

PI3A3160

3.0V, SOTiny™ 0.4Ω Dual SPDT Analog Switch

Features

- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 0.4Ω (+2.7V Supply)
- Wide V_{CC} Range: +1.5V to +3.6V
- Low Power Consumption : $5\mu W$
- Rail-to-Rail switching throughout Signal Range
- Fast Switching Speed: 20ns max. at 3.3V
- High Off Isolation: -27dB at 100 KHz
- -41dB (100 KHz) Crosstalk Rejection Reduces Signal Distortion
- Extended Industrial Temperature Range: -40°C to 85°C
- Packaging:
 - Pb-free & Green, 12-pin TDFN (ZG)
 - Pb-free & Green, 12-pin TDFN (ZE)

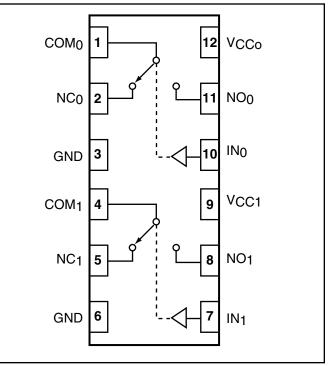
Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Pin Description

Pin Number	Name	Description			
8, 11	NOx	Data Port (Normally Open)			
3, 6	GND	Ground			
2, 5	NCx	Data Port (Normally Closed)			
1, 4	COMx	Common Output/Data Port			
9, 12	V _{CC} x	Postive Power Supply ⁽²⁾			
7, 10	INx	Logic Control			

Notes:


Description

The PI3A3160 is a fast Dual single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a lowdelay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +3.6V, the switch has an On-Resistance of 0.4Ω at 3.0V.

Control inputs, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3160 is a lower voltage and On-Resistance replacement for the PI5A3158.

Block Diagram / Pin Configuration

Function Table

Logic Input	Function
0	NCx Connected to COMx
1	NOx Connected to COMx

^{1.} x = 0 or 1

V_{CC0} ad V_{CC1} are not internally connected. Each must be powered seperately.

Peak Current, COM, NO, NC

Note 1: Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch	-	-				-	
Analog Signal Range ⁽³⁾	VANALOG		Full	0		V _{CC}	V
On Resistance	Dava		25		0.4	0.45	
On Resistance	R _{ON}	$V_{CC} = 2.7V,$	Full			0.6	
On-Resistance Match Between Channels ⁽⁴⁾ ΔR_{ON}	AD	$I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = +1.5 \text{ V}$	25			0.08	Ω
	ARON		Full			0.09	
On-Resistance Flatness ⁽⁵⁾	R _{FLAT(ON)}	$V_{CC} = 2.7V,$ $I_{COM} = 100mA,$ $V_{NO} \text{ or } V_{NC} = 0.8V, 2.0V$	25			0.1	
			Full			0.1	
- (6)	I _{NO(OFF)} or	$ 1 \mathbf{v} \mathbf{C} \mathbf{O} \mathbf{M} = \mathbf{U} \mathbf{v} $	25	-100		100	
	INO(OFF) OF I _{NC(OFF)}		Full	-400		400]
COM On Leakage Current ⁽⁶⁾		$V_{CC} = 3.3 V_{,}$	25	-200		200	nA
	I _{COM(ON)}	$V_{COM} = +2.0V,$ V_{NO} or $V_{NC} = +2.0V$	Full	-400		400	

$(V_{CC} = +3.3V \pm 10\%, \text{GND} = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

(Pulsed at 1ms, 10% duty cycle).....±400mA

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Param- eters	Test Conditions	Temp (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units	
Logic Input								
Input High Voltage	V _{IH}	Guaranteed logic High Level	Full	1.4			v	
Input Low Voltage	V _{IL}	Guaranteed logic Low Level				0.5	v	
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1		
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all other = 1.4V		-1		1	μA	
Dynamic								
т. о. т [.]			25			20		
Turn-On Time	t _{ON}	$V_{CC} = 3.3 V$, V_{NO} or	Full			25	ns	
Turn-Off Time	t _{OFF}	$V_{\rm NC}$ = 2.0V, Figure 1	25			12		
			Full			15		
		$V_{\rm NO}$ or $V_{\rm NC}$ = 1.5V,	25	1	12			
Break-Before-Make	t _{BBM}	$R_L = 50\Omega$, $C_L = 35$ pF, See Figure 8	Full	1				
Charge Injection ⁽³⁾	Q	$C_{L} = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega, Figure 2$	25		100		pC	
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure	e 3		-27		dB	
Cross Talk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, f = 100KHz, Figure	4		-41		цБ	
NC or NO Capacitance	C _(OFF)	f = 1MHz Figure 5			56			
COM Off Capacitance	C _{COM(OFF)}	f = 1MHz, Figure 5		56		pF		
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			160			
Supply								
Power-Supply Range	V _{CC}		Full	1.5		3.6	V	
Positve Supply Current	I _{CC}	$V_{CC} = 3.6V, V_{IN} = 0V \text{ or } V_{CC}$	25			0.3	μA	

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.

8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply

 $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V _{CC}	V
On Resistance	Pour		25			0.5	
Oli Kesistance	R _{ON}	$V_{\rm CC} = 2.5 V, I_{\rm COM} = 80 m A,$	Full			0.55	
On-Resistance Match	ΔR _{ON}	$V_{\rm NO}$ or $V_{\rm NC} = 1.8 V$	25			0.09	Ω
Between Channels ⁽⁴⁾	ΔιζΟΝ		Full			0.09	22
On-Resistance Flatness ⁽⁵⁾	D TT ATT(O) D	$V_{\rm CC} = 2.5 V, I_{\rm COM} = 80 {\rm mA},$	$V_{\rm CC} = 2.5 \text{V}, \text{I}_{\rm COM} = 80 \text{mA}, 25$			0.1	
OII-Resistance Flatness	R _{FLAT(ON)}	$V_{\rm NO} \text{ or } V_{\rm NC} = 0.8 \text{ V} 1.8 \text{ V}$	Full			0.1	
Dynamic			1				
Turn-On Time	t _{ON}	$V_{CC} = 2.5V, V_{NO} \text{ or } V_{NC} = 1.8V, Figure 1$	25			20	
			Full			30	
Turn-Off Time	t _{OFF}		25			12	
	UFF		Full			15	ns
Break-Before-Make	t _{BBM}	V_{NO} or $V_{NC} = 1.5V$, $R_L = 50\Omega$, $C_L = 35pF$, See Figure 8	25	1	15		
Charge Injection ⁽³⁾	Q	$C_{L} = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0V, Figure 2$	25		60		pC
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.5	
Input HIGH Current	I _{INH}	$V_{\rm IN}$ = 1.4V, all others = 0.5V	Full	-1		1	μA
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{INH} = 1.4V, V_{INL} = 0.5V)$

Description	Parameters	Test Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On Desistance	D		25			0.55	Ω
On-Resistance	R _{ON}	$V_{CC} = 1.8V, I_{COM} = 60mA,$	Full			0.7	
On-Resistance Match	ΔR _{ON}	$V_{\rm NO}$ or $V_{\rm NC} = 1.5 V$	25			0.03	
Between Channels ⁽⁴⁾	ΔιζοΝ		Full			0.03	32
On-Resistance Flat-	Pry incom	$V_{CC} = 1.8V, I_{COM} = 60mA,$	25			0.9	
ness ⁽⁵⁾	R _{FLAT(ON)}	$V_{\rm NO} \text{ or } V_{\rm NC} = 0.8 \text{V}, 1.5 \text{V}$	Full			1.1	
Dynamic	1				1		
Turn-On Time t _{ON}	ton		25			40	
	^c ON	$V_{CC} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$, Figure 1	Full			50	
Turn-Off Time	t _{OFF}		25			12	
Tuni On Tinic	UFF		Full			15	ns
Break-Before-Make	t _{BBM}	$V_{NO} \text{ or } V_{NC} = 1.5V,$ $R_L = 50\Omega,$ $C_L = 35\text{pF}, \text{ See Figure 8}$	25	1	30		
Charge Injection ⁽³⁾	Q	$C_{L} = 1nF, V_{GEN} = 0V,$ R _{GEN} = 0V, Figure 2	25		40		pC
Logic Input							
Input HIGH Voltage	V _{IH}	Guaranteed logic high level	Full	1.4			V
Input LOW Voltage	V _{IL}	Guaranteed logic Low level	Full			0.5	v
Input HIGH Current	I _{INH}	$V_{IN} = 1.4$ V, all others = 0.5V	Full	-1		1	۸
Input HIGH Current	I _{INL}	$V_{IN} = 0.5V$, all others =1.4V	Full	-1		1	μA

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON} \max$. - $R_{ON} \min$.

5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

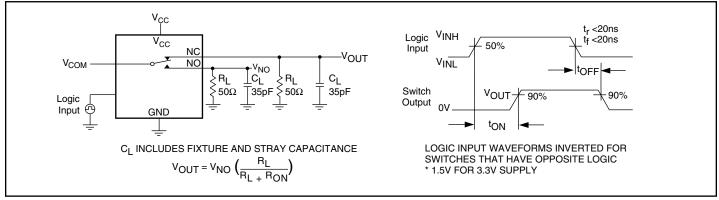


Figure 1. Switching Time

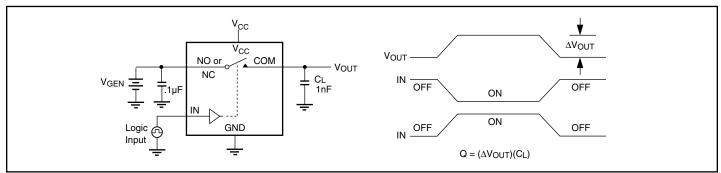
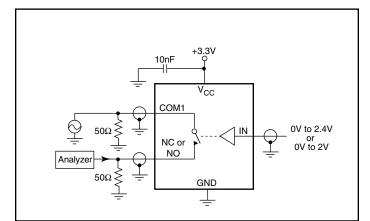



Figure 2. Charge Injection

Figure 3. Off Isolation

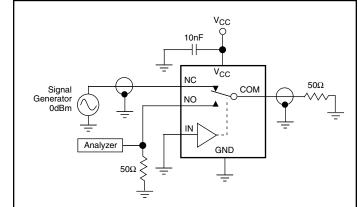


Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

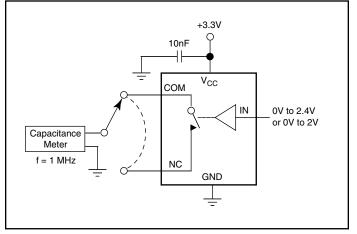


Figure 5. Channel-Off Capacitance

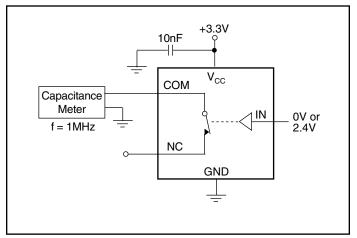
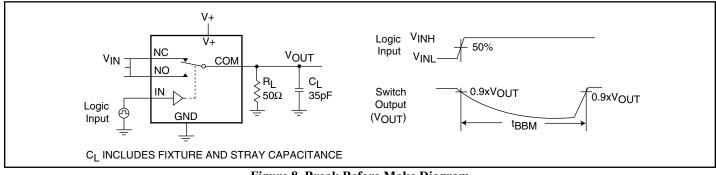
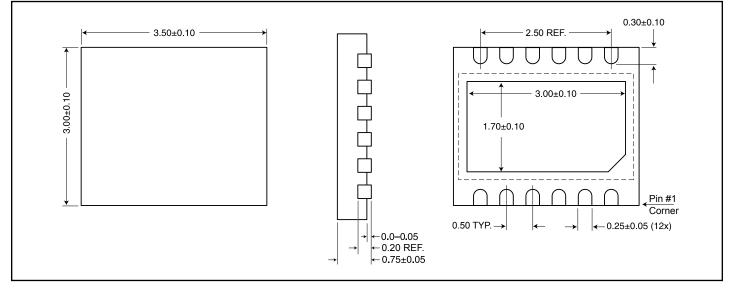
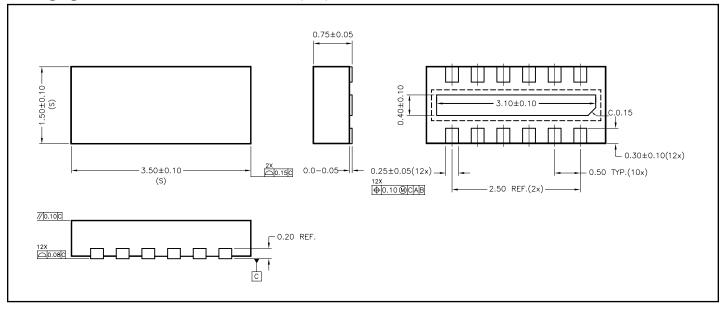


Figure 6. Channel-On Capacitance


Figure 8. Break Before Make Diagram

Packaging Mechanical: 12-Contact TDFN (ZE)

Packaging Mechanical: 12-Contact TDFN (ZG)

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A3160ZEEX	ZE	Pb-free & Green, 12-contact TDFN	YI
PI3A3160ZGEX	ZG	Pb-free & Green, 12-contact TDFN	YI

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

- 2. X = Tape/Reel
- 3. Number of transistors = TBD

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com