

Optically Coupled Isolators

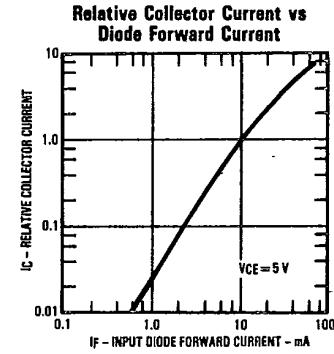
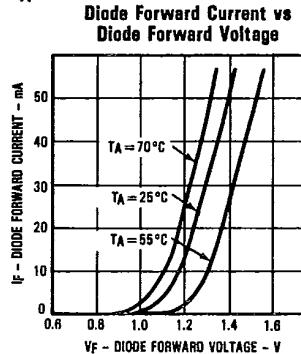
Types OPI2153, OPI2253

Features

- 1500 or 2500 volt isolation
- High current transfer ratio
- Low cost 6 pin dual-in-line package
- UL recognized File No. E58730

Description

The OPI2153 and OPI2253 each consist of a gallium arsenide infrared light emitting diode coupled to an NPN silicon phototransistor mounted in a six pin dual-in-line package. The OPI2153 and OPI2253 are identical except for input-to-output isolation voltage.



Absolute Maximum Ratings ($T_A = 25^\circ\text{C}$ unless otherwise noted)

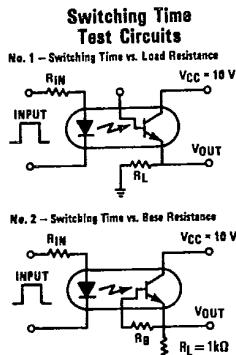
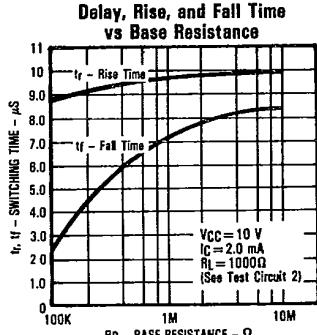
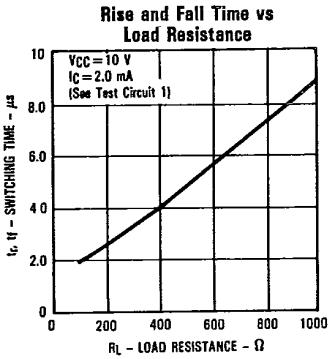
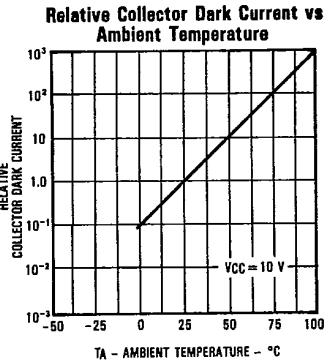
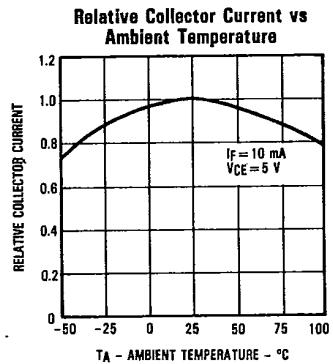
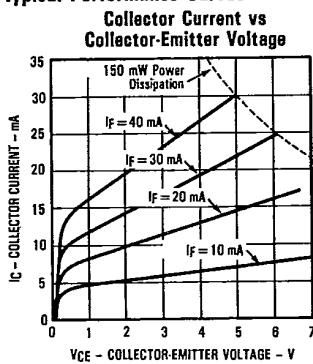
Input-to-Output Isolation Voltage OPI2153.....	$\pm 1500 \text{ VDC}$ ⁽¹⁾
OPI2253.....	$\pm 2500 \text{ VDC}$ ⁽¹⁾
Storage Temperature Range.....	-55°C to $+150^\circ\text{C}$
Operating Temperature Range.....	-55°C to $+100^\circ\text{C}$
Lead Soldering Temperature (1/16 inch [1.6 mm] from case for 5 sec. with soldering iron) ⁽²⁾	260°C
Input Diode	
Forward DC Current.....	60 mA
Peak Forward Current [1 μs pulse width, 300 pps].....	3.0 A
Reverse Voltage.....	3.0 V
Power Dissipation (25°C).....	100 mW ⁽³⁾
Output Transistor	
Power Dissipation.....	150 mW ⁽⁴⁾
V_{BRICEO}	30 V
V_{BRICBO}	50 V
V_{BRICCO}	5.0 V

Notes: (1) Measured with input diode leads shorted together and output leads shorted together. (2) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (3) Derate linearly 1.33 mW/ $^\circ\text{C}$ above 25°C .

(4) Derate linearly 2.0 mW/ $^\circ\text{C}$ above 25°C .

Typical Performance Curves

Types OPI2153, OPI2253







T-41-83

Electrical Characteristics ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Units	Test Conditions
Input Diode						
V_F	Forward Voltage			1.40	V	$I_F = 16.0 \text{ mA}$
$V_{BR(BR)}$	Reverse Breakdown Voltage	3.0			V	$I_R = 10.0 \mu\text{A}$
I_R	Reverse Leakage Current			10.0	μA	$V_R = 3.0 \text{ V}$
Output Phototransistor						
$V_{BR(CEO)}$	Collector-to-Emitter Breakdown Voltage	30			V	$I_C = 1.00 \text{ mA}$
$V_{BR(ECO)}$	Emitter-to-Collector Breakdown Voltage	5.0			V	$I_E = 100 \mu\text{A}$
$V_{BR(CB)}$	Collector-to-Base Breakdown Voltage	50			V	$I_C = 100 \mu\text{A}$
I_{CEO}	Collector-Emitter Dark Current		5.0	60	nA	$V_{CE} = 10.0 \text{ V}$
I_{CBO}	Collector-Base Dark Current			20	nA	$V_{CB} = 10.0 \text{ V}$
C_{CE}	Capacitance Collector-to-Emitter			8.0	pF	$V_{CE} = 0$
H_F	DC Current Gain			350		$V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A}$
Coupled						
$ C /F$	DC Current Transfer Ratio	50	80		%	$I_F = 10.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$
$V_{CE(SAT)}$	Collector-to-Emitter Saturation Voltage			0.40	V	$I_F = 10.0 \text{ mA}, I_C = 2.0 \text{ mA}$
V_{ISO}	Isolation Voltage OPI2153 OPI2253	1500	2500		V_{DC}	See Note 1
R_{IO}	Input-to-Output Resistance	10^{11}			Ω	$V_{IO} = 500 \text{ V}$, See Note 1
C_{IO}	Input-to-Output Capacitance		2.0		pF	$f = 1.00 \text{ MHz}$, See Note 1
t_r	Output Rise Time		2.0		μs	$V_{CC} = 10.0 \text{ V}, I_C = 2.0 \text{ mA}$
t_f	Output Fall Time		2.0		μs	$R_L = 100\Omega$, See Test Circuit 1

E

Typical Performance Curves

Plastic color may vary.

TRW reserves the right to make changes at any time in order to improve design and to supply the best product possible.
Optoelectronics Division, TRW Electronic Components Group, 1215 W. Crosby Rd., Carrollton, TX 75006 (214) 323-2200, TLX 6716032 or 215649
© TRW Inc. 1985. TRW is the name and mark of TRW Inc.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com