

PI3A3159

3.0V, SOTiny™ 0.4Ω SPDT Analog Switch

Features

- · CMOS Technology for Bus and Analog Applications
- Low ON-Resistance: 0.4Ω (+2.7V Supply)
- Wide V_{CC} Range: +1.5V to +3.6V
- Low Power Consumption: 5µW
- Rail-to-Rail switching throughout Signal Range
- Fast Switching Speed: 20ns max. at 3.3V
- High Off Isolation: -27dB at 100 KHz
- -41dB (100KHz) Crosstalk Rejection Reduces Signal Distortion
- Extended Industrial Temperature Range: -40°C to 85°C
- Packaging (Pb-free & Green available):
 - 6-pin Small Compact SOT-23 (T)
 - 6-pin Ultra Compact (ZC)

Applications

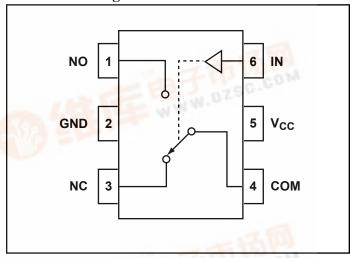
- · Cell Phones
- PDAs
- Portable Instrumentation
- · Battery Powered Communications
- Computer Peripherals

Pin Description

Pin Number	Name	Description
1	NO	Data Port (Normally Open)
2	GND	Ground
3	NC	Data Port (Normally Closed)
4	COM	Common Output/Data Port
5	V _{CC}	Positive Power Supply
6	IN	Logic Control

Logic Function Table

Logic Input	Function
0	NC Connected to COM
<u> </u>	NO Connected to COM


Description

The PI3A3159 is a, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +3.6V, the PI3A3159 has an On-Resistance of 0.4Ω at 3.0V.

Control input, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3159 is a lower voltage and On-Resistance replacement for the PI5A3159.

Connection Diagram

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{CC}	0.5V to +3.6V
V _{IN} , V _{COM} , V _{NC} , V _{NO} (Note 1)or 30mA, whichever occurs first	0.5V to V _{CC} +0.3V
Current (any terminal)	±200mA
Peak Current, COM, NO, NC	
(Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation	
SOT23-6 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Note:	

 ${\rm 1.} \quad Signals \ on \ NC, \ NO, \ COM, \ or \ IN \ exceeding \ V_{CC} \ or \ GND \ are \ clamped \\ by \ internal \ diodes. \ Limit \ forward \ diode \ current \ to \ 30mA.$

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Package	Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units
Analog Switch	_				_			
Analog Signal Range	V _{ANALOG}			Full	0		V _{CC}	V
				25			0.4	
On Resistance	R _{ON}	$V_{CC} = 2.7V$	SOT-23	E-,11			0.5	
		$I_{COM} = 100 \text{mA},$	TDFN	Full			0.6	
On-Resistance Match	AD	V_{NO} or $V_{NC} = +1.5V$		25			0.08	Ω
Between Channels ⁽⁴⁾	ΔR_{ON}			Full			0.09	
On-Resistance Flat-		$V_{CC} = 2.7V,$		25			0.1	
ness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 0.8 \text{V}, 2.0 \text{V}$		Full			0.1	
NO or NC Off Leak-	I _{NO(OFF)} or	$V_{CC} = 3.3V, V_{COM} = 0V$		25	-1		1	
age Current ⁽⁶⁾	I _{NC(OFF)}	V_{NO} or $V_{NC} = +2.0V$		Full	-10		10	
COM On Leakage	T	$V_{CC} = 3.3V, V_{COM} = +2.0V$		25	-2		2	nA
Current ⁽⁶⁾	I _{COM(ON)}	V_{NO} or $V_{NC} = +2.0V$		Full	-20		20	

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units
Logic Input	-		-	-		-	-
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			17
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel				0.5	V
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V		-1		1	μA
Dynamic			•			•	•
Т О. Т	,	$V_{CC} = 3.3V$, V_{NO} or $V_{NC} = 2.0V$,	25			20	ns
Turn-On-Time	t_{ON}		Full			20	
T. 0 M T.	,	Figure 1	25			10	
Turn-Off-Time	$t_{ m OFF}$		Full			15	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \Omega, \text{ Figure 2}$	25		40		рC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3			-27		.ID
CrossTalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega f = 100 \text{ KHz}$, Figure 4			-41		dB
NC or NO Capacitance	C _{NC/NO} (OFF)	C-1MH- Firms 5			90		
COM Off Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 5			90		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			240		
Supply							
Power-Supply Range	V_{CC}		Full	1.5		3.6	V
Positive Supply Current	I_{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC}	T ruii			100	nA

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $DR_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

 $\textbf{Electrical Specifications - Single +2.5V Supply} \ (V_{CC} = +2.5V \pm 10\%, \ GND = 0V, \ V_{IH} = 1.4V, \ V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ.(2)	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V_{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 2.5 \text{V}, I_{COM} = -8 \text{mA},$	25			0.5	
OII-RESISTANCE	KON	V_{NO} or $V_{NC} = 1.8V$	Full			0.55	,
On-Resistance Match Be-	ΔR_{ON}		25			0.09	Ω
tween Channels ⁽⁴⁾	ΔKON	$V_{CC} = 2.5V, I_{COM} = -8mA,$	Full			0.09	52
On-Resistance Flatness ⁽⁵⁾	Day (mean)	V_{NO} or $V_{NC} = 0.8V$, 1.8V	25			0.02	
On-Resistance Flatness	R _{FLAT(ON)}		Full			0.02	
Dynamic							
Town On Time	_		25			30	
Turn-On-Time	t _{ON}	$V_{CC} = 2.5V$, V_{NO} or $V_{NC} = 1.8V$,	Full			30	
Т ОСТ:	4	Figure 1	25			15	ns
Turn-Off-Time	t _{OFF}		Full			15	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		40		pC
Logic Input							
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			3.7
Input Low Voltage	V _{IL}	Guaranteed Logic LowLevel	Full			0.5	V
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	4
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units	
Analog Switch					-			
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V_{CC}	V	
On-Resistance R _{ON}	Dov	$V_{CC} = 1.8V, I_{COM} = -4mA,$	25			0.6		
On-Resistance	KON	V_{NO} or $V_{NC} = 1.5V$	Full			0.6		
On-Resistance Match	AD and		25			0.07	Ω	
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 1.8V, I_{COM} = -4mA,$	Full			0.09	22	
On-Resistance	D	V_{NO} or $V_{NC} = 0.8V$, 1.5V	25			0.8		
Flatness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.8		
Dynamic	-		-	-	-			
Town On Time	,		25			50	ns	
Turn-On-Time	t_{ON}	$V_{CC} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$,	Full			50		
Turn-Off-Time	4	Figure 1	25			25		
Tum-On-Time	t _{OFF}		Full			25		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		36		pC	
Logic Input	-		-	-	-	-		
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			3.7	
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel	Full			0.5	V	
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1		
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA	

- The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$ Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

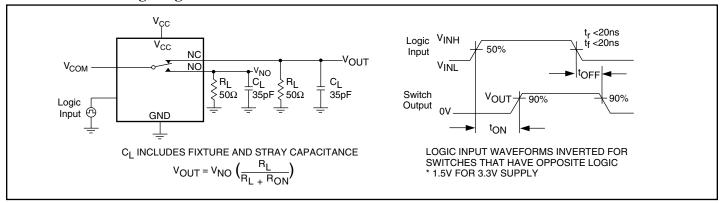


Figure 1. Switching Time

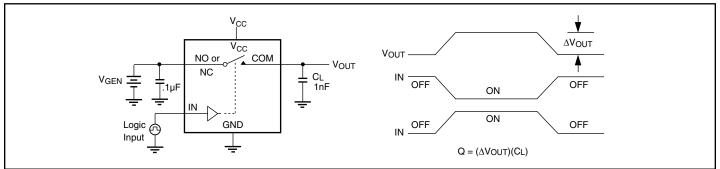


Figure 2. Charge Injection

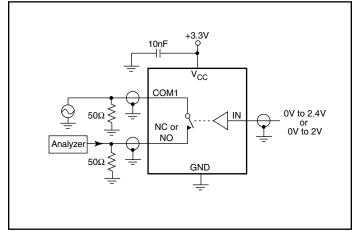


Figure 3. Off Isolation

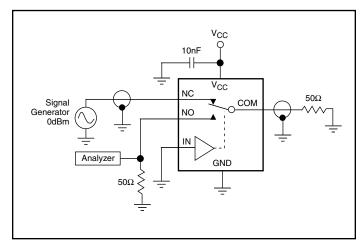
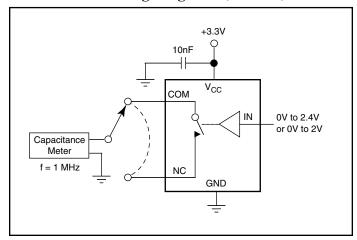
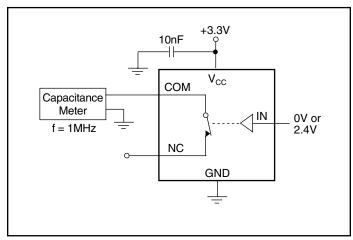
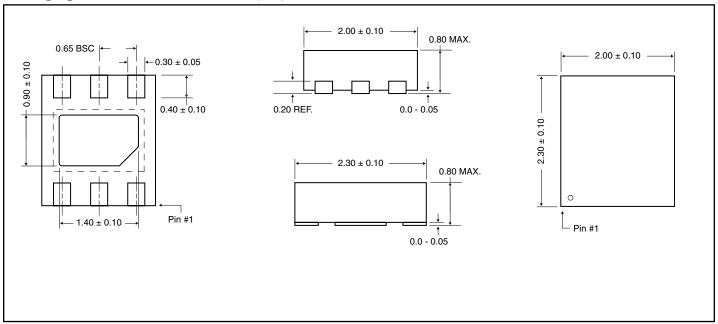
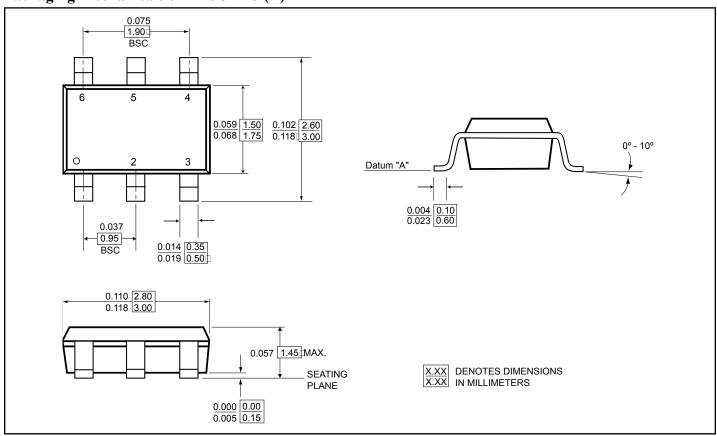



Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)


Figure 6. Channel-On Capacitance

Packaging Mechanical: 6-Pin TDFN (ZC)

Packaging Mechanical: 6-Pin SOT-23 (T)

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A3159TX	T	6-pin, SOT-23	ZG
PI3A3159TEX	T	Pb-free & Green, 6-pin, SOT-23	ZG
PI3A3159ZCEX	ZC	Pb-free & Green, 6-contact, TDFN	ZG

- 1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/
- 2. X = Tape/Reel