

PI5A3159

SOTINY™ 1Ω Low-Voltage SPDT Analog Switch

Features

CMOS Technology for Bus and Analog Applications

• Low On-Resistance: 2Ω at 3.0V

• Wide V_{CC} Range: +1.8V to +5.5V

• Low Power Consumption : 5μW

• Rail-to-Rail switching throughout Signal Range

Fast Switching Speed: 30ns max. at 5V

• High Off Isolation: -57dB at 10MHz

• -57dB (1 MHz) Crosstalk Rejection Reduces Signal Distortion

· Break-Before-Make Switching

• Extended Industrial Temperature Range: -40°C to 85°C

Low On-Resistance Replacement for NC7SB3157

• Packaging (Pb-free & Green available):

- 6-pin SOT-23 (T)

- 6-contact TDFN-6 (ZC)

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- · Computer Peripherals

Pin Description

Pin Number	Name	Description
1	B ₁	Data Port
2	GND	Ground
3	B_0	Data Port (Normally Closed)
4	A	Common Output/Data Port
5	V _{CC}	Positive Power Supply
6	S	Logic Control

Logic Function Table

Logic Input(s)	Function
0	B ₀ Connected to A
<u>~</u> 1	B ₁ Connected to A

Description

The PI5A3159 is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.8V to 5.5V, the PI5A3159 has a maximum On-Resistance of 4Ω at 1.8V, 2.4Ω at 2.3V & 1Ω at 4.5V.

Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

Control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

PI5A3159 is a low On-Resistance replacement for the PI5A3157 and NC7SB3157.

Connection Diagrams

Absolute Maximum Ratings

Voltages Referenced to GND V+	0.5V to +5.5V
$V_{IN}, V_{COM}, V_{NC}, V_{NO}$ $^{(1)}$ or 30mA, whichever occurs first	$-0.5V$ to $V_+ +0.3V$
Current (any terminal)	±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)	±400mA

Thermal Information

Continuous Power Dissipation	
SOT23 (derate 7.1mW/°C above +70°C)	0.5W
Storage Temperature65°	C to +150°C
Lead Temperature (soldering, 10s)	+300°C
NT 4	

Note:

1. Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply

 $(V + = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ^(3, 4)	V _{ANALOG}		Full	0		V+	V
On Degistance	D		25		0.70	0.90	
On-Resistance	R _{ON}	V+=4.5V,	Full			1.1	
On-Resistance Match	AD	$I_{COM} = -30 \text{mA},$ V_{NO} or $V_{NC} = +2.5 \text{V}$	25		0.03	0.05	
Between Channels ⁽⁵⁾	$\Delta R_{ m ON}$		Full			0.10	Ω
(0)		V+=4.5V,	25		0.08	0.12	
On-Resistance Flatness ⁽⁶⁾	R _{FLAT(ON)}	$I_{COM} = -30 \text{mA},$ V_{NO} or $V_{NC} = 1 \text{V}, 1.5 \text{V}, 2.5 \text{V}$	Full			0.15	
NO or NC Off Leakage	I _{NO(OFF)} or	V+=5.5V,	25	2	0.01	2	
Current (7)	I _{NC(OFF)}	$V_{COM} = 0V,$ $V_{NO} \text{ or } V_{NC} = 4.5V$	Full	-20		20	nA
COM On Leakage Cur-		V+=5.5V,	25	-4		4	IIA
rent ⁽⁷⁾	I _{COM(ON)}	$V_{COM} = 4.5V,$ V_{NO} or $V_{NC} = 4.5V$	Full	-40	0.3	40	

Electrical Specifications - Single +5V Supply (continued)

 $(V+=+5V\pm 10\%, GND=0V, V_{INH}=2.4V, V_{INL}=0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
Analog Switch								
Input HIGH Voltage	V_{IH}	Guaranteed Logic HIGH level					V	
Input LOW Voltage	$ m V_{IL}$	Guaranteed Logic LOW level				0.8]	
Input Current with HIGH Voltage	I_{INH}	$V_{\rm IN}=2.4 { m V}$, all others = 0.8 V		-1	0.005	1		
Input Current with LOW Voltage	I_{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	μΑ	
Dynamic								
Turn-On-Time	4		25		20	35		
Turn-On-Time	t_{ON}	$V_{CC} = 5V$,	Full			40	ns	
Turn-Off-Time	$t_{ m OFF}$	See Fig. 1	25		15	20		
			Full			35		
Break-Before-Make		Soo Fig. 2	25	1	12	14.5		
Dieak-Deloie-Make	$t_{ m BBM}$	See Fig. 3	Full	1	17.5			
Charge Injection ⁽³⁾	Q	C_L -1nF, $V_{GEN} = 0V$, $R_{GEN} = 0V$, See Fig 2	25		40		pC	
Off Isolation	O _{IRR}	$R_L = 50\Omega$, $f = 1$ MHz, See Fig 4			-57		αħ	
CrossTalk ⁽⁹⁾	X _{TALK}	$R_L = 50\Omega$, $f = 1$ MHz, See Fig 4			-57		dB	
NC or NO Capacitance	C _{NC/NO(OFF)}	f = 1MHz, See Fig 6			42			
COM Off Capacitance	C _{COM(OFF)}	f = 1MHz, See Fig 6			83		pF	
COM On Capacitance	C _{COM(ON)}	f = 1MHz, See Fig 7			130		1	
Supply								
Power-Supply Range	V+		Full	1.8		5.5	V	
Positive Supply Current	1+	$V+=5.5V$, $V_{IN}=0V$ or $V+$, All Channels ON or OFF	Full		0.5	1	μΑ	

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. Device is NOT guaranteed to function per the datasheet specification outside of 0 to V+ range.
- 5. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 6. Flatness is defined as the difference between the maximum and minimum value of On-resistance measured.
- 7. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 8. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 9. Between any two switches. See Figure 5.

Electrical Specifications - Single +3.3V Supply

 $(V + = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.0V, V_{INL} = 0.6V)$

Parameter	Symbol Conditions Tem		Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
Analog Switch			-		-		-	
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V	
On Braintana	D	$V+ = 3V$, $I_{COM} = -24mA$,	25		1.4	1.8		
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 2.0V$	Full			2.2		
On-Resistance Match	AD		25		0.04	0.05	Ω	
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V+=3.3V$, $I_{COM}=-24mA$,	Full		0.11		1 22	
On-Resistance Flatness	D	V_{NO} or $V_{NC} = 0.8V$, 2.0V	25		0.17	0.2		
On-Resistance Flatness	R _{FLAT(ON)}		Full		0.25			
Dynamic	-	•			-	-	-	
			25		30	40		
Turn-On-Time	t_{ON}	$V_{CC} = 5V$	Full			55	ns	
T OTT	,	See Fig. 1	25		20	25		
Turn-Off-Time	t _{OFF}		Full			40		
Break-Before-Make	t _{BBM}	See Fig. 3	25	1	21	29		
Charge Injection ⁽³⁾	Q	C_L -1nF, $V_{GEN} = 0V$, $R_{GEN} = 0V$, See Fig 2	25		30		рC	
Supply					-		-	
Positive Supply Current	1+	$V+=3.6V, V_{IN}=0V \text{ or } V+,$ All Channels ON or OFF	Full		0.5	1	μА	
Logic Input					-	-	-	
Input HIGH Voltage	V _{IH}	Guaranteed Logic HIGH level	Full	2			17	
Input LOW Voltage	$V_{ m IL}$	Guaranteed Logic LOW level	Full			0.6	V	
Input HIGH Current	I _{INH}	$V_{\rm IN} = 2.4 \text{V}$, all others = 0.8V	Full	-1		1	4	
Input LOW Current	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V	Full	-1		1	μA	

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +2.5V Supply

 $(V + = +2.5V \pm 10\%, GND = 0V, V_{INH} = 1.8V, V_{INL} = 0.6V)$

Parameter	Symbol Conditions		Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch	-				<u>-</u>		-
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V
On-Resistance	D	$V+ = 1.8V, I_{COM} = -2mA,$	25		1.6	2	
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			2.7	
On-Resistance Match	AD ov		25		0.13	0.16	Ω
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V+ = 1.8V, I_{COM} = -2mA,$	Full		0.2		
On-Resistance Flatness	D-r	V_{NO} or $V_{NC} = 0.8V$, 1.5V	25		0.25	0.3	
On-Resistance Flatness	R _{FLAT(ON)}		Full		0.45		
Dynamic							
Turn-On-Time		V+ = 2.5V,	25		40	55	ns
Turn-On-Time (t _{ON}		Full			70	
Turn-Off-Time to	4	V_{NO} or $V_{NC} = 1.8V$, See Fig. 1	25		30	40	
	t _{OFF}	FF John J.	Full			55	
Break-Before-Make	t _{BBM}	See Fig. 3	25	1	33	39	
Make-Before-Break	t _{MBB}	See Fig. 4	25	1	9	13	
Charge Injection ⁽³⁾	Q	C_L -1nF, $V_{GEN} = 0V$, $R_{GEN} = 0V$, See Fig 2	25		20		pC
Supply					-		
Positive Supply Current	1+	$V+=2.75V, V_{\rm IN}=0V \text{ or } V+,$ All Channels ON or OFF	Full		0.5	1	μΑ
Logic Input							
Input HIGH Voltage	V_{IH}	Guaranteed Logic HIGH level	Full	1.8			V
Input LOW Voltage	V_{IL}	Guaranteed Logic LOW level	Full			0.6	
Input HIGH Current	I _{INH}	$V_{\rm IN} = 2.0 \text{V}$, all others = 0.8V	Full	-1		1	
Input LOW Current	I _{INL}	$V_{IN} = 0.8V$, all others = 2.0V	Full	-1		1	μΑ

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply (V+ = +1.8V \pm 10%, GND = 0V, V_{INH} = 1.5V, V_{INL} = 0.6V)

Parameter	Symbol Conditions		Temp(°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V+	V	
On Besistance	D	$V+ = 1.8V, I_{COM} = -2mA,$	25		2.8	4		
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.5V$	Full			5]	
On-Resistance Match	AD ov		25		0.44	0.6	Ω	
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V+ = 1.8V, I_{COM} = -2mA,$	Full		0.7			
On-Resistance Flatness	Day (mon)	V_{NO} or $V_{NC} = 0.6V$, 1.5V	25		0.5	0.6		
On-Resistance Flatness	R _{FLAT(ON)}		Full		0.9			
Dynamic								
			25		65	70	ns	
	t _{ON}	V+=1.8V,	Full			95		
Turn Off Times	4	V_{NO} or $V_{NC} = 1.5V$, See Fig. 1	25		40	55		
Turn-Off-Time	t _{OFF}		Full			70]	
Break-Before-Make	t _{BBM}	See Fig. 3	25	1	60	72]	
Charge Injection ⁽³⁾	Q	C_L -1nF, $V_{GEN} = 0V$, $R_{GEN} = 0V$, See Fig 2	25		10		pC	
Supply								
Positive Supply Current	1+	$V+=2.0$, $V_{\rm IN}=0V$ or $V+$, All Channels ON or OFF	Full		0.5	1	μА	
Logic Input	-				-	-	-	
Input HIGH Voltage	V_{IH}	Guaranteed Logic HIGH level	Full	1.8			V	
Input LOW Voltage	V _{IL}	Guaranteed Logic LOW level	Full			0.6		
Input HIGH Current	I _{INH}	$V_{\rm IN}=1.5$ V, all others = 0.8V	Full	-1		1		
Input LOW Current	I _{INL}	$V_{IN} = 0.8V$, all others = 1.5V	Full	-1		1	μΑ	

- The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$ Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

Figure 3. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

Figure 4. Off Isolation/On-Channel Bandwidth

Figure 6. Channel-Off Capacitance

Figure 5. Crosstalk

Figure 7. Channel-On Capacitance

Packaging Mechanical: 6-Pin SOT-23(T)

Packaging Mechanical: 6-Pin TDFN (ZC)

Ordering Information

Ordering Code	Package Code	Package Description	Top Marking
PI5A3159TX	T	6-pin SOT-23	ZL
PI5A3159TEX	T	6-pin SOT-23	₹L
PI5A3159ZCX ⁽¹⁾	ZC	6-contact TDFN	ZL
PI5A3159ZCEX	ZC	Pb-free & Green 6-contact TDFN	ZL

- 1. This product has always shipped as only a lead free product, but since it was introduced prior to Pericom's strategy of adding an E to all Green/Lead free parts many customers order it without the E suffix. Please migrate new designs and qualification to include the E suffix. Pericom at this point in time will continue to offer devices marked both ways, but may at a later date eliminate the non-E part number.
- 2. Thermal Characteristics can be found on the world wide web at www.pericom.com/packaging/
- 3. Number of transistors: 753
- 4. X = Tape and reel