

PI6C2308A

### 3.3V Zero-Delay Buffer

#### **Product Features**

- 10 MHz to 140 MHz operating range
- Zero input-output propagation delay, adjustable by capacitive load on FBK input
- Multiple configurations, see "Available PI6C2308A Configurations" table
- Input to output delay, less than 150ps
- Multiple low skew outputs
  - Output-output skew less than 200ps
  - Device-device skew less than 500ps
  - Two banks of four outputs, Hi-Z by two select inputs
- Low Jitter, less than 200ps
- 3.3V operation
- Available in industrial & commercial temperatures
- Packages:
  - Space-saving 16-pin, 150-mil SOIC (W)
  - -16-pin TSSOP(L)

### **Block Diagrams**



#### **Functional Description**

Providing two banks of four outputs, the PI6C2308A is a 3.3V zerodelay buffer designed to distribute clock signals in applications including PC, workstation, datacom, telecom, and high-performance systems. Each bank of four outputs can be controlled by the select inputs as shown in the Select Input Decoding Table.

The PI6C2308A provides 8 copies of a clock signal that has 150ps phase error compared to a reference clock. The skew between the output clock signals for PI6C2308A is less than 200ps. When there are no rising edges on the REF input, the PI6C2308A enters a power down state. In this mode, the PLL is off and all outputs are Hi-Z. This results in less than  $12\mu A$  of current draw. The Select Input Decoding table shows additional examples when the PLL shuts down. The PI6C2308A configuration table shows all available devices.

The base part, PI6C2308A-1, provides output clocks in sync with a reference clock. With faster rise and fall times, the PI6C2308A-1H is the high-drive version of the PI6C2308A-1. Depending on which output drives the feedback pin, PI6C2308A-2 provides 2X and 1X clock signals on each output bank. The PI6C2308A-3 allows the user to obtain 4X and 2X frequencies on the outputs. The PI6C2308A-4 provides 2X clock signals on all outputs. PI6C2308A (-1, -2, -3, -4) allows bank B to be Hi-Z when all output clocks are not required. The PI6C2308A-6 allows bank B to switch from Reference clock to half of the frequency of Reference clock using the control inputs S1 and S2 if Bank A is connected to feedback FBK. In addition, using the control inputs S1 and S2, the PI6C2308A-6 allows bank A to switch from Reference clock to 2X the frequency of Reference clock if Bank B is connected to feedback FBK. For testing purposes, the select inputs connect the input clock directly to outputs.

#### Pin Configuration PI6C2308A(-1,-1H,-2,-3,-4,-6)





## **Select Input Decoding for PI6C2308A (-1, -1H, -2, -3, -4)**

| S2 | S1 | CLKA [1-4] | CLKB [1-4] | Output Source | PLL Shutdown |
|----|----|------------|------------|---------------|--------------|
| 0  | 0  | Hi-Z       | Hi-Z       | PLL           | Y            |
| 0  | 1  | Driven     | Hi-Z       | PLL           | N            |
| 1  | 0  | Driven     | Driven     | Reference     | Y            |
| 1  | 1  | Driven     | Driven     | PLL           | N            |

# Select Input Decoding for PI6C2308A-6

| S2 | S1 | CLKA [1-4]         | CLKB [1-4]           | <b>Output Source</b> | PLL Shutdown |
|----|----|--------------------|----------------------|----------------------|--------------|
| 0  | 0  | Hi-Z               | Hi-Z                 | PLL                  | Y            |
| 0  | 1  | Driven = Reference | Driven = Reference/2 | Reference            | Y            |
| 1  | 0  | Driven = PLL       | Driven = PLL         | PLL                  | N            |
| 1  | 1  | Driven = PLL       | Driven = PLL/2       | PLL                  | N            |

### Available PI6C2308A Configurations

| Device       | Feedback From    | Bank A Frequency          | Bank B Frequency         |
|--------------|------------------|---------------------------|--------------------------|
| PI6C2308A-1  | Bank A or Bank B | Reference                 | Reference                |
| PI6C2308A-1H | Bank A or Bank B | Reference                 | Reference                |
| PI6C2308A-2  | Bank A           | Reference                 | Reference/2              |
| PI6C2308A-2  | Bank B           | 2X Reference              | Reference                |
| PI6C2308A-3  | Bank A           | 2X Reference              | Reference                |
| PI6C2308A-3  | Bank B           | 4X Reference              | 2X Reference             |
| PI6C2308A-4  | Bank A or Bank B | 2X Reference              | 2X Reference             |
| PI6C2308A-6  | Bank A           | Reference                 | Reference or Reference/2 |
| PI6C2308A-6  | Bank B           | Reference or 2X Reference | Reference                |



#### Zero Delay and Skew Control

#### REF. Input to CLKA/CLKB Delay vs. Difference in Loading between FBK pin and CLKA/CLKB pins



To close the feedback loop of the PI6C2308A, the FBK pin can be driven from any of the 8 available output pins. The output driving the FBK pin will be driving a total load of 7pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input-output delay. This is shown in the graph above.

For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. If input-output delay adjustments are required, use the above graph to calculate loading differences between the feedback output and remaining outputs.

#### **Maximum Ratings**

| Supply Voltage to Ground Potential         |                            |
|--------------------------------------------|----------------------------|
| DC Input Voltage (Except REF)              | $-0.5$ V to $V_{DD}+0.5$ V |
| DC Input Voltage REF                       | -0.5 to 7V                 |
| Storage Temperature                        | 65°C to +150°C             |
| Maximum Soldering Temperature (10 seconds) | 260°C                      |
| Junction Temperature                       | 150℃                       |
| Static Discharge Voltage                   |                            |
| (per MIL-STD-883, Method 3015)             | >2000V                     |
|                                            |                            |

#### **Operating Conditions** (over the operating range, $T_A = 0$ °C to +70°C, $V_{CC} = 3.3V \pm 0.3V$ )

| 1 0            | ` 1 0 0 7                       |      |      |       |
|----------------|---------------------------------|------|------|-------|
| Parameter      | Description                     | Min. | Max. | Units |
| $V_{DD}$       | Supply Voltage                  | 3.0  | 3.6  | V     |
| T <sub>A</sub> | Operating Temperature (Ambient) | 0    | 70   | °C    |
| $C_1$          | Load Capacitance                |      | 30   | "E    |
| Cin            | Input Capacitance               | _    | 7    | pF    |



**Pin Description** 

| Pin | Signal               | Description                                                                     |
|-----|----------------------|---------------------------------------------------------------------------------|
| 1   | REF <sup>(1)</sup>   | Input reference frequency, 5VTolerant input, allows spread spectrum clock input |
| 2   | CLKA1 <sup>(2)</sup> | Clock output, Bank A                                                            |
| 3   | CLKA2 <sup>(2)</sup> | Clock output, Bank A                                                            |
| 4   | $V_{ m DD}$          | 3.3V supply                                                                     |
| 5   | GND                  | Ground                                                                          |
| 6   | CLKB1 <sup>(2)</sup> | Clock output, Bank B                                                            |
| 7   | CLKB2 <sup>(2)</sup> | Clock output, Bank B                                                            |
| 8   | S2 <sup>(3)</sup>    | Select input, bit 2                                                             |
| 9   | S1 <sup>(3)</sup>    | Select input, bit 1                                                             |
| 10  | CLKB3 <sup>(2)</sup> | Clock output, Bank B                                                            |
| 11  | CLKB4 <sup>(2)</sup> | Clock output, Bank B                                                            |
| 12  | GND                  | Ground                                                                          |
| 13  | $V_{DD}$             | 3.3V, supply                                                                    |
| 14  | CLKA3 <sup>(2)</sup> | Clock output, Bank A                                                            |
| 15  | CLKA4 <sup>(2)</sup> | Clock output, Bank A                                                            |
| 16  | FBK                  | PLL feedback input                                                              |

## **Electrical Characteristics for Commercial Temperature Device**

| Parameter                 | Description                        | Test Conditions                                                         | Min. | Max.  | Units |
|---------------------------|------------------------------------|-------------------------------------------------------------------------|------|-------|-------|
| $V_{\mathrm{IL}}$         | Input LOW Voltage <sup>(4)</sup>   | _                                                                       | _    | 0.8   | V     |
| V <sub>IH</sub>           | Input HIGH Voltage <sup>(4)</sup>  | _                                                                       | 2.0  | _     | V     |
| I <sub>IL</sub>           | Input LOW Current                  | $V_{IN} = 0V$                                                           | _    | 50.0  | ^     |
| $I_{\mathrm{IH}}$         | Input HIGH Current                 | $V_{IN} = V_{DD}$                                                       | _    | 200.0 | μΑ    |
| V <sub>OL</sub>           | Output LOW Voltage <sup>(5)</sup>  | $I_{OL} = 8mA$ $I_{OL} = 12mA (-1H)$                                    | _    | 0.4   | V     |
| V <sub>OH</sub>           | Output HIGH Voltage <sup>(5)</sup> | $I_{OH} = -8mA$ $I_{OH} = -12mA (-1H)$                                  | 2.4  | _     | V     |
| I <sub>DD</sub> (PD mode) | Power Down Supply Current          | REF = 0 MHz                                                             | _    | 12.0  | μΑ    |
| I <sub>DD</sub>           | Supply Current                     | Unloaded outputs, 66.66 MHz,<br>Select inputs at V <sub>DD</sub> or GND | _    | 39    | A     |
| I <sub>DD</sub>           | Supply Current                     | Unloaded outputs, 100 MHz,<br>Select inputs at V <sub>DD</sub> or GND   | _    | 54    | mA    |



### Switching Characteristics (5,6) for Commercial Temperature Device

| Parameters        | Name                                                           | Test Conditions                                                    | Min. | Тур. | Max. | Units |
|-------------------|----------------------------------------------------------------|--------------------------------------------------------------------|------|------|------|-------|
| FCLK              | Output Frequency                                               | 15pF to 30pF load                                                  | 10   |      | 140  | MHz   |
|                   | Duty $Cycle^{(5)} = t_2 \div t_1$                              | Measured at V <sub>DD</sub> /2                                     | 45   | 50   | 55   |       |
| t <sub>2</sub>    | Duty Cycle <sup>(5)</sup> = $t_2 \div t_1$ (-1H)               | Measured at 1.4V,<br>F <sub>OUT</sub> ≤45 MHz                      | 45   | 50   | 55   | %     |
|                   | Duty Cycle = $t_2 \div t_1$ (-1,-2,-3,-4,-6)                   | Measured at 1.4V                                                   | 40   | 50   | 60   |       |
| t <sub>3</sub>    | Rise Time <sup>(5)</sup> @30pF                                 |                                                                    |      |      | 2.2  |       |
| t <sub>3</sub>    | Rise Time <sup>(5)</sup> @15pF                                 |                                                                    |      |      | 1.5  |       |
| t <sub>3</sub>    | Rise Time <sup>(5)</sup> @30pF (-1H)                           | Measured between                                                   |      |      | 1.5  |       |
| t <sub>4</sub>    | Fall Time <sup>(5)</sup> @30pF                                 | 0.8V and 2.0V                                                      |      |      | 2.2  | ns    |
| t4                | Fall Time <sup>(5)</sup> @15pF                                 |                                                                    |      |      | 1.5  |       |
| t4                | Fall Time <sup>(5)</sup> @30pF (-1H)                           |                                                                    |      |      | 1.25 |       |
| t <sub>5</sub>    | Output to Output Skew <sup>(5)</sup> same bank                 | All outputs equally loaded, V <sub>DD</sub> /2                     |      |      | 200  |       |
| t <sub>5</sub>    | Output to Output Skew <sup>(5)</sup> different bank (-2,-3,-6) | All outputs equally loaded, V <sub>DD</sub> /2                     |      |      | 400  |       |
| t <sub>6</sub>    | Delay, REF Rising Edge to FBK Rising Edge <sup>(5)</sup>       | Measured at V <sub>DD</sub> /2                                     |      | 0    | ±150 | ps    |
| t <sub>7</sub>    | Device to Device Skew <sup>(5)</sup>                           | Measured at V <sub>DD</sub> /2 on the FBK pins of devices          |      | 0    | 500  |       |
| t <sub>8</sub>    | Output Slew Rate <sup>(5)</sup>                                | Measured between 0.8V and 2.0V on -1H device using Test Circuit #2 | 1    |      |      | V/ns  |
| tı                | Cycle to Cycle Jitter <sup>(5)</sup>                           | Measured at 66.67 MHz, loaded outputs                              |      |      | 200  | ps    |
| t <sub>LOCK</sub> | PLL Lock Time <sup>(5)</sup>                                   | Stable power supply, valid clocks presented on REF and FBK pins    |      |      | 1.0  | ms    |

#### **Notes:**

- 1. Weak pull-down.
- 2. Weak pull-down on all outputs.
- 3. Weak pull-ups on these inputs.
- 4. REF and FBK inputs have a threshhold voltage of  $V_{DD}/2$ .
- 5. Parameter is guaranteed by design and characterization. Not 100% tested in production.
- 6. For definition of t<sub>1-8</sub>, see Switching Waveforms on page 6



## **Operating Conditions for Industrial Temperature Devices**

| Parameter       | Description                                 | Min. | Max. | Units |
|-----------------|---------------------------------------------|------|------|-------|
| V <sub>DD</sub> | Supply Voltage 3.0                          |      | 3.6  | V     |
| $T_{A}$         | Operating Temperature (Ambient Temperature) | -40  | 85   | °C    |
| C               | Load Capacitance, below 100 MHz             |      | 30   |       |
| $C_{ m L}$      | Load Capacitance, from 100 MHz to 133 MHz   |      | 15   | pF    |
| C <sub>IN</sub> | Input Capacitance                           |      | 7    |       |

## **Electrical Characteristics for Industrial Temperature Devices**

| Parameter                 | Description                        | Test Conditions                                                                     | Min. | Max.       | Units |  |
|---------------------------|------------------------------------|-------------------------------------------------------------------------------------|------|------------|-------|--|
| V <sub>IL</sub>           | Input LOW Voltage                  |                                                                                     |      | 0.8        | V     |  |
| V <sub>IH</sub>           | Input HIGH Voltage                 |                                                                                     | 2.0  |            | V     |  |
| $I_{\mathrm{IL}}$         | Input LOW Current                  | $V_{IN} = 0V$                                                                       |      | 50.0       | ^     |  |
| I <sub>IH</sub>           | Input HIGH Current                 | $V_{IN} = V_{DD}$                                                                   |      | 100.0      | μΑ    |  |
| V <sub>OL</sub>           | Output LOW Voltage <sup>(4)</sup>  | $I_{OL} = 8 \text{ mA } (-1,-2,-3,-4)$<br>$I_{OL} = 12 \text{ mA } (-1\text{H},-5)$ |      | 0.4        | V     |  |
| $V_{ m OH}$               | Output HIGH Voltage <sup>(4)</sup> | $I_{OH} = -8 \text{ mA } (-1,-2,-3,-4)$<br>$I_{OH} = -12 \text{ mA } (-1H,-5)$      | 2.4  |            | V     |  |
| I <sub>DD</sub> (PD mode) | Power Down Supply Current          | REF = 0 MHz                                                                         |      | 25.0       | μΑ    |  |
|                           |                                    | Unloaded outputs, 100 MHz,                                                          |      | 45.0       |       |  |
|                           |                                    | Select inputs at V <sub>DD</sub> or GND                                             |      | 70.0 (-1H) |       |  |
| $I_{\mathrm{DD}}$         | Supply Current                     | Unloaded outputs, 66 MHz, REF, except -1H                                           |      | 35.0       | mA    |  |
|                           |                                    | Unloaded outputs, 33 MHz, REF, except -1H                                           |      | 20.0       |       |  |



### Switching Characteristics for Industrial Temperature Devices<sup>(5)</sup>

| Parameter         | Name                                                     | Test Conditions                                                                                        | Min. | Тур. | Max. | Units |
|-------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|------|------|-------|
|                   |                                                          | 30pF load, All devices                                                                                 |      |      | 100  |       |
| $t_1$             | Output Frequency                                         | 20pF load, -1H, -5, devices                                                                            | 10   |      | 140  | MHz   |
|                   |                                                          | 15pF load, -1,-2,-3,-4 devices                                                                         |      |      | 140  | 1     |
| t <sub>2</sub>    |                                                          | Measured at 1.4V, F <sub>OUT</sub> <66.66MHz 30-pF load                                                | 40.0 |      | 60.0 |       |
|                   | Duty Cycle <sup>(4)</sup> = $t_2 \div t_1$               | y Cycle <sup>(4)</sup> = $t_2 \div t_1$<br>,-2,-3,-4) Measured at 1.4V, $F_{OUT} < 100$ MHz 15-pF load |      |      | 60.0 |       |
|                   | (1, 2, 3, 1)                                             | Measured at 1.4V, F <sub>OUT</sub> <133 MHz 15-pF load                                                 | 35.0 | 50.0 |      |       |
|                   | D + C + (4) + + + (411 5)                                | Measured at 1.4V, F <sub>OUT</sub> < 45MHz                                                             | 40.0 | 50.0 | 55.0 | %     |
|                   | Duty Cycle <sup>(4)</sup> = $t_2 \div t_1$ (-1H,-5)      | Measured at 1.4V, F <sub>OUT</sub> <66.66 MHz 15-pF load                                               | 40.0 |      | 55.0 |       |
|                   | Duty $Cycle^{(4)} = t_2 \div t_1 (-1H, -5)$              | Measured at 1.4V, F <sub>OUT</sub> <45MHz                                                              | 45.0 |      |      |       |
|                   | Rise Time <sup>(4)</sup> (-1,-2,-3,-4)                   | Measured between 0.8V and 2.0V, 30-pF load                                                             |      |      | 2.2  |       |
| $t_3$             | Rise Time <sup>(4)</sup> (-1,-2,-3,-4)                   | Measured between 0.8V and 2.0V, 15-pF load                                                             |      |      | 1.50 |       |
|                   | Rise Time <sup>(4)</sup> (–1H,–5)                        | Measured between 0.8V and 2.0V, 30-pF load                                                             |      |      | 1.50 |       |
|                   | Fall Time <sup>(4)</sup> (-1,-2,-3,-4)                   | Measured between 0.8V and 2.0V, 30-pF load                                                             |      |      | 2.50 | ns    |
| t4                | Fall Time <sup>(4)</sup> (-1,-2,-3,-4)                   | Measured between 0.8V and 2.0V, 15-pF load                                                             |      |      | 1.50 |       |
|                   | Fall Time <sup>(4)</sup> (-1H,-5)                        | Measured between 0.8V and 2.0V, 30-pF load                                                             |      |      | 1.25 |       |
|                   | Output to Output Skew on same Bank $(-1,-2,-3,-4)^{(4)}$ |                                                                                                        |      |      |      |       |
|                   | Output to Output Skew (-1H,-5)                           |                                                                                                        |      |      | 200  |       |
| t <sub>5</sub>    | Output Bank A to Output Bank B<br>Skew (-1,-4,-5)        | All outputs equally loaded                                                                             |      |      |      | ps    |
|                   | Output Bank A to Output Bank B<br>Skew (-2,-3)           |                                                                                                        |      |      | 400  | PS    |
| t <sub>6</sub>    | Delay, REF Rising Edge to FBK Rising Edge <sup>(4)</sup> | Measured at V <sub>DD</sub> /2                                                                         |      | 0    | ±150 |       |
| t <sub>7</sub>    | Device to Device Skew <sup>(4)</sup>                     | Measured at $V_{DD}/2$ MHz, on the FBK pins of devices                                                 |      |      | 500  |       |
| t <sub>8</sub>    | Output Slew Rate <sup>(4)</sup>                          | Measured twx 0.8V & 2.0V on 1H,–5 device using Test Circuit #2.                                        | 1    |      |      | V/ns  |
|                   | Cycle to Cycle Jitter <sup>(4)</sup> , (-1,-1H,-5,-4)    | Measured at 66.67 MHz, loaded outputs, 30pF Load                                                       |      |      | 200  |       |
| $t_{ m J}$        | Cycle to Cycle Jitter <sup>(4)</sup> , (-2,-3)           | Measured at 66.67 MHz, loaded outputs, 15pF Load                                                       |      |      | 100  | ps    |
|                   | Cycle to Cycle Jitter <sup>(4)</sup> , (-2,-3)           | Measured at 66.67 MHz, loaded outputs                                                                  |      |      | 400  |       |
| t <sub>LOCK</sub> | PLL Lock Time <sup>(4)</sup>                             | Stable power supply, valid clocks presented on REF and FBK pins                                        |      |      | 1.0  | ms    |
|                   |                                                          |                                                                                                        |      |      |      |       |

#### **Notes:**

- 1. Weak pull-down.
- 2. Weak pull-down on all outputs.
- 3. Weak pull-ups on these inputs.
- 4. REF and FBK inputs have a threshhold voltage of V<sub>DD</sub>/2.
- 5. Parameter is guaranteed by design and characterization. Not 100% tested in production.
- 6. For definition of t<sub>1-8</sub>, see Switching Waveforms on page 6



#### **Switching Waveforms**









### **Package Diagrams**

#### 16-Pin SOIC (W)



#### 16-Pin TSSOP(L)



Note: Controlling dimensions in millimeters. Ref: JEDEC MS - 012 AC



### **Ordering Information (Commercial Temperature Device)**

| Ordering Code | Package Name | Package Type        | Operating Range |  |  |
|---------------|--------------|---------------------|-----------------|--|--|
| PI6C2308A-1W  |              |                     |                 |  |  |
| PI6C2308A-1HW |              |                     |                 |  |  |
| PI6C2308A-2W  | WILC         | 16 min 150 mil SOIC |                 |  |  |
| PI6C2308A-3W  | W16          | 16-pin 150-mil SOIC |                 |  |  |
| PI6C2308A-4W  |              |                     |                 |  |  |
| PI6C2308A-6W  |              |                     | Commercial      |  |  |
| PI6C2308A-1L  |              |                     | Commercial      |  |  |
| PI6C2308A-1HL |              |                     |                 |  |  |
| PI6C2308A-2L  | I 16         | 16 min TCCOD        |                 |  |  |
| PI6C2308A3L   | L16          | 16-pin TSSOP        |                 |  |  |
| PI6C2308A4L   |              |                     |                 |  |  |
| PI6C2308A-6L  |              |                     |                 |  |  |

### **Ordering Information (Industrial Temperature Device)**

| Ordering Code  | Package Name | Package Type        | Operating Range |
|----------------|--------------|---------------------|-----------------|
| PI6C2308A-1WI  | W16          | 16-pin 150-mil SOIC | - Industrial    |
| PI6C2308A-1HWI |              |                     |                 |
| PI6C2308A-2WI  |              |                     |                 |
| PI6C2308A-3WI  |              |                     |                 |
| PI6C2308A-4WI  |              |                     |                 |
| PI6C2308A-6WI  |              |                     |                 |
| PI6C2308A-1LI  | L16          | 16-pin TSSOP        |                 |
| PI6C2308A-1HLI |              |                     |                 |
| PI6C2308A-2LI  |              |                     |                 |
| PI6C2308A-3LI  |              |                     |                 |
| PI6C2308A-4LI  |              |                     |                 |
| PI6C2308A-6LII |              |                     |                 |