SPEC No.

PREPARED BY: DATE M. Takakura April 9. 1993 APPROVED BY: J. Y. hiram April 9 173

ELECTRONIC COMPONENTS GROUP SHARP CORPORATION

FILE No. ISSUE April 9, 1993 PAGE 12 Pages REPRESENTATIVE DIVISION ☐ PHOTOVOLTAICS DIV. **☑ OPTO-ELECTRONIC DEVICES DIV** ☐ ELECTRONIC COMPONENTS DIV.

ED-93033

SPECIFICATION

DEVICE SPECIFICATION FOR

PHOTOCOUPLER

MODEL No.

PC3Q67

- 1. This specification sheets include the contents under the copyright of Sharp Corporation ("Sharp"). Please keep them with reasonable care as important information. Please don't reproduce or cause anyone reproduce them without Sharp's consent.
- 2. Please obey the instructions mentioned below for actual use of this device.
 - (1) This device is designed for general electronic equipment. Main uses of this device are as follows;
 - Computer ·OA equipment ·Telecommunication equipment (Terminal) · Measuring equipment · Tooling machine · AV equipment · Home appliance, etc.
 - (1) Please take proper steps in order to maintain reliability and safety, in case this device is used for the uses mentioned below which require high reliability.
 - Unit concerning control and safety of a vehicle (air plane, train, automobile etc.) · Gas leak detection breaker · Traffic signal Fire box and burglar alarm box - Other safety equipment, etc.
 - (3) Please don't use for the uses mentioned below which require

WWW.DZSC.COM

Space equipment • Telecommunication equipment (Trunk) element), etc.

CUSTOMER'S APPROVAL

BY

T. Matsumura, Department General Manager of Engineering Dept., II Opto-Electronic Devices Div. ELECOM Group SHARP CORPORATION

DATE

MODEL No.		PAGE
	PC3Q67	1

1. Application

This specification applies to the outline and characteristics of photocoupler Model No. PC3Q67.

2. Outline

Refer to the attached drawing No. CY5890K02.

3. Ratings and characteristics

3.1 Absolute maximum ratings

Ta=25°C

		Parameter	Symbol	Rating	Unit
	*1 Forward current		IF	50	mA
Input -	*2	Peak forward current	I _{FM}	1	A
		Reverse voltage	v_R	6	v
	*1	Power dissipation	P	70	mW
		Collector-emitter voltage	V _{CEO}	35	٧
		Emitter-collector voltage	v _{ECO}	6	V
Output		Collector current	Ic	50	mA
	*1	Collector power dissipation	Pc	150	mW
	*1	Total power dissipation	Ptot	170	mW
		Operating temperature	Topr	-30 ∿ +100	°C
		Storage temperature	Tstg	- 40 ∿ +125	°C
	*3	Isolation voltage	Viso	2.5	kVrms
	*4	Soldering temperature	Tsol	260	°C

^{*1} The derating factors of absolute maximum rating due to ambient temperature are shown in Fig. 1 \sim 4.

^{*2} Pulse width \leq 100 μ s, Duty ratio : 0.001 (Refer to Fig. 5)

^{*3} AC for 1 min., $40 \sim 60\%$ RH, f=60Hz

^{*4} For 10 s

MODEL No		PAGE
	PC3Q67	2

3.2 Electro-optical characteristics

Ta=25°C

	Parameter		MIN.	TYP.	MAX.	Unit	Conditions
	Forward voltage	$v_{ m F}$	_	1.2	1.4	V	I _F =20mA
Input	Reverse current	I _R	-	_	10	μА	V _R = 4 V
	Terminal capacitance	Ct	-	30	250	pF	V=0, f=1kHz
	Dark current	ICEO	-	_	100	пA	v_{CE} =20 V , I_F =0
Output	Collector-emitter breakdown voltage	BV CEO	35	-	_	V	Ic=0.1mA I _F =0
	Emitter-collector brakdown voltage	BV ECO	6	-	_	V	I _E =10μA, I _F =0
	Collector current	Ic	2.5	5	30	mA	I _F =5mA V _{CE} =5V
	Collector-emitter saturation voltage	V _{CE(sat)}	-	0.1	0.2	V	Ir=20mA Ic=1mA
	Isolation resistance	Riso	5×10 ¹⁰	1011		Ω	DC500V 40 ∿ 60%RH
	Floating capacitance	Cf	_	0.6	1.0	рF	V=O, f=1MHz
	Response time (Rise)	tr	_	4	18	μs	V _{CE} =2V Ic=2mA
	Response time (Fall)	tf	_	3	18	μs	$R_L=100\Omega$

i	MODEL	No.		PAGE
Ī			PC3Q67	3

4. Reliability

Refer to the attached sheet, Page 7.

5. Incoming inspection

Refer to the attached sheet, Page 8.

6. Supplements

- 6.1 Isolation voltage shall be measured in the following method.
 - (1) Short between anode and cathode on the primary side and between collector and Emitter on the secondary side.
 - (2) The dielectric withstand tester with zero-cross circuit shall be used.
 - (3) The waveform of applied voltage shall be a sine wave.
 (It is recommended that the isolation voltage be measured in insulation oil)
- 6.2 (1) This product is not designed as radiation hardened.
 - (2) This product is assembled with electrical input and output.
 - (3) This product incorporates non coherent light emitting diode.
- 6.3 Package specifications

Refer to the attached sheet, Page 9 to 11.

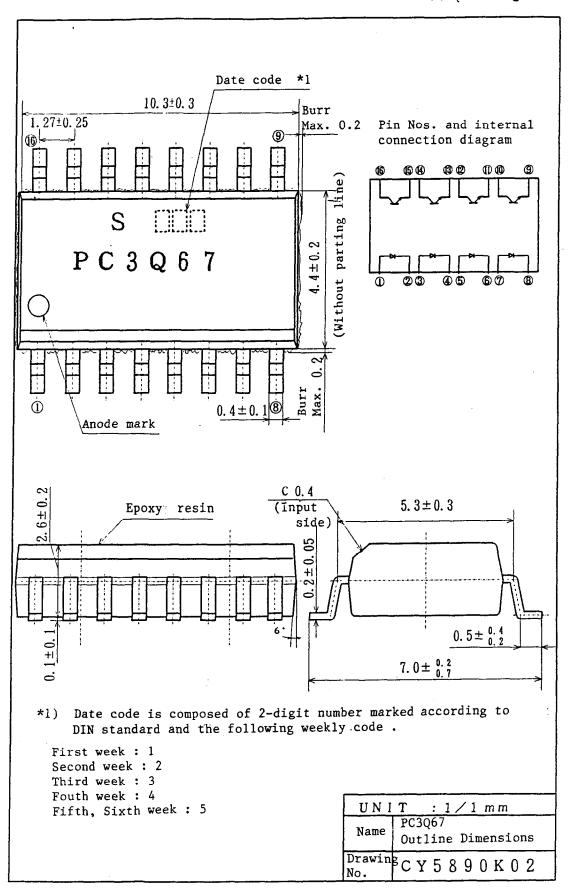
6.4 UL: Under preparation

MODE	L No.		PAGE
		PC3Q67	4

7. Notes

- 7.1 For cleaning
 - * Cleaning conditions:
- (1) Solvent cleaning: Solvent temperature 45°C or less Immersion 3 min. or less
- (2) Ultrasonic cleaning: Affection to device by ultrasonic cleaning has different affection by cleaning bath size, ultrasonic power output, cleaning time, PWB size or device mounting condition etc. If user carries out ultrasonic cleaning, user should select fit condition that doesn't occur defect.
 - * The cleaning shall be carrie out with solvent below.

Solvent: Ethyl alcohol, Methyl alcohol, Isopropyl alcohol Freon TE·TF, Daiflon-solvent S3-E


Please refrain from using Chloro Fluoro Carbon type solvent to clean devices as much as possible since it is restricted to protect the ozonosphere. Before you use alternative solvent you are requested to confirm that it does not damage package resin.

7.2 On mounting

In mounting this device, please perform soldering reflow satisfied with the conditions indicated in page 12. And please pay attention not to occur the temperature rising of the package sectionally.

8. Others

Any doubt as to this specification shall be determined in good faith upon mutual consultation of the both parties.

100 Ta (°C)

100

Ta (°C)

Fig. 2 Diode power dissipation Fig. 1 Forward current vs. vs. ambient temperature ambient temperature Diode power dissipation P (mW) 1F (mγ) 100 50 80 40 Forward current 70 30 60 20 40 10 20 0L -30 0 0 25 55 75 Ambient temperature 100 Ta (°C) 75 75 0 25 55 Ambient temperature Total power dissipation Collector power dissipation Fig. 3 Fig. 4 vs. ambient temperature vs. ambient temperature Ptot (mW) Pc (mk) power dissipation 200 200 170 150 150 100 100 50 50 Total 0 0 25 50 75 Ambient temperature 30 0 25 50 75 Ambient temperature 100 Ta (°C) Fig. 5 Peak forward current vs. duty ratio IFM (mA) Pulse width $\leq 100 \mu s$ Ta = 25T 2000

Collector power dissipation

Peak forward current

5 10

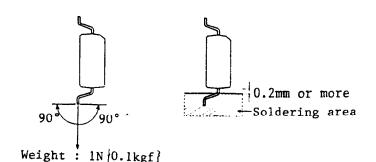
2

Duty ratio

5 10

5 10 12

- 1	MODEL	No.		PAGE
			PC3Q67	7


4. Reliability

The reliability of products shall be satisfied with items listed below.

Confidence level: 90%, LTPD: 10%/20%

Test Items	Test Conditions	Failure Judgement Criteria	Samples (n) Defective(C)
Solderability *1	230°C, 5 s		n=11, C=0
Soldering heat *2	260°C 10 s	V _F > U × 1.2	n=11, C=0
Terminal strength (Bending) *3	Weight : lN{0.lkgf} l time/each termianl	I _R > U × 2	n=11, C=0
Mechanical shock	15000m/s ² {1500G}, 0.5ms 3 times/±X, ±Y, ±Z direction	I _{CEO} > U × 2 Ic < L × 0.7	n=11, C=0
Variable frequency vibration	100 ∿ 2000 ∿ 100 Hz/4 min. 4 times/X,Y Z direction 200m/s ² {20G}	VCE(sat) > U × 1.2	n=11, C=0
Temperature cycling	1 cycle -40°C ∿ +125°C (30min.) (30min.) 20 cycle test		n=22, C=0
High temp. and high humidity storage	+85°C, 85%RH, 500h	U: Upper specification limit	n=22, C=0
High temp. storage	+125°C, 1000h		n=22, C=0
Low temp. storage	-40°C, 1000h	L: Lower specification	n=22, C=0
Operation life	Ta=25°C, I _F =50mA Ptot=170mW, 1000h	limit	n=22, C=0

- *1 Solder shall adhere at the area of 95% or more of immersed portion of lead and pin hole or other holes shall not be concentrated on one portion.
- *2 The lead pin depth dipped into solder shall be away 0.2mm from the root of lead pins. (Refer to the below)
- *3 Terminal bending direction is shown below.

	MODEL	No.		PAGE
į			PC3Q67	8

- 5. Incoming inspection
 - 5.1 Inspection items
 - (1) Electrical characteristics $v_F, \ I_R, \ I_{CEO}, \ v_{CE(sat)}, \ I_C, \ Riso, \ Viso$
 - (2) Appearance
 - 5.2 Sampling method and Inspection level

A single sampling plan, normal inspection level II based on MIL-STD-105D is applied. The AQL according to the inspection items are shown below.

Defect	Inspection item	Inspection level	AQL(%)
Major defect	Electrical characteristics Unreadable marking	Normal inspection II	0.1
Minor defect	Appearance defect except the above mensioned.	Normal inspection II	0.4

ſ	MODEL	No.		 PAGE	_
-			PC3Q67	9	

6.2 Package specifications

- 6.2.1 Taping conditions (Refer to the attached sheet, Page 10)
 - (1) Tape structure and Dimensions

The tape shall have a structure in which a cover tape is sealed heatpressed on the carrier tape of hard vinylchloride to protect against static electricity.

(2) Reel structure and Dimensions (Refer to the attached sheet, Page 11)

The taping reel shall be of corrugated cardboard with its dimensions as shown in the attached drawing.

(3) Direction of product insertion (Refer to the attached sheet, Page 11)

Product direction in carrier tape shall direct to the anode mark at the hole side on the tape.

(4) Joint of tape

The cover tape and carrier tape in one reel shall be jointless.

(5) The way to repair taped failure devices

The way to repair taped failure devices cut a bottom of carrier tape with a cutter, and after replacing to good devices, the cutting portion shall be sealed with adhesive tape.

6.2.2 Adhesiveness of cover tape

The exfoliation force between carrier tape and cover tape shall be $0.2N\{20gf\} \sim 1N\{100gf\}$ for the angle from 160° to 180° .

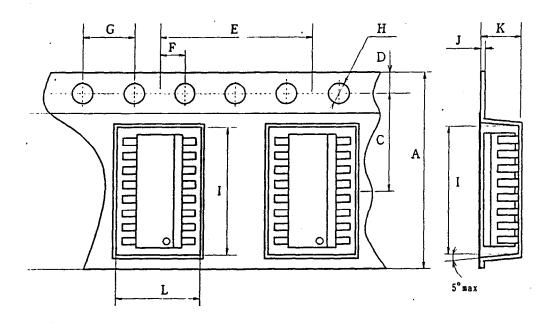
6.2.3 Rolling method and quanfity

Wind the tape back on the reel so that the cover tape will be outside the tape. Attach more than 20cm of blank tape to the trailer and the leader of the tape and fix the both ends with adhesive tape. One reel shall contain 1000 pcs.

6.2.4 Marking

The outer packaging case shall be marked with following information.

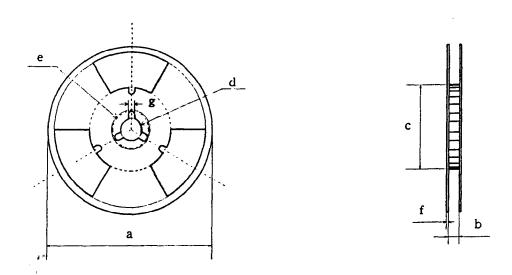
* Model No. * Number of pieces delivered * Production date


6.2.5 Storage condition

Taped procuts shall be stored at the temperature lower than $5 \sim 30^{\circ}$ C and the humidities lower than 70%RH.

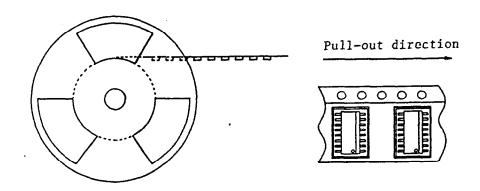
6.2.6 Safety protection during shipping

There shall be no deformation of component or degradation of electrical characteristecs due to shipping.


Tape structure and Dimensions

Dimension list (Unit: mm)

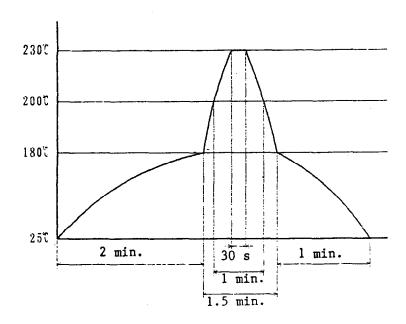
A	С	D	E	F	G	Н	I
24. 0±0. 3	11.5±0.1	1. 75±0. 1	12. 0±0. 1	2. 0±0. 1	4. 0±0. 1	φ1.5 ^{:8·}	10.8±0.1
J	К	L					
0. 4±0. 05	3. 0±0. 1	7. 4±0. 1					


Reel structure and Dimensions

Dimension list (Unit : mm)

а	b	С	d	е	f	g	
330	25. 5±1. 5	100±1.0	13±0.5	23±1.0	2. 0±0. 5	2. 0±0. 5	

Direction of product insertion



-	MODEL	No.	·····		PAGE
			PC3Q67		12

Precautions for Soldering Photocouplers

1. If solder reflow:

It is recommended that only one soldering be done at the temperature and the time within the temperature profile as shown in the figure.

2. Other precautions

An infrared lamp used to heat up for soldering may cause a localized temperature rise in the resin. So keep the package temperature within that specified in Item 1. Also avoid immersing the resin part in the solder.