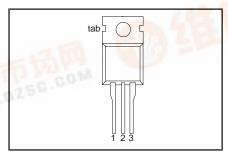
PowerMOS transistor

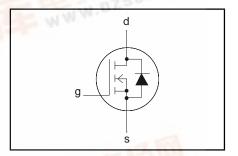
PHP2N40E

GENERAL DESCRIPTION

N-channel enhancement mode field-effect power transistor in a plastic envelope featuring high avalanche energy capability, stable blocking voltage, fast switching and high thermal cycling performance with low thermal resistance. Intended for use in Switched Mode Power Supplies (SMPS), motor control circuits and general purpose switching applications.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
V _{DS} I _D Ptot R _{DS(ON)}	Drain-source voltage Drain current (DC) Total power dissipation Drain-source on-state resistance	400 2.5 50 3.5	> A


PINNING - TO220AB

PIN	DESCRIPTION		
1	gate		
2	drain		
3	source		
tab	drain		

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	Drain-source voltage	-7 FM Sa (0) =	-	400	V
V _{DGR}	Drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$	-	400	V
$V_{DGR} \pm V_{GS}$	Gate-source voltage	~ COM	-	30	V
I _D	Drain current (DC)	$T_{mb} = 25 ^{\circ}C$	-	2.5	Α
	WWW.	$IT_{mb} = 100 ^{\circ}C$	-	1.6	Α
I _{DM}	Drain current (pulse peak value)	$T_{mb}^{mb} = 25 \degree C$	-	10	Α
I _{DR}	Source-drain diode current (DC)	$T_{mb} = 25 ^{\circ}C$		2.5	Α
I _{DRM}	Source-drain diode current (pulse peak value)	T _{mb} = 25 °C	B-T!	10	Α
P _{tot}	Total power dissipation	$T_{mb} = 25 ^{\circ}\text{C}$	TAISH .	50	W
T _{stg}	Storage temperature		-55	150	°C
T _j	Junction temperature		-	150	°C

AVALANCHE LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
W _{DSS}	Drain-source non-repetitive unclamped inductive turn-off energy Drain-source repetitive unclamped inductive turn-off energy	$\begin{split} I_D &= 2.5 \text{ A ; V}_{DD} \leq 50 \text{ V ; V}_{GS} = 10 \text{ V ;} \\ R_{GS} &= 50 \Omega \\ & T_j = 25 ^{\circ}\text{C prior to surge} \\ T_j &= 100 ^{\circ}\text{C prior to surge} \\ I_D &= 2.5 \text{ A ; V}_{DD} \leq 50 \text{ V ;} \\ V_{GS} &= 10 \text{ V ; R}_{GS} = 50 \Omega \text{ ; T}_j \leq 150 ^{\circ}\text{C} \end{split}$		120 20 3.6	mJ mJ mJ

PowerMOS transistor

PHP2N40E

THERMAL RESISTANCES

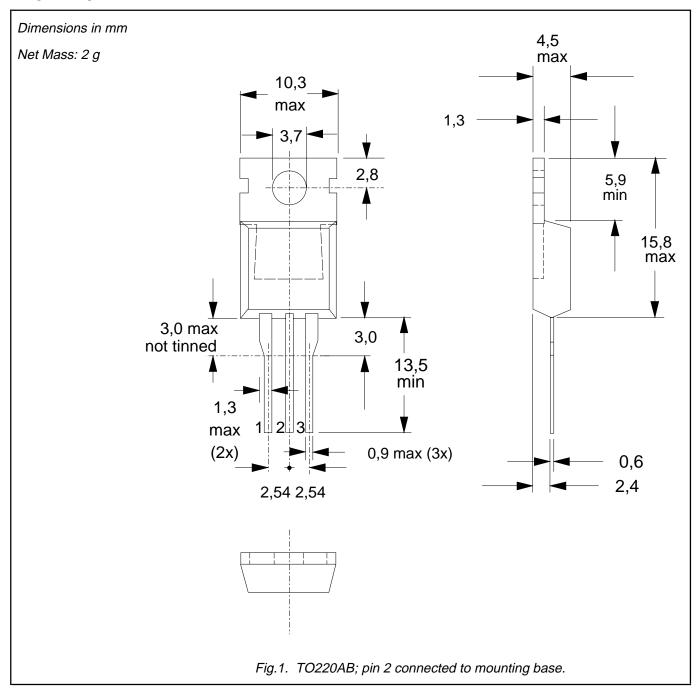
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb}	Thermal resistance junction to mounting base			-	2.5	K/W
R _{th j-a}	Thermal resistance junction to ambient		-	60	-	K/W

STATIC CHARACTERISTICS

 T_{mb} = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_{D} = 0.25 \text{ mA}$	400	-	-	V
$V_{GS(TO)}$	Gate threshold voltage	$V_{DS} = V_{GS}$; $I_{D} = 0.25 \text{ mA}$	2.0	3.0	4.0	V
I _{DSS}	Drain-source leakage current	$V_{DS} = V_{GS}$; $I_{D} = 0.25 \text{ mA}$ $V_{DS} = 400 \text{ V}$; $V_{GS} = 0 \text{ V}$; $T_{i} = 25 \text{ °C}$	-	10	100	μΑ
		$V_{DS} = 320 \text{ V}; V_{GS} = 0 \text{ V}; T_i = 125 ^{\circ}\text{C}$	-	0.1	1.0	mΑ
I _{GSS}	Gate-source leakage current	$V_{GS} = \pm 30 \text{ V}; V_{DS} = 0 \text{ V}$	-	10	100	nA
R _{DS(ON)}	Drain-source on-state resistance	$V_{GS}^{GS} = 10 \text{ V}; I_{D} = 1.25 \text{ A}$	-	3.1	3.5	Ω
V_{SD}	Source-drain diode forward voltage	$I_F = 2.5 \text{ A }; V_{GS} = 0 \text{ V}$	-	1.4	2.0	V

DYNAMIC CHARACTERISTICS


 T_{mb} = 25 °C unless otherwise specified

orward transconductance	$V_{DS} = 15 \text{ V}; I_{D} = 1.25 \text{ A}$				
	V _{DS} = 13 V, I _D = 1.23 A	0.5	0.9	-	S
nput capacitance Output capacitance Feedback capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$	- - -	225 30 6.0	315 42 12	pF pF pF
Fotal gate charge Gate to source charge Gate to drain (Miller) charge	$V_{GS} = 10 \text{ V}; I_D = 2.5 \text{ A}; V_{DS} = 320 \text{ V}$	-	12 2 6		nC nC nC
Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time	$\begin{split} V_{DD} &= 30 \text{ V}; \text{ I}_D = 2.2 \text{ A}; \\ V_{GS} &= 10 \text{ V}; \text{ R}_{GS} = 50 \Omega; \\ \text{R}_{GEN} &= 50 \Omega \end{split}$		10 30 30 20	15 45 40 30	ns ns ns ns
Source-drain diode reverse recovery time Source-drain diode reverse recovery charge	$I_F = 2.5 \text{ A}; -dI_F/dt = 100 \text{ A}/\mu\text{s};$ $V_{GS} = 0 \text{ V}; V_R = 100 \text{ V}$	-	350 2.5	-	ns μC
nternal drain inductance	Measured from contact screw on tab to centre of die Measured from drain lead 6 mm from package to centre of die Measured from source lead 6 mm		3.5 4.5 7.5		nH nH nH
	eedback capacitance otal gate charge sate to source charge urn-on delay time urn-off delay time urn-off fall time ource-drain diode reverse ecovery time ource-drain diode reverse ecovery charge nternal drain inductance	eedback capacitance otal gate charge state to source charge atte to drain (Miller) charge ourn-on delay time urn-off delay time urn-off fall time	eedback capacitance	reedback capacitance $I_{GS} = 10 \text{ V}; I_D = 2.5 \text{ A}; V_{DS} = 320 \text{ V}$ otal gate charge state to source charge state to drain (Miller) charge $I_{GS} = 10 \text{ V}; I_D = 2.5 \text{ A}; V_{DS} = 320 \text{ V}$ otal gate charge $I_{GS} = 10 \text{ V}; I_D = 2.5 \text{ A}; V_{DS} = 320 \text{ V}$ otal gate to source charge $I_{GS} = 10 \text{ V}; I_D = 2.2 \text{ A}; I$	reedback capacitance $P_{GS} = 10 \text{ V}; P_{DS} = 320 \text{ V}$ $P_{DS} = $

PowerMOS transistor

PHP2N40E

MECHANICAL DATA

Notes

- Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
 Refer to mounting instructions for TO220 envelopes.
 Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Objective specification

PowerMOS transistor

PHP2N40E

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
1 reduct openineation	The data check contains into product opening and in			

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1996

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.