

PI6CU877

PLL Clock Driver for 1.8V DDR2 Memory

Features

- PLL clock distribution optimized for DDR2 SDRAM applications.
- Distributes one differential clock input pair to ten differential clock output pairs.
- Differential Inputs (CLK, CLK) and (FBIN, FBIN)
- Input OE/OS: LVCMOS
- Differential Outputs (Y[0:9], $\overline{Y[0:9]}$ and (FBOUT, \overline{FBOUT})
- External feedback pins (FBIN, FBIN) are used to synchronize the outputs to the clock input.
- Operates at AV_{DD} = 1.8V for core circuit and internal PLL, and V_{DDO} = 1.8V for differential output drivers
- Packaging (Pb-free & Green available):
 52-ball VFBGA (NF)

Pin Configuration

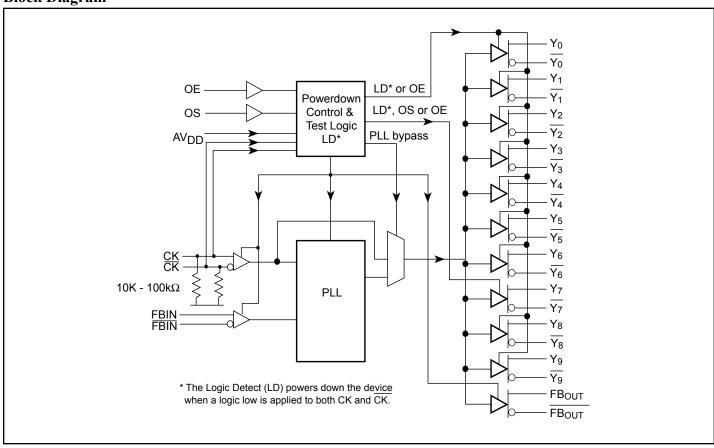
	1	2	3	4	5	6
A	Y ₁	Y_0	$\overline{Y_0}$	<u>Y</u> 5	Y ₅	Y ₆
В	$\overline{Y_1}$	GND	GND	GND	GND	$\overline{Y_6}$
С	$\overline{Y_2}$	GND	NB	NB	GND	$\overline{Y_7}$
D	Y ₂	V_{DDQ}	V_{DDQ}	V_{DDQ}	os	Y ₇
Е	CK	V _{DDQ}	NB	NB	V _{DDQ}	FB _{IN}
F	CK	V_{DDQ}	NB	NB	OE	FB _{IN}
G	AGND	V _{DDQ}	V _{DDQ}	V _{DDQ}	V_{DDQ}	FB _{OUT}
Н	AV _{DD}	GND	NB	NB	GND	FB _{OUT}
J	Y3	GND	GND	GND	GND	Y ₈
k	<u>Y</u> ₃	$\overline{\mathrm{Y}_{4}}$	Y ₄	Y9	<u> </u>	$\overline{Y_8}$

Description

PI6CU877 PLL clock driver is developed for Registered DDR2 DIMM applications with 1.8V operation and differential data input and output levels.

The device is a zero delay buffer that distributes a differential clock input pair (CLK, $\overline{\text{CLK}}$) to eleven differential pairs of clock outputs which includes feedback clock (Y[0:9], $\overline{\text{Y[0:9]}}$; FBOUT, $\overline{\text{FBOUT}}$).

The clock outputs are controlled by CLK/CLK, FBOUT, FBOUT, the LVCMOS (OE, OS) and the Analog Power input (AV_{DD}). When OE is LOW the outputs except FBOUT, FBOUT, are disabled while the internal PLL continues to maintain its locked-in frequency. OS is a program pin that must be tied to GND or V_{DD}. When OS is high, OE will function as described above. When OS is LOW, OE has no effect on $Y7/\overline{Y7}$, they are free running. When AV_{DD} is grounded, the PLL is turned off and bypassed for test purposes.


When CLK/ $\overline{\text{CLK}}$ are logic low, the device will enter a low power mode. An input logic detection circuit will detect the logic low level and perform a low power state where all Y[0:9], $\overline{\text{Y}[0:9]}$; FBOUT, $\overline{\text{FBOUT}}$, and PLL are OFF.

PI6CU877 is a high performance, low skew, and low jitter PLL clock driver, and it is also able to track Spread Spectrum Clocking (SSC) for reduced EMI.

Block Diagram

Pinout Table

Pin Name	Characteristics	Desctription	
AGND	Ground	Analog ground	
AV_{DD}	1.8V nominal	Analog power	
CK	Differential Input	Clock input with a (10K - 100KΩ) pulldown resistor	
CK	Differential Input	Complementary clock input with a (10K - 100KΩ) pulldown resistor	
FB_{IN}	Differential Input	Complementary feedback clock input	
FB _{IN}	Differential Input	Feedback clock input	
FB _{OUT}	Differenital Output	Complementary Feedback clock output	
FB _{OUT}	Differential Output	Feedback clock output	
OE	LVCMOS input	Output enable (async.)	
OS	LVCMOS input	Output select (tied to GND or V _{DDQ})	
GND	Ground	Ground	
V_{DDQ}	1.8V nominal	Logic and output power	
Y[0:9]	Differential Outputs	Clock outputs	
<u>Y[0:9]</u>	Differential Outputs	Complementary clock outputs	
NB		No Ball (VFBGA only)	

Function Table

	Inputs				Outputs				DI I C4a4a
AV _{DD}	OE	os	CK	<u></u> C K	Y	Y	FBOUT	FBOUT	PLL State
GND	Н	X	L	Н	L	Н	L	Н	Bypass/Off
GND	Н	X	Н	L	Н	L	Н	L	Bypass/Off
GND	L	Н	L	Н	$L(Z)^{(1)}$	$L(Z)^{(1)}$	L	Н	Bypass/Off
GND	L	L	Н	L	L(Z) ⁽¹⁾ , Y7 active	L(Z) ⁽¹⁾ , Y7 active	Н	L	Bypass/Off
1.8V (nom)	L	Н	L	Н	$L(Z)^{(1)}$	$L(Z)^{(1)}$	L	Н	On
1.8V (nom)	L	L	Н	L	L(Z) ⁽¹⁾ , Y7 active	L(Z) ⁽¹⁾ , Y7 active	Н	L	On
1.8V (nom)	Н	X	L	Н	L	Н	L	Н	On
1.8V (nom)	Н	X	Н	L	Н	L	Н	L	On
1.8V (nom)	X	X	L	L	$L(Z)^{(1)}$	$L(Z)^{(1)}$	$L(Z)^{(1)}$	$L(Z)^{(1)}$	Off
1.8V (nom)	X	X	Н	Н	Reserved				

Notes

1. $L_{(Z)}$ means the outputs are disabled to a low state meeting the I_{ODL} limit on DC Specification

Absolute Maximum Ratings (Over operating free-air temperature range)

Symbol	Parameter		Max.	Units	
V _{DDQ} , A _{VDD}	I/O supply voltage range and analog /core supply voltage range		2.5		
$V_{\rm I}$	Input voltage range		V _{DDQ} +0.5	V	
$V_{\rm O}$	Output voltage range	-0.5		7	
I _{IK}	Input clamp current	-50	50		
I_{OK}	Output clamp current	-50	50	A	
I _O	Continuous output current -50		50	mA	
$I_{O(PWR)}$	Continuous current through each V _{DDQ} or GND -100		100		
T_{STG}	Storage temperature	-65	150	°C	

Note:

DC Specifications Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Units	
V_{DDQ}	Output supply Voltage		1.7	1.8	1.9	
AV_{DD}	Supply voltage ⁽⁴⁾			V _{DDQ}		
$V_{\rm IL}$	Low-level input voltage ⁽⁵⁾	OE, OS, CK, \overline{CK}			0.35 x V _{DDQ}	V
V_{IH}	High-level input voltage ⁽⁵⁾	OE, OS, CK, \overline{CK}	0.65 x V _{DDQ}			
I _{OH}	High-level output current, see Fig 2		-		-9	
I _{OL}	Low-level output current, see Fig. 2		-		9	mA
$V_{\rm IX}$	Input differential-pair crossing voltage		(V _{DDQ} /2) -0.15		(V _{DDQ} /2) -0.15	ША
V _{IN}	Input voltage level		-0.3		V _{DDQ} +0.3	
3.7	L	DC	0.3		V _{DDQ} +0.4	V
V_{ID}	Input differenital voltage, See Fig 9 (5)	AC	0.6		V _{DDQ} +0.4	
T _A	Operating free air temperature	•	0		70	°C

Notes:

- 4. The PLL is turned off and bypassed for test purposes when AV_{DD} is grounded. During this test mode, V_{DDQ} remains within the recommended operating conditions and no timing parameters are guaranteed.
- 5. V_{ID} is the magnitude of the difference between the input level on CK and the input level on \overline{CK} , see Figure 9 for definition. The CK and \overline{CK} , V_{IH} and V_{IL} limits are used to define the DC low and high levels for the logic detect state.

^{1.} Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Timing Requirements (Over recommended operating free-air temperature)

Symbol	Decription	AV _{DD} , V _{DDQ}	Units	
Symbol	Decription	Min.	Max.	Units
ECV	Operation clock frequency ^(7, 8)	25	300	MHz
FCK	Application clock frequency ^(7, 9)	160	270	MITIZ
t _{DC}	Input clock duty cycle	40	60	%
$t_{ m L}$	Stabalization time ⁽¹⁰⁾		15	μs
t _{OFF}	Device power down ⁽¹⁰⁾		8	ns

Notes:

- 7. The PLL is able to handle spread spectrum induced skew.
- 8. Operating clock frequency indicates a range over which the PLL is able to lock, but in which it is not required to meet the other timing parameters. (Used for low-speed debug).
- 9. Application clock frequency indicates a range over which the PLL must meet all timing parameters.
- 10. Stabilization time is the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal after power up . During normal operation, the stabilization time is also the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal when CK and \overline{CK} go to a logic low state, enter the power-down mode and later return to active operation. CK and \overline{CK} maybe left floating after they have been driven low for one complete clock cycle.

DC Specifications

Param- eter	Description	Test Condition	AV _{DD} , V _{DDQ}	Min.	Тур.	Max.	Units
V_{IK}	All Inputs I _I = -18mA		1.7V			1.2	
V_{OH}	HIGH output voltage	$I_{OH} = -100 \mu A$	1.7 to 1.9V	V _{DDQ} -0.2			V
		$I_{OH} = -9mA$	1.7	1.1			
I_{ODL}	Output disabled low current	$OE = L$, $V_{ODL} = 100 \text{mV}$		100			μA
V _{OD}	Output differenital voltage, the magn between the true and complimentary dimentions		1.7V	0.6			V
T_	CK, CK	$V_I = V_{DDQ}$ or GND				±250	
I_{I}	OE, OS, FB_{IN} , $\overline{FB_{IN}}$	$V_I = V_{DDQ}$ or GND				±10	μΑ
I_{DDLD}	Static Supple current, I _{DDQ} + I _{ADD}	CK and $\overline{CK} = L$	1.9V			500	
I _{DD}	Dynamic supply current, I _{DDQ} + I _{ADD} , see note 6 for CPD calculation	CK and $\overline{CK} = 270 \text{MHz}$, all outputs are open (not connected to a PCB)				300	mA
	CK, \overline{CK}	$V_I = V_{DDQ}$ or GND		2		3	
CI	FB _{IN} , FB _{IN}	$V_I = V_{DDQ}$ or GND	1 037	2		3	
	CK, $\overline{\text{CK}}$	$V_I = V_{DDQ}$ or GND	1.8V	_		0.25	pF
CI(Δ)	FB _{IN} , FB _{IN}	$V_I = V_{DDQ}$ or GND				0.25	

Notes:

6. Total I_{DD} = I_{DDQ} + I_{ADD} = F_{CK} *C_{PD} *V_{DDQ}, solving for C_{PD} = (I_{DDQ} + I_{ADD})/(F_{CK}*V_{DDQ}) where F_{CK} is the input frequency, V_{DDQ} is the power supply and C_{PD} is the Power Dissipation Capacitance.

AC Specifications

Switching characteristics over recommended operating free-air temperature range (unless otherwise noted)⁽¹⁵⁾

D	Description	D'	AV _{DD}	$AV_{DD}, V_{DDQ} = 1.8V \pm 0.1V$		II*4	
Parameter	Description	Diagram	Min.	Nom.	Max.	Units	
ten	OE to and Y/Y	see Fig 11			8		
tdis	OE to and Y/Y	see Fig 11			8	ns	
tjit(cc+)	Cuele to evelo iitten	and Fig. 4	0		40		
tjit(cc-)	Cycle-to-cycle jitter	see Fig 4	0		-40		
t(Ø)	Static phase offset (11)	see Fig 5	-50		50		
t(Ø)dyn	Dynamic phase offset	see Fig 10	-50		50	ps	
tsk(o)	Output clock skew	see Fig 6			40		
tjit(per)	Period jitter ⁽¹²⁾	see Fig 7	-40		40		
tjit(hper)	Halk period jitter ⁽¹²⁾	see Fig 8	-75		75		
alu(i)	Input clock slew rate	see Fig 9	1	2.5	4		
slr(i)	Output enable (OE)	see Fig 9	0.5			V/ns	
slr(o)	Output clock slew rate (14, 16)	see Fig 1, 9	1.5	2.5	3		
V _{OX}	Outpu differenital-pair cross voltage ⁽¹³⁾	see Fig 2	(V _{DDQ} /2) -0.1		(V _{DDQ} /2) +0.1	V	
The	PLL on the PI6CU877 is capable of meeting al with the fo	Il the above test pa following paramete		e supporting	SSC synthesire	S	
SSC modulation frequency		30.00		33	kHz		
	SSC clock input frequency deviation				-0.50	%	
	PI6CU877 PLL design should target the	e values below to r	ninimize the S	SCC induced	skew:		
	PLL Loop Bandwidth		2.0			MHz	

Notes:

- 11. Static Phase Offset does not include Jitter
- 12. Period Jitter and Half-Period Jitter specifications are separate specifications that must be met independently of each other.
- 13. VOX specified at the DRAM clock input or the test load.
- 14. To eliminate the impact of input slew rates on static phase offset, the input slew rates of Reference Clock Input CK, CK and Feedback Clock Input FBIN, FBIN are recommended to be nearly equal. The 2.5V/ns slew rates are shown as a recommended target. Compliance with these Nom values is not mandatory if it can be adequately demonstrated that alternative characteristics meet the requirements of the registered DDR2 DIMM application.
- 15. There are two terminations that are used with the above ac tests. The load/board in Figure 2 is used to measure the input and output differential-pair cross-voltage only. The load/board in Figure 3 is used to measure all other tests. For consistency, equal length cables should be used.
- 16. The Output slew rate is determined from IBIS model load shown in Figure 1. It is measured single-ended.

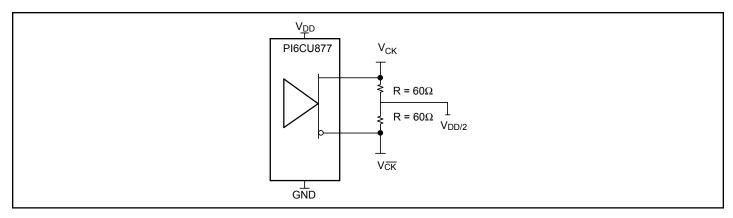


Figure 1. IBIS Model Output Load

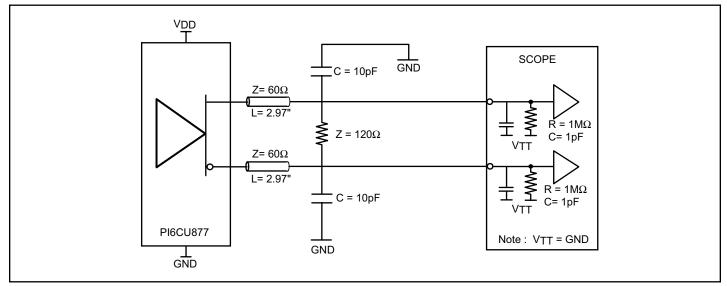


Figure 2. Output Load Test Circuit 1

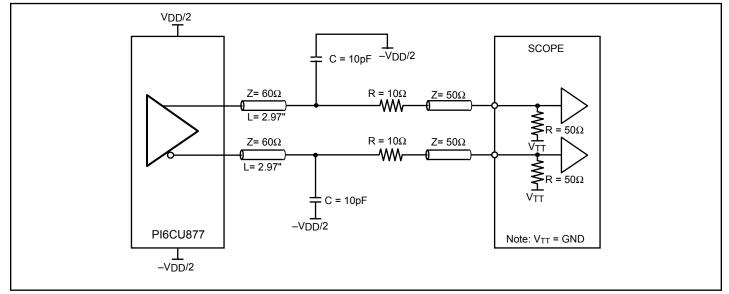


Figure 3. Output Load Test Circuit 2

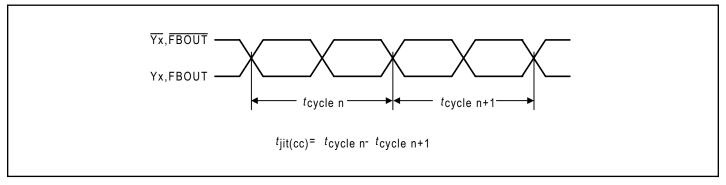


Figure 4. Cycle-to-Cycle Jitter

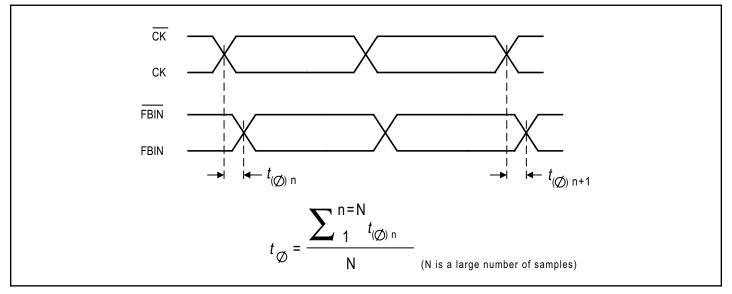


Figure 5. Static Phase Offset

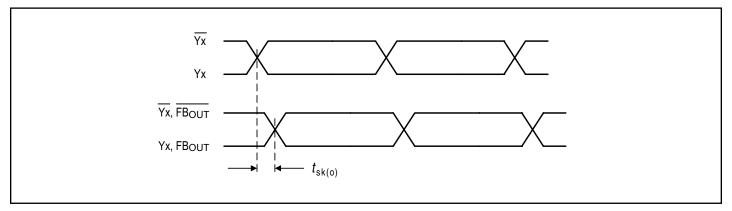
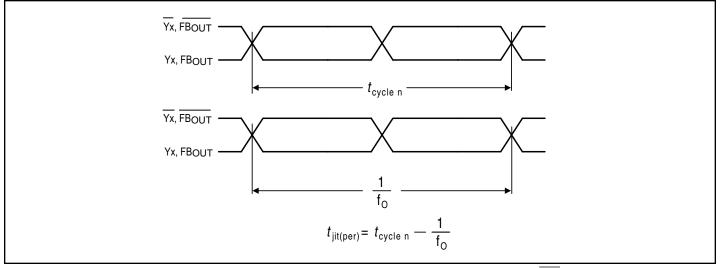



Figure 6. Output Skew

Figure 7. Period Jitter (fo = average input frequency measured at CK/\overline{CK})

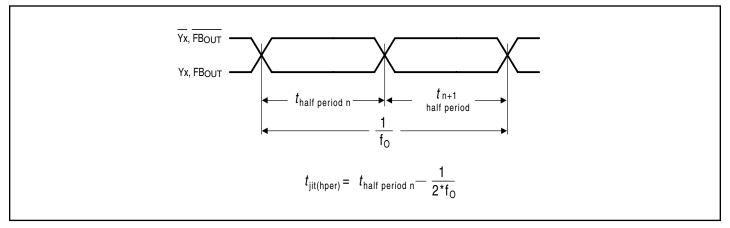


Figure 8. Half-Period Jitter

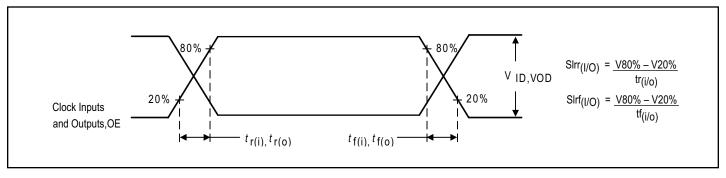


Figure 9. Input and Output Slew Rates

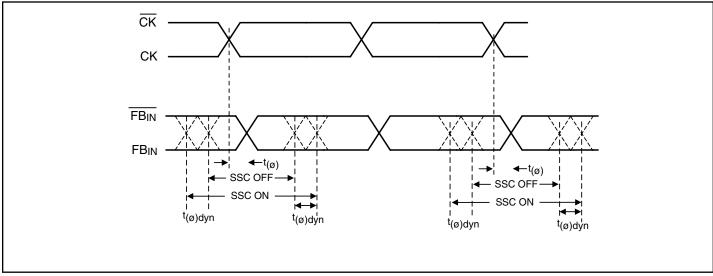


Figure 10. Dynamic Phase Offset

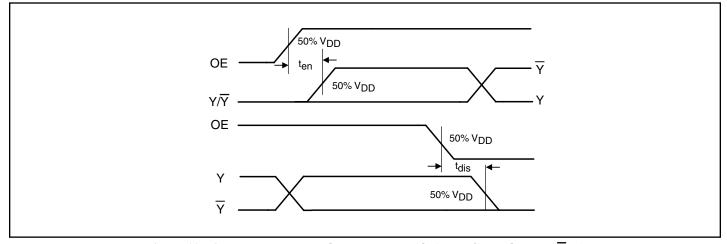
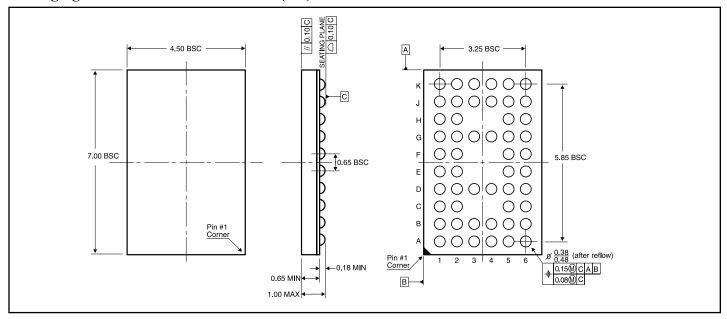



Figure 11. Time Delay Between Output Enable (OE) and Clock Output (\overline{Y}, Y)

Packaging Mechanical: 52-Pin VFBGA (NF)

Ordering Information

Ordering Code	Package Code	Package Description
PI6CU877NF	NF	52-ball VFBGA
PI6CU877NFE	NF	Pb-free & Green, 52-ball VFBGA

Notes:

1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/