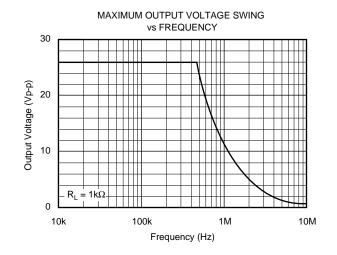
AT 1kHz vs SOURCE RESISTANCE

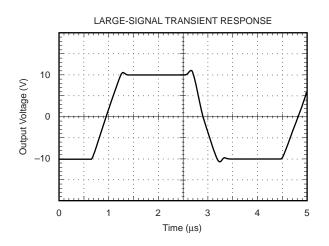
TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY

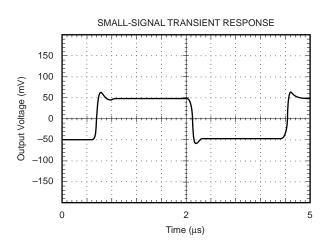


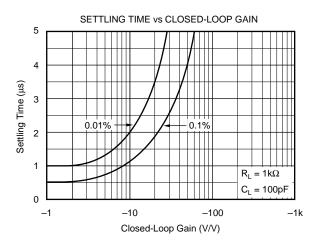


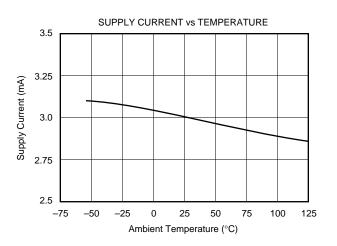


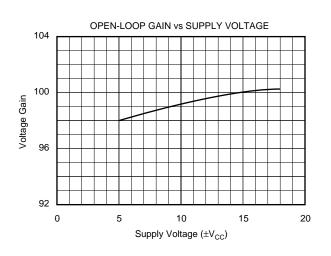

TYPICAL CHARACTERISTICS (Cont.)

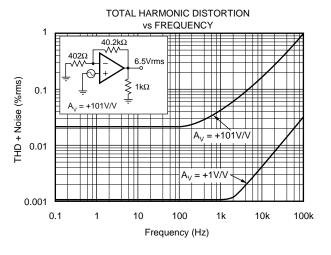

At T_{A} = +25°C and V_{S} = $\pm 15 V_{DC},$ unless otherwise noted.

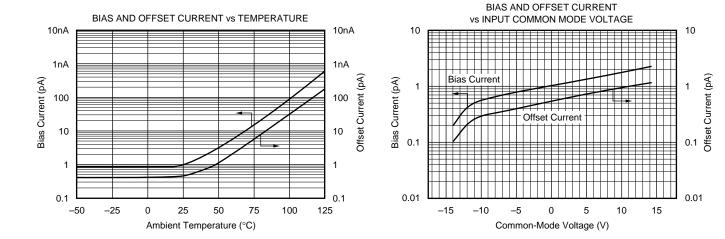


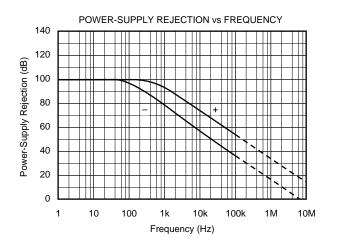


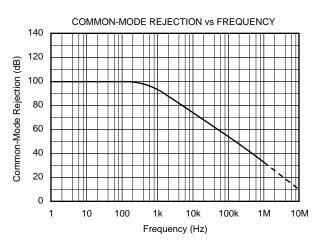





TYPICAL CHARACTERISTICS (Cont.)


At T_A = +25°C and V_S = ±15 V_{DC} , unless otherwise noted.





TYPICAL CHARACTERISTICS (Cont.)

At T_A = +25°C and V_S = $\pm 15 V_{DC},$ unless otherwise noted.

APPLICATIONS INFORMATION

Unity-gain stability with good phase margin and excellent output drive characteristics bring freedom from the subtle problems associated with other high-speed amplifiers. However, as with any high-speed, wide bandwidth circuitry, careful circuit layout will ensure best performance. Make short, direct interconnections and avoid stray wiring capacitance especially at the inverting input pin.

Power supplies should be bypassed with good high-frequency capacitors positioned close to the op amp pins. In most cases $0.1\mu F$ ceramic capacitors are adequate. Applications with heavier loads and fast transient waveforms may benefit from use of additional $1.0\mu F$ tantalum bypass capacitors.

INPUT BIAS CURRENT GUARDING

Leakage currents across printed circuit boards can easily exceed the input bias current of the OPA602. A circuit board "guard" pattern, as shown in Figure 1, is an effective solution to difficult leakage problems. This guard pattern must be repeated on all layers of a multilayer board. By surrounding critical high impedance input circuitry with a low impedance circuit connection at the same potential, leakage currents will flow harmlessly to the low-impedance node.

Input bias current may also be degraded by improper handling or cleaning. Contamination from handling parts and circuit boards may be cleaned with appropriate solvents and deionized water. Each rinsing operation should be followed by a 30-minute bake at +85°C.

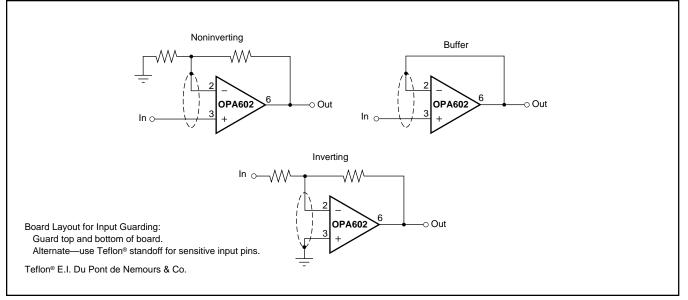
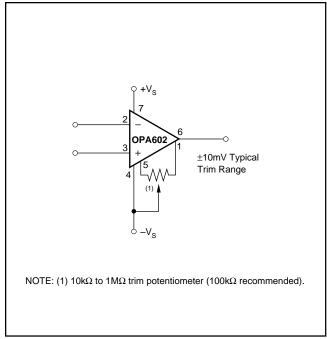



FIGURE 1. Connection of Input Guard.

APPLICATION CIRCUITS

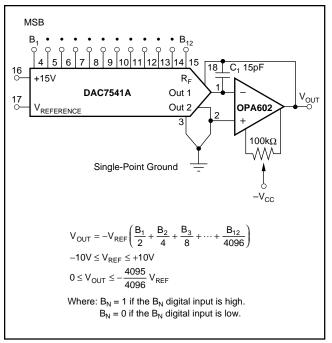


FIGURE 2. Offset Voltage Trim.

FIGURE 3. Voltage Output Digital-to-Analog Converter.

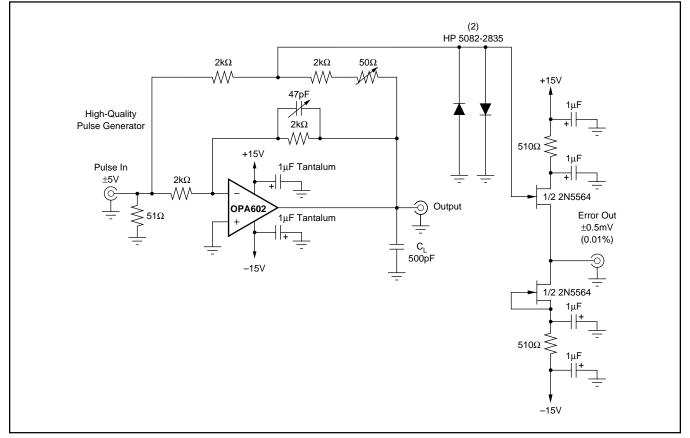
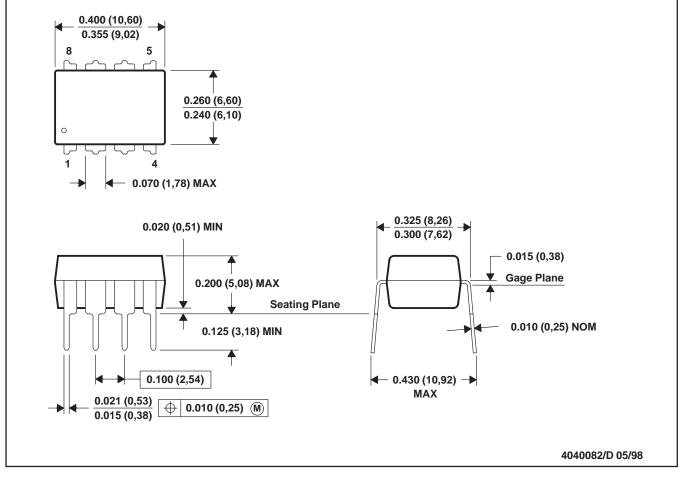
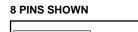
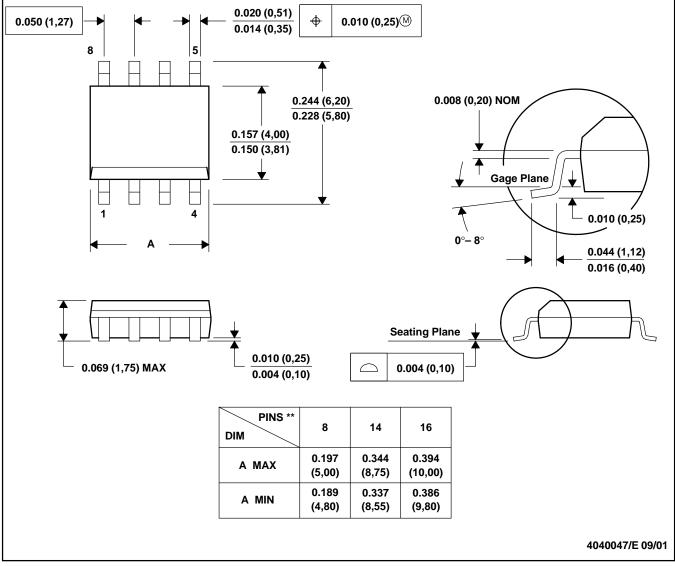



FIGURE 4. Settling Time and Slew Rate Test Circuit.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE




- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-012

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
OPA602AM	OBSOLETE	TO-99	LMC	8		TBD	Call TI	Call TI
OPA602AM2	OBSOLETE	TO-99	LMC	8		TBD	Call TI	Call TI
OPA602AP	ACTIVE	PDIP	Р	8	50	TBD	Call TI	Call TI
OPA602APG4	ACTIVE	PDIP	Р	8	50	TBD	Call TI	Call TI
OPA602AU	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA602AU/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA602AU/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA602AUE4	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA602AUG4	ACTIVE	SOIC	D	8	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
OPA602BM	OBSOLETE	TO-99	LMC	8		TBD	Call TI	Call TI
OPA602BM1	OBSOLETE	TO-99	LMC	8		TBD	Call TI	Call TI
OPA602BP	ACTIVE	PDIP	Р	8	50	TBD	Call TI	Call TI
OPA602BPG4	ACTIVE	PDIP	Р	8	50	TBD	Call TI	Call TI
OPA602CM	OBSOLETE	TO-99	LMC	8		TBD	Call TI	Call TI
OPA602SM	OBSOLETE	TO-99	LMC	8		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

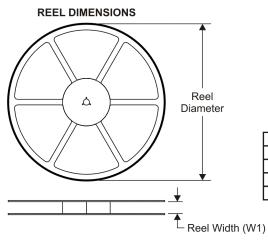
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

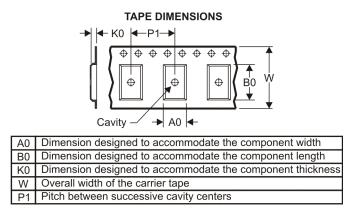
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

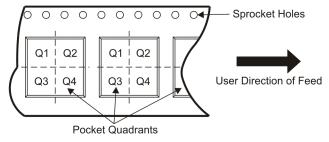
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI


PACKAGE OPTION ADDENDUM

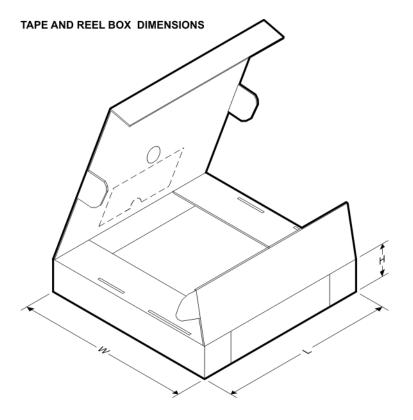

19-Dec-2007

to Customer on an annual basis.


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions	are	nominal
-----------------	-----	---------

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA602AU/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

11-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA602AU/2K5	SOIC	D	8	2500	346.0	346.0	29.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated