
INTEGRATED CIRCUITS

Product data sheet Supersedes data of 2004 Oct 05 2006 Sep 21

PCA9538

FEATURES

- 8-bit I²C GPIO with interrupt and reset
- Operating power supply voltage range of 2.3 V to 5.5 V
- 5 V tolerant I/Os
- Polarity inversion register
- Active LOW interrupt output
- Active LOW reset input
- Low stand-by current
- Noise filter on SCL/SDA inputs
- No glitch on power-up
- Internal power-on reset
- 8 I/O pins which default to 8 inputs
- 0 kHz to 400 kHz clock frequency
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JESDEC Standard JESD78 which exceeds 100 mA
- Offered in three different packages: SO16, TSSOP16, and HVQFN16

ORDERING INFORMATION

PACKAGES **TEMPERATURE RANGE** ORDER CODE **TOPSIDE MARK** DRAWING NUMBER 16-Pin Plastic SO (wide) –40 °C to +85 °C PCA9538D PCA9538D SOT162-1 16-Pin Plastic TSSOP -40 °C to +85 °C PCA9538PW PCA9538 SOT403-1 16-Pin Plastic HVQFN -40 °C to +85 °C PCA9538BS SOT629-1 9538

Standard packing quantities and other packing data are available at www.standardics.philips.com/packaging. SMBus as specified by the Smart Battery System Implementers Forum is a derivative of the Philips I²C patent.

DESCRIPTION

The PCA9538 is a 16-pin CMOS device that provide 8 bits of General Purpose parallel Input/Output (GPIO) expansion with interrupt and reset for I²C/SMBus applications and was developed to enhance the Philips family of I²C I/O expanders. I/O expanders provides a simple solution when additional I/O is needed for ACPI power switches, sensors, pushbuttons, LEDs, fans, etc.

The PCA9538 consists of an 8-bit Configuration register (Input or Output selection); 8-bit Input register, 8-bit Output register and an 8-bit Polarity inversion register (Active HIGH or Active LOW operation). The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each Input or Output is kept in the corresponding Input or Output register. The polarity of the input port register can be inverted with the Polarity Inversion Register. All registers can be read by the system master.

The PCA9538 is identical to the PCA9554 except for the removal of the internal I/O pull-up resistor which greatly reduces power consumption when the I/Os are held LOW, replacement of A2 with RESET and different address range.

The PCA9538 open-drain interrupt output is activated when any input state differs from its corresponding input port register state and is used to indicate to the system master that an input state has changed. The power-on reset sets the registers to their default values and initializes the device state machine. The RESET pin causes the same reset/initialization to occur without depowering the device.

Two hardware pins (A0 and A1) vary the fixed I²C address and allow up to four devices to share the same I²C/SMBus.

PIN CONFIGURATION - SO, TSSOP 16 V_{DD} A0 1 A1 2 15 SDA RESET 3 14 SCL 13 INT I/O0 4 12 I/O7 I/O1 5 I/O2 6 11 I/O6 10 I/O5 I/O3 7 9 I/O4 V_{SS} 8 SW02172

PIN CONFIGURATION — HVQFN

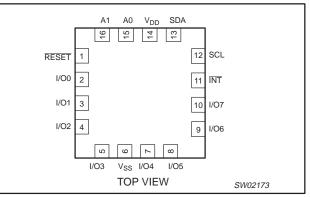


Figure 2. Pin Configuration — HVQFN

PIN DESCRIPTION

SO, TSSOP PIN NUMBER	HVQFN PIN NUMBER	SYMBOL	FUNCTION	
1	15	A0	Address input 0	
2	16	A1	Address input 1	
3	1	RESET	Active LOW reset input	
4–7	2–5	I/O0–3	I/O0 to I/O3	
8	6	V _{SS}	Supply ground	
9–12	7–10	I/O4–7	I/O4 to I/O7	
13	11	INT	Interrupt output (open drain)	
14	12	SCL	Serial clock line	
15	13	SDA	Serial data line	
16	14	V _{DD}	Supply voltage	

BLOCK DIAGRAM

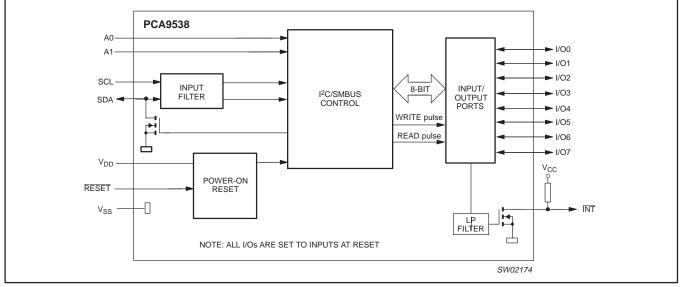


Figure 3. Block diagram

REGISTERS

Command Byte

Command	Protocol	Function		
0	Read byte	Input port register		
1	Read/write byte	Output port register		
2	Read/write byte	Polarity inversion register		
3	Read/write byte	Configuration register		

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read.

Register 0 – Input Port Register

bit	17	16	15	14	13	12	11	10
default	Х	Х	Х	Х	Х	Х	Х	Х

This register is a read only port. It reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3. Writes to this register have no effect.

The default value 'X' is determined by the externally applied logic level.

Register 1 – Output Port Register

bit	07	O6	O5	O4	O3	02	01	O0
default	1	1	1	1	1	1	1	1

This register reflects the outgoing logic levels of the pins defined as outputs by Register 3. Bit values in this register have no effect on pins defined as inputs. Reads from this register return the value that is in the flip-flop controlling the output selection, NOT the actual pin value.

Register 2 - Polarity Inversion Register

bit	N7	N6	N5	N4	N3	N2	N1	N0
default	0	0	0	0	0	0	0	0

This register allows the user to invert the polarity of the Input Port Register data. If a bit in this register is set (written with '1'), the corresponding Input Port data is inverted. If a bit in this register is cleared (written with a '0'), the Input Port data polarity is retained.

Register 3 – Configuration Register

bit	C7	C6	C5	C4	C3	C2	C1	C0
default	1	1	1	1	1	1	1	1

This register configures the directions of the I/O pins. If a bit in this register is set, the corresponding port pin is enabled as an input with high-impedance output driver. If a bit in this register is cleared, the corresponding port pin is enabled as an output. At reset, the I/Os are configured as inputs.

Power-on Reset

When power is applied to V_{DD}, an internal power-on reset holds the PCA9538 in a reset condition until V_{DD} has reached V_{POR}. At that point, the reset condition is released and the PCA9538 registers and state machine will initialize to their default states. Thereafter, V_{DD} must be lowered below 0.2 V to reset the device.

For a power reset cycle, V_{DD} must be lowered below 0.2 V and then restored to the operating voltage.

RESET Input

A reset can be accomplished by holding the $\overline{\text{RESET}}$ pin LOW for a minimum of t_W . The PCA9538 registers and SMBus/I^2C state machine will be held in their default state until the $\overline{\text{RESET}}$ input is once again HIGH. This input requires a pull-up resistor to V_{DD} if no active connection is used.

Interrupt Output

The open-drain interrupt output is activated when one of the port pins change state and the pin is configured as an input. The interrupt is deactivated when the input returns to its previous state or the input port register is read.

Note that changing an I/O from an output to an input may cause a false interrupt to occur if the state of the pin does not match the contents of the input port register.

SIMPLIFIED SCHEMATIC OF I/O0 TO I/O7

NOTE: At Power-on Reset, all registers return to default values.

Figure 4. Simplified schematic of I/O0 to I/O7

I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a high-impedance input. The input voltage may be raised above V_{DD} to a maximum of 5.5 V.

If the I/O is configured as an output, then either Q1 or Q2 is enabled, depending on the state of the output port register. Care should be exercised if an external voltage is applied to an I/O configured as an output because of the low impedance paths that exist between the pin and either V_{DD} or V_{SS} .

PCA9538

Device address

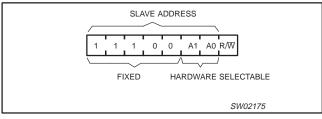


Figure 5. PCA9538 address

Bus transactions

Data is transmitted to the PCA9538 registers using the write mode as shown in Figures 6 and 7. Data is read from the PCA9538 registers using the read mode as shown in Figures 8 and 9. These devices do not implement an auto-increment function so once a command byte has been sent, the register which was addressed will continue to be accessed by reads until a new command byte has been sent.

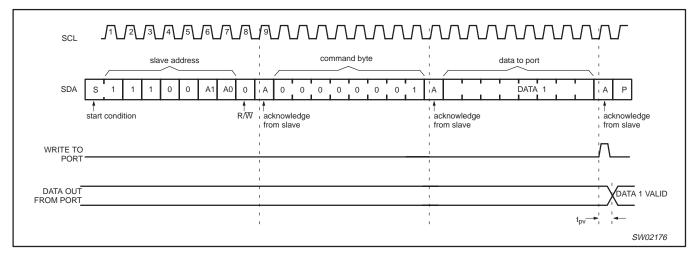


Figure 6. WRITE to output port register

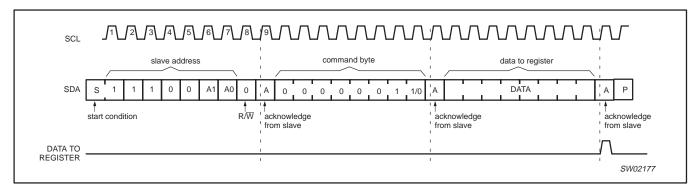


Figure 7. WRITE to configuration or polarity inversion registers

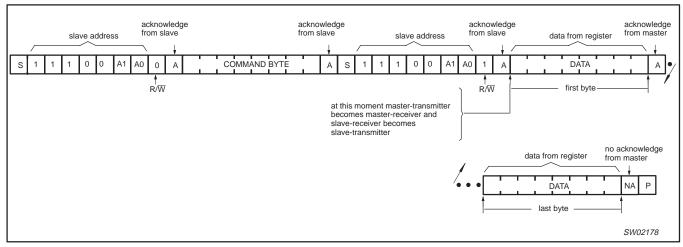
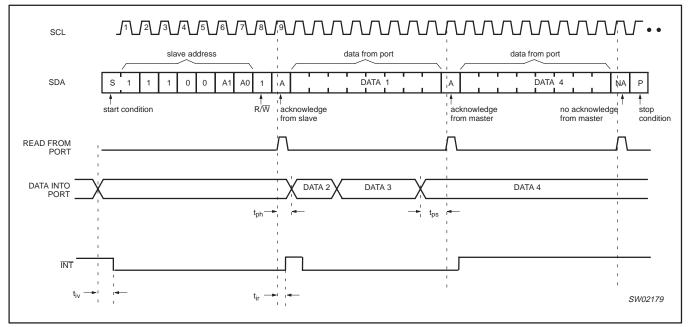



Figure 8. READ from register

NOTES:

1. This figure assumes the command byte has previously been programmed with 00h.

2. Transfer of data can be stopped at any moment by a stop condition.

```
Figure 9. READ input port register
```

PCA9538

TYPICAL APPLICATION

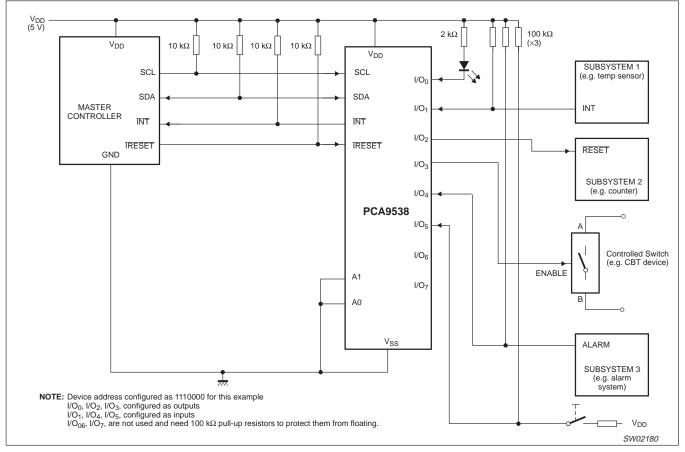


Figure 10. Typical application

Minimizing I_{DD} when the I/O is used to control LEDs

When the I/Os are used to control LEDs, they are normally connected to V_{DD} through a resistor as shown in Figure 10. Since the LED acts as a diode, when the LED is off the I/O V_{IN} is about 1.2 V less than V_{DD} . The supply current, I_{DD} , increases as V_{IN} becomes lower than V_{DD} and is specified as ΔI_{DD} in the DC characteristics table.

Designs needing to minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to V_{DD} when the LED is off. Figure 11 shows a high value resistor in parallel with the LED. Figure 12 shows V_{DD} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_{IN} at or above V_{DD} and prevents additional supply current consumption when the LED is off.

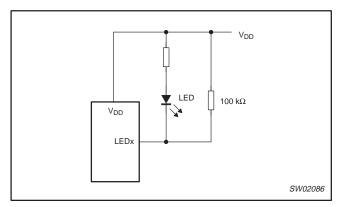


Figure 11. High value resistor in parallel with the LED

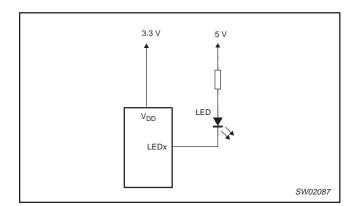


Figure 12. Device supplied by a lower voltage

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{DD}	Supply voltage		-0.5	6.0	V
l _l	DC input current		—	±20	mA
V _{I/O}	DC voltage on an I/O		V _{SS} – 0.5	5.5	V
I _{I/O}	DC output current on an I/O		—	±50	mA
I _{DD}	Supply current		-	85	mA
I _{SS}	Supply current		—	100	mA
P _{tot}	Total power dissipation		-	200	mW
T _{stg}	Storage temperature range		-65	+150	°C
T _{amb}	Operating ambient temperature		-40	+85	°C
T _{J(MAX)}	Maximum junction temperature		-	+125	°C

PCA9538

PCA9538

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC24 under "Handling MOS devices".

DC CHARACTERISTICS

 V_{DD} = 2.3 to 5.5 V; V_{SS} = 0 V; T_{amb} = -40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Supplies	•	•				
V _{DD}	Supply voltage		2.3	—	5.5	V
I _{DD}	Supply current	Operating mode; V_{DD} = 5.5 V; no load; f_{SCL} = 100 kHz	_	104	175	μΑ
I _{stbl}	Standby current	Standby mode; $V_{DD} = 5.5 V$; no load; $V_I = V_{SS}$; $f_{SCL} = 0 \text{ kHz}$; I/O = inputs	-	0.25	1	μΑ
I _{stbh}	Standby current	Standby mode; $V_{DD} = 5.5$ V; no load; $V_I = V_{DD}$; $f_{SCL} = 0$ kHz; I/O = inputs	-	0.25	1	μΑ
V _{POR}	Power-on reset voltage (Note 1)	No load; $V_I = V_{DD}$ or V_{SS}	—	1.5	1.65	V
nput SCL;	input/output SDA					
VIL	LOW-level input voltage		-0.5	—	0.3 V _{DD}	V
V _{IH}	HIGH-level input voltage		0.7 V _{DD}	—	5.5	V
I _{OL}	LOW-level output current	$V_{OL} = 0.4 V$	3	tbd	-	mA
١L	Leakage current	$V_{I} = V_{DD} = V_{SS}$	-1	—	+1	μΑ
CI	Input capacitance	$V_I = V_{SS}$	—	5	10	pF
/Os	-					-
V _{IL}	LOW-level input voltage		-0.5	—	0.8	V
VIH	HIGH-level input voltage		2.0	—	5.5	V
		V _{OL} = 0.5 V; V _{DD} = 2.3 V; Note 2	8	10	- 1	mA
		V _{OL} = 0.7 V; V _{DD} = 2.3 V; Note 2	10	13	-	mA
		V _{OL} = 0.5 V; V _{DD} = 4.5 V; Note 2	8	17	-	mA
IOL	LOW-level output current	$V_{OL} = 0.7 \text{ V}; V_{DD} = 4.5 \text{ V}; \text{ Note } 2$	10	24	—	mA
		$V_{OL} = 0.5 \text{ V}; V_{DD} = 3.0 \text{ V}; \text{ Note } 2$	8	14	—	mA
		$V_{OL} = 0.7 \text{ V}; V_{DD} = 3.0 \text{ V}; \text{ Note } 2$	10	19	—	mA
		$I_{OH} = -8 \text{ mA}; V_{DD} = 2.3 \text{ V}; \text{ Note } 3$	1.8	—	—	V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 2.3 \text{ V}; \text{ Note } 3$	1.7	—	—	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -8 \text{ mA}; V_{DD} = 3.0 \text{ V}; \text{ Note } 3$	2.6	—	—	V
VOH	Thish-level output voltage	$I_{OH} = -10 \text{ mA}; V_{DD} = 3.0 \text{ V}; \text{ Note } 3$	2.5	—	—	V
		I_{OH} = -8 mA; V_{DD} = 4.5 V; Note 3	4.1	—	-	V
		$I_{OH} = -10 \text{ mA}; V_{DD} = 4.5 \text{ V}; \text{ Note } 3$	4.0	—	-	V
Ι _{ΙL}	Input leakage current	$V_{I} = V_{DD} = V_{SS}$	-1	—	1	μΑ
CI	Input capacitance		—	5	10	pF
nterrupt IN	T					
I _{OL}	LOW-level output current	$V_{OL} = 0.4 V$	3	tbd	—	mA
Select Inpu	ts A0, A1, and RESET					
V _{IL}	LOW-level input voltage		-0.5	_	0.8	V
VIH	HIGH-level input voltage		2.0	—	5.5	V
ILI	Input leakage current		-1	_	1	μΑ

NOTES:

V_{DD} must be lowered to 0.2 V in order to reset part.
 Each I/O must be externally limited to a maximum of 25 mA and the device must be limited to a maximum current of 100 mA.

3. The total current sourced by all I/Os must be limited to 85 mA.

PCA9538

AC SPECIFICATIONS

SYMBOL	PARAMETER		RD MODE bus	FAST MC I ² C-bu	UNITS	
		MIN	MAX	MIN	MAX]
f _{SCL}	Operating frequency	0	100	0	400	kHz
t _{BUF}	Bus free time between STOP and START conditions	4.7	—	1.3	—	μs
t _{HD;STA}	Hold time after (repeated) START condition	4.0	—	0.6	—	μs
t _{SU;STA}	Repeated START condition setup time	4.7	—	0.6	—	μs
t _{SU;STO}	Setup time for STOP condition	4.0	—	0.6	—	μs
t _{HD;DAT}	Data in hold time	0	—	0	—	ns
t _{VD;ACK}	Valid time for ACK condition ²	0.3	3.45	0.1	0.9	μs
t _{VD;DAT}	Data out valid time ³	300	—	50	—	ns
t _{SU;DAT}	Data setup time		—	100	—	ns
t _{LOW}	Clock LOW period		—	1.3	—	μs
t _{HIGH}	Clock HIGH period		—	0.6	—	μs
t _F	Clock/Data fall time	—	300	20 + 0.1 C _b ¹	300	ns
t _R	Clock/Data rise time	-	1000	20 + 0.1 C _b ¹	300	ns
t _{SP}	Pulse width of spikes that must be suppressed by the input filters	- 1	50	—	50	ns
Port Timin	g					
t _{PV}	Output data valid	-	200	_	200	ns
t _{PS}	Input data setup time	100	—	100	—	ns
t _{PH}	Input data hold time	1	—	1	—	μs
Interrupt T	ïming					
t _{IV}	Interrupt valid	-	4	—	4	μs
t _{IR}	Interrupt reset		4	_	4	μs
RESET						
t _W	Reset pulse width	4	—	4	—	ns
t _{REC}	Reset recovery time	0	—	0	—	ns
t _{RESET}	Time to reset	400	—	400	—	ns

NOTES:

1. C_b = total capacitance of one bus line in pF.

2. $t_{VD;ACK}$ = time for Acknowledgement signal from SCL low to SDA (out) low. 3. $t_{VD;DAT}$ = minimum time for SDA data out to be valid following SCL low.

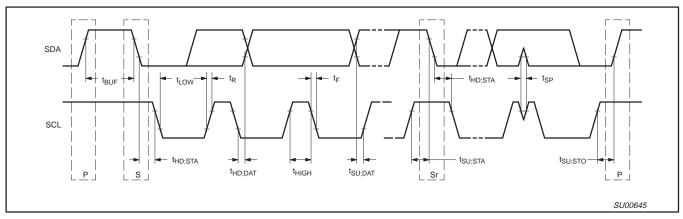


Figure 13. Definition of timing

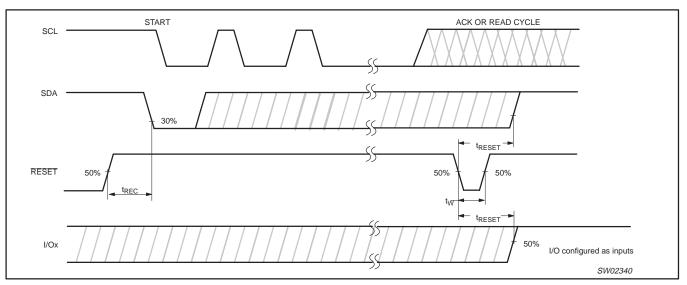


Figure 14. Definition of RESET timing

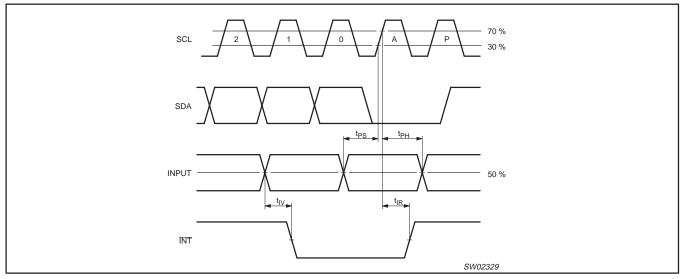


Figure 15. Expanded view of Read input port register

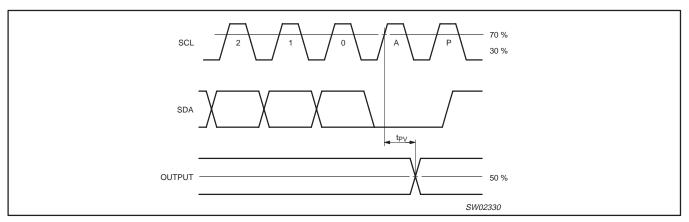


Figure 16. Expanded view of Write to output port register

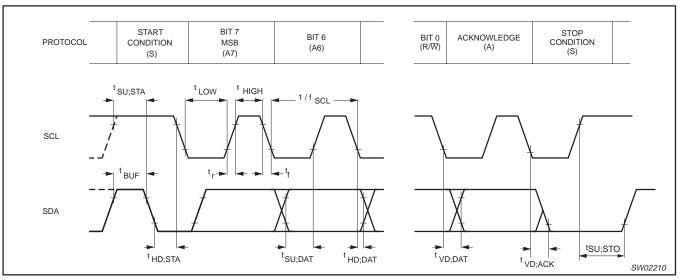


Figure 17. I²C-bus timing diagram; rise and fall times refer to V_{IL} and V_{IH}

TEST CIRCUITS

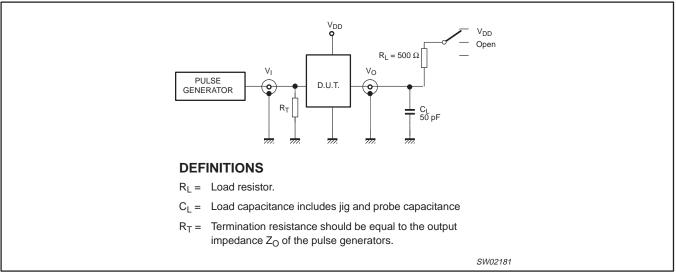


Figure 18. Test circuitry for switching times

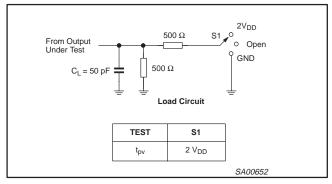
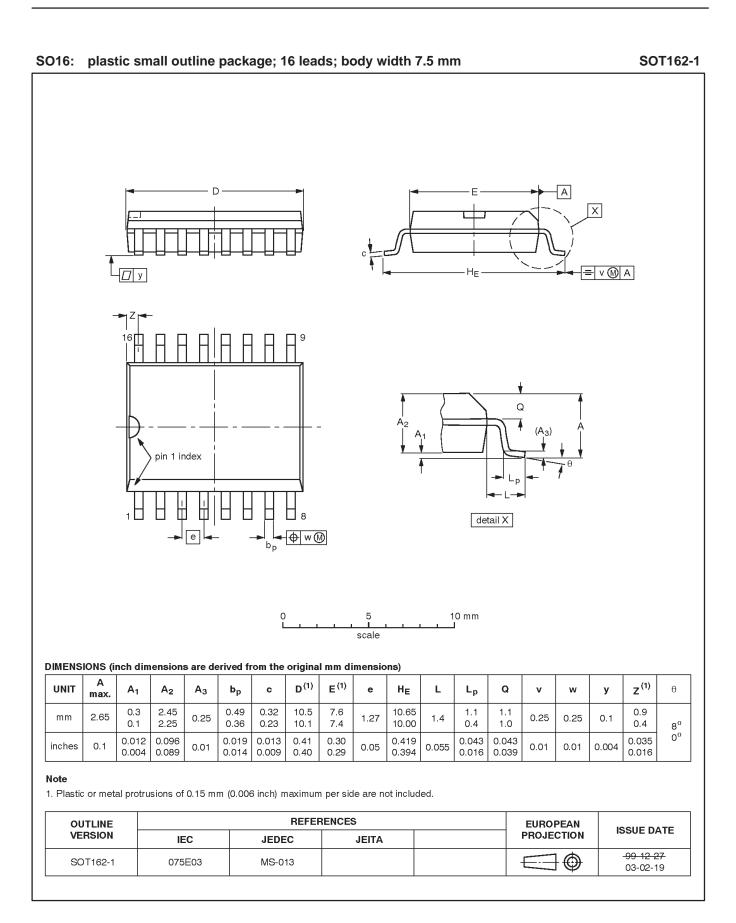
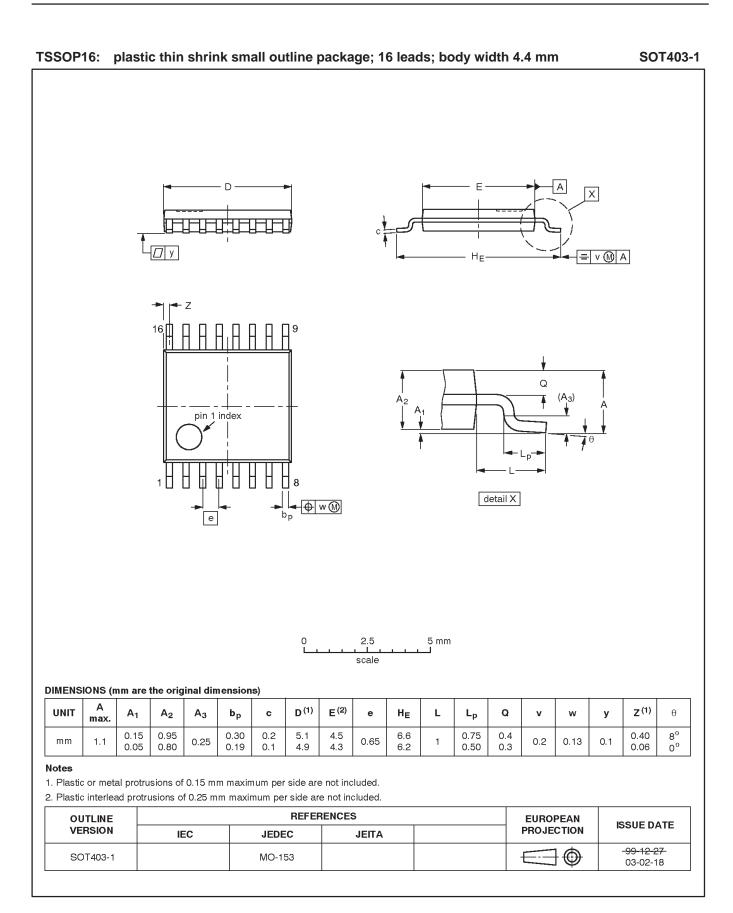
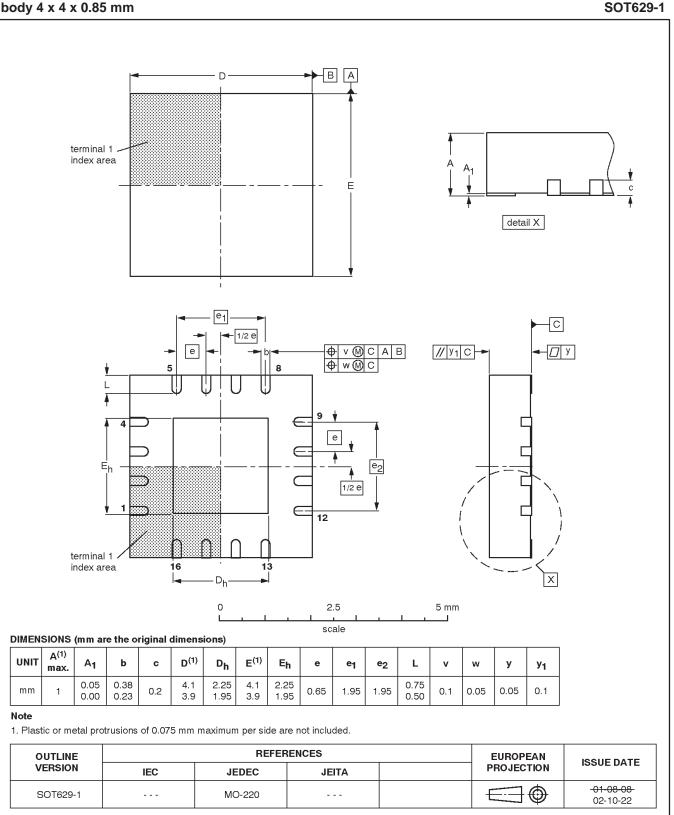




Figure 19. Test circuit


PCA9538

PCA9538

Product data sheet

HVQFN16: plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body 4 x 4 x 0.85 mm

REVISION HISTORY

Rev	Date	Description
_4	20060921	Product data sheet. Supersedes data of 2004 Oct 05 (9397 750 14176). Modifications:
		 Figure 4 on page 5: removed (2) ESD protection diodes
_3	20041005	Product data sheet (9397 750 14176). Supersedes data of 2004 Sep 30 (9397 750 14049).
_2	20040930	Objective data sheet (9397 750 14049). Supersedes data of 2004 Aug 20 (9397 750 12881).
_1	20040820	Objective data sheet (9397 750 12881).

Legal Information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this data sheet was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Philips Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Philips Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Philips Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Philips Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Philips Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Philips Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Philips Semiconductors accepts no liability for inclusion and/or use of Philips Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Philips Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.semiconductors.philips.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Philips Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.

Contact information

For additional information please visit: http://www.semiconductors.philips.com

For sales office addresses, send an e-mail to: sales.addresses@www.semiconductors.philips.com

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Koninklijke Philips Electronics N.V. 2006. All rights reserved. For more information, please visit http://www.semiconductors.philips.com. For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com.

Date of release: 20060921 Document identifier: PCA9538_4