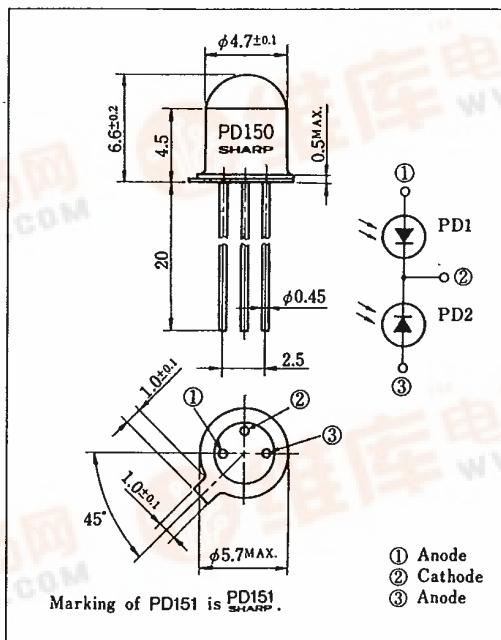


PD150/PD151 TO-18 Type Color Sensor

T-41-51


■ Features

1. Output corresponding to the wavelength of light
2. Compact 1-chip structure
3. Blue to near infrared light range
4. Infrared cut-off type : PD151

■ Applications

1. Color reading
 - Automatic white balancing for VCR cameras
 - Flame color meter for fan heaters
 - Color identification for color paper
 - Chromatic balance adjustment for TVs
2. Color temperature/wavelength reading
 - Measurement and control for color temperature/wavelength of light source

■ Outline Dimensions (Unit : mm)

4

■ Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Reverse voltage	V _R	5	V
Operating temperature	T _{opr}	0~+70	°C
Storage temperature	T _{stg}	-25~+100	°C
*Soldering temperature	T _{sot}	260	°C

*1 For 10 seconds at the position of 1.3mm from the bottom face of can package

■ Electro-optical Characteristics (Ta=25°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Dark current	I _d	V _R =1V	—	—	10	nA
Terminal capacitance	C ₁₁	V _R =0, f=1MHz	—	200	—	pF
	C ₁₂	V _R =0, f=1MHz	—	100	—	pF
Short-circuit current	PD150	I _{sc1} $\lambda=600\text{nm}$	—	0.75	—	μA
		$E_e=50\mu\text{W/cm}^2$	—	0.65	—	μA
	PD151	I _{sc1} $\lambda=600\text{nm}$	—	0.19	—	μA
		$E_e=50\mu\text{W/cm}^2$	—	0.16	—	μA
Short-circuit current ratio	I _{sc2} /I _{sc1}	$\lambda=600\text{nm}$	—	0.25	—	—
		$\lambda=900\text{nm}$	—	4.5	—	—

SHARP

■ Theory of Operation

The semiconductor color sensor PD150 is an element of two PN-junctions (photodiode) vertically incorporated into one chip with its thickness of silicon acting as an optical filter.

This means, as shown in Fig. 2, that with the lights of short wavelength absorbed near the surface of silicon and those of long wavelength going deeper to be absorbed, the photodiode PD1 of the less deep PN-junction will have greater sensitivity to short wavelength lights while the photodiode PD2 of the deeper PN-junction will have greater sensitivity to long wavelength lights. These characteristics are shown in Fig. 3.

According to this spectral sensitivity, as a signal processing method for picking up a signal (color signal) corresponding to its wavelength of light, the short circuit current ratio between the two photodiodes above mentioned is used.

From Fig. 3, the relationship between the short circuit current ratio (I_{sc2}/I_{sc1}) and the wavelength of the incident light (λ) can be obtained as shown in Fig. 5. As it is obvious in this figure, there is the 1-to-1 correspondence between one wavelength and the short circuit current ratio to indicate that the reading of color of light (wavelength) is possible.

Thus, the wavelength of blue to near infrared color can be read by PD150.

Also taken into account to make the color signal reading capability as close to that of human eye as possible is the fact the human eye is insensitive to wavelength of over 700nm. Hence the PD151 which is a PD150 with built-in infrared cut-off filter. Its spectral sensitivity characteristics are shown in Fig. 4.

Next, concretely described in Fig. 3, Fig. 4 and Fig. 5 will be a case with a monochromatic light striking upon the semiconductor color sensor and a case with a composite light of various wavelength striking upon it.

Fig. 1 Structure of Semiconductor Color Sensor T-41-51

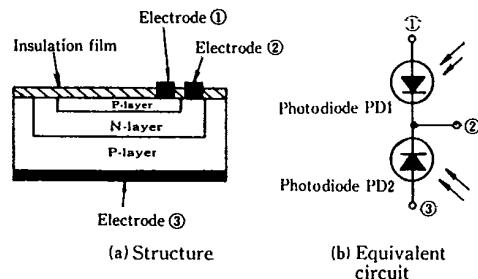


Fig. 2 Wavelength and Light Absorption Areas

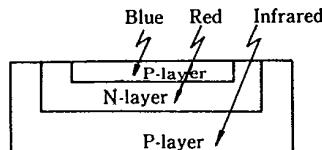



Fig. 3 Spectral Sensitivity (PD150)

