FEATURES

－Repetitive Avalanche Rated
－Fast switching
－Stable off－state characteristics
－High thermal cycling performance
－Isolated package
－Fast reverse recovery diode

GENERAL DESCRIPTION

N－channel，enhancement mode field－effect power transistor， incorporating a Fast Recovery Epitaxial Diode（FRED）．This gives improved switching performance in half bridge and full bridge converters making this device particularly suitable for inverters， lighting ballasts and motor control circuits．

The PHX6ND50E is supplied in the SOT186A full pack，isolated package．

SYMBOL

PINNING

PIN	DESCRIPTION
1	gate
2	drain
3	source
case	isolated

QUICK REFERENCE DATA

$$
\begin{gathered}
\mathrm{V}_{\mathrm{DSS}}=500 \mathrm{~V} \\
\mathrm{I}_{\mathrm{D}}=3.1 \mathrm{~A} \\
\mathrm{R}_{\mathrm{DS}(\mathrm{~N})} \leq 1.5 \Omega \\
\mathrm{t}_{\mathrm{r}}=180 \mathrm{~ns}
\end{gathered}
$$

SOT186A

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System（IEC 134）

SYMBOL	PARAMETER	CONDITIONS	MIN．	MAX．	UNIT
$V_{\text {DSS }}$	Drain－source voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		500	V
$V_{\text {DGR }}$	Drain－gate voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$	－	500	V
$V_{\text {GS }}$	Gate－source voltage		－	± 30	V
I_{D}	Continuous drain current		－	3.1	A
	Pulsed drain current ${ }^{1}$	$\begin{aligned} & \mathrm{T}_{\mathrm{hs}}=100^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{hs}}=25^{\circ} \mathrm{C} \end{aligned}$	－	2	A
${ }_{\text {PM }}$	Total dissipation	$\mathrm{T}_{\text {hs }}=25^{\circ} \mathrm{C}$	－	35	W
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating junction and storage temperature range		－ 55	150	${ }^{\circ} \mathrm{C}$

PowerMOS transistors
FREDFET, Avalanche energy rated

AVALANCHE ENERGY LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{E}_{\text {AS }}$	Non-repetitive avalanche energy	Unclamped inductive load, $\mathrm{I}_{\mathrm{AS}}=4 \mathrm{~A}$; $\mathrm{t}_{\mathrm{p}}=0.17 \mathrm{~ms} ; \mathrm{T}_{\mathrm{j}}$ prior to avalanche $=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{DD}} \leq 50 \mathrm{~V} ; \mathrm{R}_{\mathrm{GS}}=50 \Omega ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$; refer to fig:17 $\mathrm{I}_{\mathrm{AR}}=5.9 \mathrm{~A} ; \mathrm{t}_{\mathrm{p}}=1 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{j}}$ prior to avalanche $=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=50 \Omega ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$; refer to fig:18	-	280	mJ
$\mathrm{E}_{\text {AR }}$	Repetitive avalanche energy ${ }^{1}$		-	10	mJ
$\mathrm{I}_{\text {AS }}, \mathrm{I}_{\text {AR }}$	Repetitive and non-repetitive avalanche current		-	5.9	A

ISOLATION LIMITING VALUE \& CHARACTERISTIC

$\mathrm{T}_{\text {hs }}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V isol	R.M.S. isolation voltage from all three terminals to external heatsink	$\mathrm{f}=50-60 \mathrm{~Hz}$; sinusoidal waveform; R.H. $\leq 65 \% ;$ clean and dustfree	-		2500	V
C $_{\text {isol }}$	Capacitance from T2 to external heatsink	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$R_{\text {th } j \text {-hs }}$	Thermal resistance junction to heatsink	with heatsink compound	-	-	3.6	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} j-\mathrm{a}}$	Thermal resistance junction to ambient		-	55	-	K / W

PowerMOS transistors

FREDFET, Avalanche energy rated

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	Drain-source breakdown voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~mA}$	500	-	-	V
$\begin{aligned} & \Delta \mathrm{V}_{\text {(BR)DSs }} / \\ & \Delta \mathrm{T}_{\mathrm{j}} \end{aligned}$	Drain-source breakdown voltage temperature coefficient	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} ; \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~mA}$	-	0.1	-	\%/K
$\mathrm{R}_{\text {DS(ON) }}$	Drain-source on resistance	$V_{G S}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	-	1.2	1.5	Ω
$\mathrm{V}_{\mathrm{GS}(\mathrm{TO})}$	Gate threshold voltage	$V_{\text {DS }}=V_{G S} ; \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~mA}$	2.0	3.0	4.0	V
g_{fs}	Forward transconductance	$\mathrm{V}_{\text {DS }}=30 \mathrm{~V} ; \mathrm{l}_{\mathrm{D}}=3 \mathrm{~A}$	2	3.6		S
$\mathrm{l}_{\text {dss }}$	Drain-source leakage current	$\mathrm{V}_{\mathrm{DS}}=500 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		1	25	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {DS }}=400 \mathrm{~V} ; \mathrm{V}_{\text {GS }}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	-	30	250	$\mu \mathrm{A}$
$\mathrm{I}_{\text {GSS }}$	Gate-source leakage current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V} ; \mathrm{V}_{\text {DS }}=0 \mathrm{~V}$	-	10	200	nA
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}(\mathrm{tot)}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \\ & \hline \end{aligned}$	Total gate charge Gate-source charge Gate-drain (Miller) charge	$\mathrm{I}_{\mathrm{D}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	$\begin{gathered} \hline 53 \\ 4 \\ 28 \end{gathered}$	$\begin{gathered} 64 \\ 6 \\ 34 \end{gathered}$	nC
$\begin{aligned} & \mathrm{t}_{\mathrm{d}(\text { (on })} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\text {d(of) })} \\ & \mathrm{t}_{\mathrm{f}} \\ & \hline \end{aligned}$	Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=250 \mathrm{~V} ; \mathrm{R}_{\mathrm{D}}=39 \Omega ; \\ & \mathrm{R}_{\mathrm{G}}=12 \Omega \end{aligned}$	- - -	10 33 92 40	- - -	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \text { ns } \\ & \mathrm{ns} \end{aligned}$
$\begin{array}{\|l} \mathrm{L}_{\mathrm{d}} \\ \mathrm{~L}_{\mathrm{s}} \end{array}$	Internal drain inductance Internal source inductance	Measured from drain lead to centre of die Measured from source lead to source bond pad	-	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$	-	$\begin{aligned} & \mathrm{nH} \\ & \mathrm{nH} \end{aligned}$
$\mathrm{C}_{\text {iss }}$ $\mathrm{C}_{\text {oss }}$ $\mathrm{C}_{\text {rss }}$	Input capacitance Output capacitance Feedback capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	610 96 54	-	pF pF pF

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{I}_{\text {s }}$	Continuous source current	$\mathrm{T}_{\text {hs }}=25^{\circ} \mathrm{C}$			5.9	A
$\mathrm{I}_{\text {SM }}$	Pulsed source current (body	$\mathrm{T}_{\text {hs }}=25^{\circ} \mathrm{C}$	-	-	24	A
$\mathrm{V}_{\text {SD }}$	Diode forward voltage	$\mathrm{I}_{\mathrm{S}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-		1.5	V
$\mathrm{t}_{\text {r }}$	Reverse recovery time	$\begin{aligned} & \mathrm{I}_{\mathrm{s}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{d} / / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{IS}_{\mathrm{S}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ; \end{aligned}$		$\begin{aligned} & 180 \\ & 220 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$Q_{\text {r }}$	Reverse recovery charge	$\mathrm{I}_{\mathrm{S}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{d} / / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{I}_{\mathrm{S}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ;$	-	$\begin{gathered} 0.65 \\ 2.6 \end{gathered}$	-	${ }_{\mu}^{\mu \mathrm{C}} \mathrm{C}$
$\mathrm{I}_{\text {rm }}$	Peak reverse recovery current	$\begin{aligned} & \mathrm{I}_{\mathrm{s}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{d} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ; \\ & 125^{\circ} \mathrm{C} \end{aligned}$	-	15	-	A

PowerMOS transistors

Fig.1. Normalised power dissipation. $P D \%=100 \cdot P_{D} / P_{D 25^{\circ} \mathrm{C}}=f\left(T_{h s}\right)$

Fig.2. Normalised continuous drain current. $I D \%=100 \cdot I_{D} / I_{D 25^{\circ} \mathrm{C}}=f\left(T_{h S}\right)$; conditions: $V_{G S} \geq 10 \mathrm{~V}$

Fig.3. Safe operating area. $T_{h s}=25^{\circ} \mathrm{C}$
$I_{D} \& I_{D M}=f\left(V_{D S}\right) ; I_{D M}$ single pulse; parameter t_{p}

Fig.4. Transient thermal impedance.
Fig.4. Transient thermal impedance. $Z_{t h j-h s}=f(t) ;$ parameter $D=t_{p} / T$

Fig.5. Typical output characteristics. $I_{D}=f\left(V_{D S}\right)$; parameter $V_{G S}$ \qquad

Fig.6. Typical on-state resistance. $R_{D S(O N)}=f\left(I_{D}\right)$; parameter $V_{G S}$

PowerMOS transistors

Fig.7. Typical transfer characteristics. $I_{D}=f\left(V_{G S}\right) ;$ parameter T_{j}

Fig.8. Typical transconductance. $g_{f s}=f\left(I_{D}\right)$; parameter T_{j}

Fig.9. Normalised drain-source on-state resistance. $a=R_{D S(O N)} / R_{D S(O N) 25^{\circ} \mathrm{C}}=f\left(T_{j}\right) ; I_{D}=3 \mathrm{~A} ; V_{G S}=10 \mathrm{~V}$

Fig.10. Gate threshold voltage.
$V_{G S(T O)}=f\left(T_{j}\right) ;$ conditions: $I_{D}=0.25 m A ; V_{D S}=V_{G S}$

Fig.11. Sub-threshold drain current. $I_{D}=f\left(V_{G S}\right)$; conditions: $T_{j}=25^{\circ} \mathrm{C}$; $V_{D S}=V_{G S}$

Fig.12. Typical capacitances, $C_{\text {iss }}, C_{\text {oss }}, C_{\text {rsss }}$. $C=f\left(V_{D S}\right) ;$ conditions: $V_{G S}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

Fig.13. Typical turn-on gate-charge characteristics. $V_{G S}=f\left(Q_{G}\right) ;$ parameter $V_{D S}$

Fig.14. Typical switching times; $t_{d(o n)}, t_{r}, t_{d(0 f f)}, t_{f}=f\left(R_{G}\right)$

Fig.16. Source-Drain diode characteristic. $I_{F}=f\left(V_{S D S}\right)$; parameter T_{j}

Fig.17. Maximum permissible non-repetitive avalanche current $\left(I_{A S}\right)$ versus avalanche time $\left(t_{D}\right)$; unclamped inductive load

Fig.15. Normalised drain-source breakdown voltage; $V_{(B R) D S S} / V_{(B R) D S S ~ 25{ }^{\circ}}{ }^{\circ}=f\left(T_{j}\right)$

Fig.18. Maximum permissible repetitive avalanche current $\left(I_{A R}\right)$ versus avalanche time (t_{p})

PowerMOS transistors

MECHANICAL DATA

Fig.19. SOT186A; The seating plane is electrically isolated from all terminals.

Notes

1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent damage to MOS gate oxide.
2. Refer to mounting instructions for F-pack envelopes.
3. Epoxy meets UL94 V0 at $1 / 8^{\prime \prime}$.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification. O Philips Electronics N.V. 1998 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

