

ICs for Communications

PMB 2240 V 1.6 GSM-Transmitter

Preliminary Data Sheet 05.97

GSM-Transmitter

Contents

page

0	Revision History	3
1	General Overview	4
1.1	Features	4
1.2	Applications	4
1.3	Functional Description	4
2	Pinning	5
2.1	Pin Description	5
2.2	Pin Configuration	6
2.3	Package Outline	6
3	Functional Block Diagram	7
4	Circuit Description	8
4.1	Block Level Description	8
4.2	Supply Concept	9
4.3	Power Down Conditions	10
4.4	Matching with Timing Signals of GOLD-uC	10
5	Internal Input/Output Circuits	11
6	Electrical Characteristics	12
6.1	Absolute Maximum Ratings	12
6.2	Operational Range	13
6.3	AC/DC Characteristics	14
6.4	Typical modulator measurement results	18
7	Test Circuits	20
7.1	Test Circuit 1	20
7.2	Test board Layout top	21
7.3	Test board Top place	22
7.4	Test board Layout bottom	23
7.5	Test board Bottom place	24
8	Application	25
8.1	Frequency plan for GSM application	25
8.2	Application hint for phase adjust	26
9	S-Parameters and Input/Output impedances	27
9.1	S-Parameters: Transmit Mixer Output MO/MOX	28
9.2	S-Parameters: IF Input IF/IFX	28
9.3	S-Parameters: RF Input RFB1/RFB2	29
9.4	S-Parameters: Output to Receiver RF/RFX	30
9.5	S-Parameters: Modulator Output E/EX	31
9.6	S-Parameters: Modulatór Input LO/LOX	31

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

0 Revision History

Changes from Data sheet PMB2240 V1.5 (08.96) to Data sheet PMB2240 V1.6 (5.97)

			neet V1.5 .96)		neet V1.6 2.97)	
#	Subject	Page	Item	Page	ltem	Change
1	General Overview	4	1	4	1	Revised
2	Pinning	5	2.1	5	2.1	Pin 9 changed to VCCPR; Pin 13 changed to SLEEP; Pins 17,18,20,21 changed to GND pins
3	Functional block diagram	7	3	7	3	Prescaler with separate VCCPR-pin; Former SLEEP/PR and SLEEP/RF are merged to SLEEP; Oscillator/Buffer for RFIN removed;
4	Circuit description	8,9,10	4	8,9,10	4	Revised
5	Internal I/O Circuits	11	5	11	5	Revised
6	Asolute Maxi- mum ratings	12	6.1	12	6.1	ESD integrity revised; Item symbols revised
7	Operational range	13	6.2	13	6.2	Temperature range - 30°C - 85°C
8	Prescaler	15	23	15	23	minimum H-voltage increased to 2.3V
9	Electrical Characteristics	12-18	6	12-17	6	Spec item symbols revised
10	AC/DC characteristics	14	6.3 #4	14	6.3 #4	Now referred to Test circuit 1
11	S-Parameters	27-30	9	27-31	9	Smith diagrams of simulated S-Params replaced by measured S-Param-table and I/O impedances

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

1 General Overview

1.1 Features

- Transmitter with I/Q modulator
- Direct I/Q modulation
- Generation of orthogonal carriers with possibility of phase adjust with external resistors at OFF1/OFF2
- 32dB minimum carrier rejection, 35dB minimum SSB rejection with 1 Vpp I/Q drive level
- 50dB rejection of third order products with 1 Vpp I/Q drive level
- - 3dBm output power at 1 Vpp I/Q drive level with 200 Ohms load according testcircuit 1
- RF oscillator signal is AC-coupled to internal buffer stage (symmetrical or unsymmetrical)
- The RF oscillator-signal is buffered for off-chip use, especially for receiver chip PMB2405.
- Prescaler for the RF oscillator signal
- Possibility to build RF-PLL with integrated prescaler + PMB2306
- Possibility to use the IF oscillator signal from the IF-VCO on PMB2405
- Possibility to use external source for IF oscillator-signal
- Digital parts of fixed IF frequency PLL (fixed-PLL) for IF-VCO on PMB2405
- Supply voltage range from 2.7 V to 4.5 V
- P-TQFP-48 package
- Temperature range -30° to 85°C

1.2 Applications

- Vector modulated digital mobile cellular systems as GSM, DAMPS, PDC, WLAN etc.
- Various modulation schemes, such as PM, PSK, FSK, QAM, QPSK, GMSK etc.
- Analog systems with FM and AM modulation
- Space and power saving optimizations of existing discrete transmitter circuits

1.3 Functional Description

The PMB2240 is a single-chip transmitter which includes a prescaler for the main oscillator signal and a fixed frequency PLL for the IF oscillator. The transmitter is designed for use in conjunction with the single-chip receiver PMB2405 and the CMOS PLL PMB2306.

The RF oscillator signal can be supplied from an external source symmetrically as well as unsymmetrically. The oscillator signal can be buffered for off-chip use, depending on a separate power down pin.

There is a prescaler by 64/65 for the RF oscillator signal on chip, which can be used to implement a PLL together with the PMB2306.

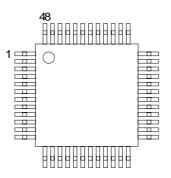
The on-chip fixed-PLL consists of the system clock divider, the IF oscillator signal divider, the phase detector and the charge pump. The IF oscillator signal divider is driven by the oscillator on the PMB2405 or by an external discrete VCO.

The two oscillator signals are combined in the transmit mixer, and the image sideband and other mixing products are suppressed with an external interstage filter. The filtered signal reenters the chip at the modulator inputs LO/LOX. The modulator generates two orthogonal carriers which are mixed with the modulation signals I and Q in two Gilbert multipliers. The phase between the two carriers can be fine-adjusted to 90 ° (orthogonality) by two external resistors at OFF1/OFF2 for best SSB suppression. The outputs of the Gilbert cells are added and amplified by a linear output stage.

The PMB2240 is designed for digital mobile telephones according to the GSM-Standard. The chip can also be used for other digital systems and the dual mode system.

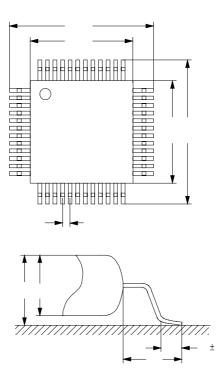
As part of the Siemens GSM/DCS chipset the derivatives PMB2245 and PMB2247 are offered for the DCS 1800 and DCS 1900 frequency range.

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

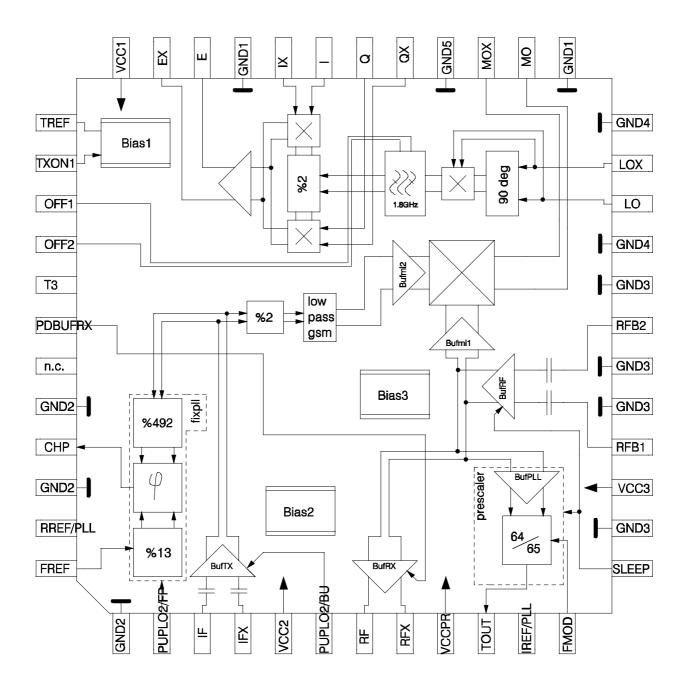

2 Pinning

2.1 Pin Description

Pin No.	Symbol	Function
1, 44, 46	GND2	Ground for the PLL-parts and their bias
2	PUPLO2/FP	Power down for fixed-PLL-dividers and phase detector
3	IF	Input for external IF oscillator signal
4	IFX	Input for inverted external IF oscillator signal
5	VCC2	Supply voltage for PLL parts (IF and RF) and their biasing
6	PUPLO2/BU	Power down for IF/IFX input buffer
7	RF	RF oscillator signal to receiver
8	RFX	Inverted RF oscillator signal to receiver
9	VCCPR	Separate supply voltage for RF-PLL prescaler
10	TOUT	Output of RF-PLL prescaler
11	IREF/PLL	Output for reference current for external RF-PLL-chip
12	FMOD	Modulus control for prescaler
13	SLEEP	Power down of RF oscillator input- and output buffer and the prescaler
14,17,18,20	GND3	Ground for RF oscillator + BufRX
15	VCC3	Supply voltage for BufRX and BufRF
16	RFB1	RF oscillator input buffer (inverting input)
19	RFB2	RF oscillator input buffer (non-inverting input)
21,24	GND4	Ground for internal shielding
22	LO	Modulator LO frequency input
23	LOX	Inverted Modulator LO frequency input
25,33	GND1	Ground for modulator and mixer parts + Bias1
26	MO	Mixer output, open collector
27	MOX	Inverted mixer output, open collector
28	GND5	Ground for substrate contacts in the modulator
29	QX	Quadratur modulating inverting input, open base
30	Q	Quadratur modulating input, open base
31	1	In phase modulating input, open base
32	IX	In phase inverted modulating input, open base
34	E	Non-inverting output of modulator, open collector; ESD disconnected
35	EX	Inverting output of modulator, open collector; ESD disconnected
36	VCC1	Supply voltage for modulator and mixer parts + Bias1
37	TREF	Temperature compensated DC reference voltage output for modulator
		I/Q -inputs via GMSK baseband circuit
38	TXON1	Power down for modulator and mixer parts + Bias1
39	OFF1	Phase error adjustment of orthogonal carriers with constant R
40	OFF2	Phase error adjustment of orthogonal carriers with constant R
41	T3	Test pin 3
42	PDBUFRX	Power down for "BufRX"
43	n.c.	not bonded
45	CHP	Phase-detector output for external loop filter (charge pump)
47	RREF/PLL	To be connected to GND via resistor to determine IREF for RF-PLL
48	FREF	Input of system reference clock


The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

2.2 Pin Configuration (top view)


2.3 Package Outline

Quad Flat package P-TQFP-48

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

3 Functional Block Diagram

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

4 Circuit Description

4.1 Block Level description

The GSM transmitter PMB2240 contains a number of functions that have been realised with multiple chips earlier:

- Oscillator signal input balanced or unbalanced
- RF-PLL prescaler
- IF-PLL dividers and phase detection
- TX mixer
- I/Q modulator

The PMB2240 V1.6 is designed to be used with an external RF oscillator module. On chip this signal is AC-coupled to an internal buffer stage. Therefore the RF input is suitable for symmetrical or single ended use. There is no need for an external DC-bias of the RF input. The active parts of the IF oscillator are located on the receive chip PMB2405.

A buffer BufRX, which can be powered down by pin PDBUFRX, is used to transmit the RF oscillator signal to the receiver chip to drive the RF receive mixer. A special input buffer BufTX receives the IF oscillator signal from the receive chip or an external source.

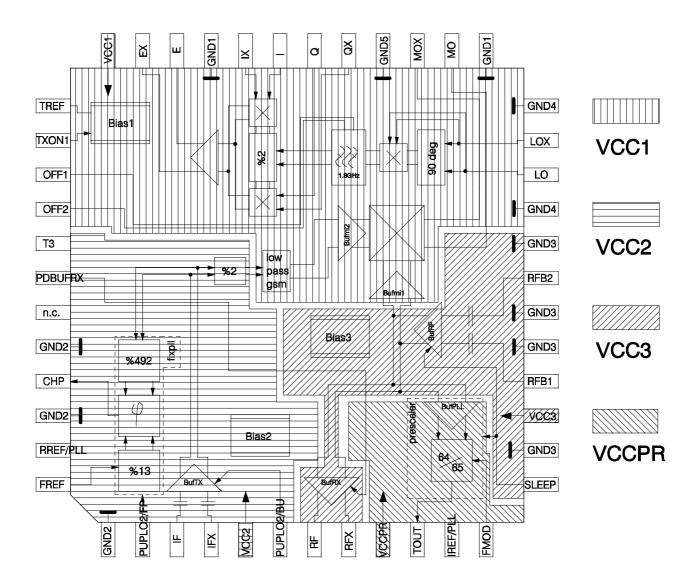
The RF oscillator signal is divided by the integrated 64/65 prescaler which can be connected to the CMOS PLL circuit PMB2306 for the RF oscillator PLL. The supply pin VCCPR is a separate prescaler supply, which openes the possilility to run the prescaler and the rest of the RF synthesizer on a supply voltage that is different from the supplies of the rest of the chip.

For the IF-PLL the active oscillator structures on the PMB2405 or an external VCO module can be used. The PMB2240 V1.6 contains the digital parts tor the IF oscillator PLL (fixed-PLL): the IF-frequency and system clock dividers and a phase detector plus charge pump are integrated to lock the IF oscillator to the external system clock. The oscillator signal drives the divider by 2 in front of the transmit mixer. The phase locked IF- and RF- signals are converted into the transmit band (e.g. 880 - 915 MHz for GSM) by the TX- mixer. The mixer output signal leaves the chip at MO/MOX and passes an external interstage filter to provide suppression of unwanted products. This signal reenters the chip at the modulator input LO/LOX.

The LO signal is divided into two orthogonal carriers at the transmit frequency. The phase between the two carriers can be fine-adjusted to 90 ° (orthogonality) by two external resistors at OFF1/OFF2 for maximum SSB suppression. The modulator consists of two Gilbert multipliers, where the modulating signals I(t) and Q(t) are multiplied with the RF-carriers. The outputs of both Gilbert cells are added and amplified by a linear output stage. The modulated transmit signal is available at E/EX and is fed into a transmitter power amplifier.

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

4.2 Supply concept

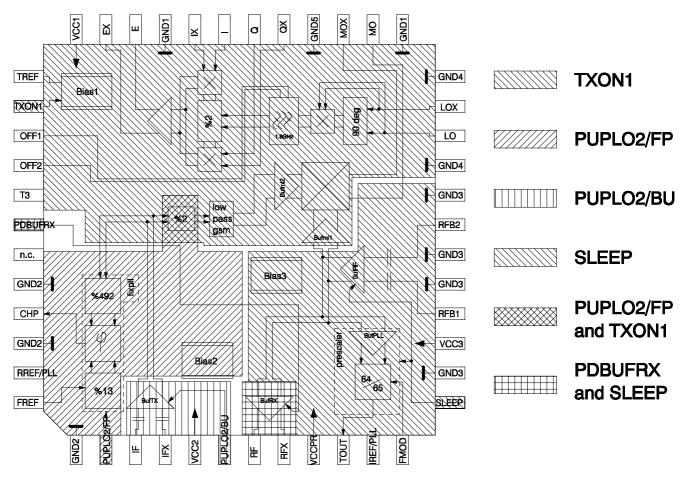

There are four independent supply voltages (VCC1-3,VCCPR) and ground rails (GND1-4) to decouple the modulator/mixer parts, the synthesizer parts, and the RFVCO parts.

The supply pin VCCPR is a separate prescaler supply, which openes the possilility to run the prescaler together with the rest of the RF synthesizer on a supply voltage that is different from the supplies of the rest of the chip

GND4 is a special shielding ground to decrease crosstalk between the separately supplied blocks. GND5 collects the substrate contacts in the modulator and mixer.

It is recommended to connect all GND pins to a common GND on the board.

In the following figure the chip schematic is partitioned according to its supply rails.


The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

4.3 Power down conditions

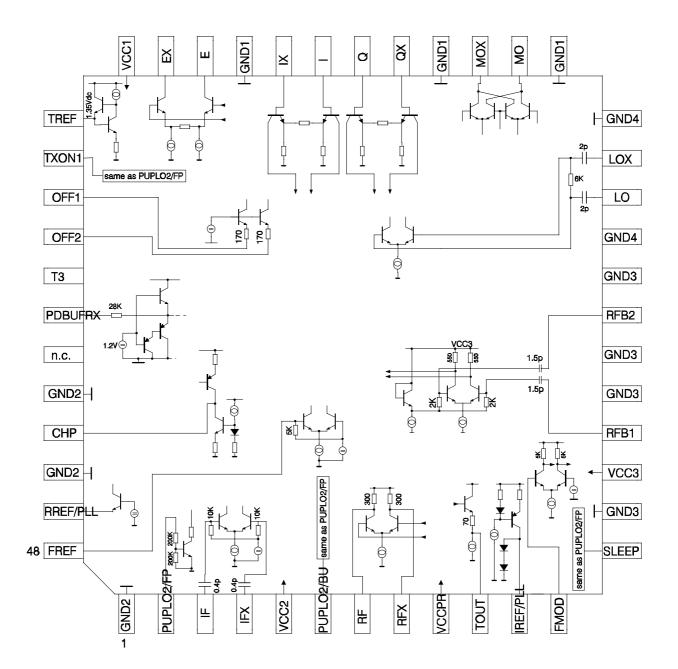
The PMB 2240 has five Power down inputs. PD = Low means that the respective part of the chip is in power down mode.

TXON1:Modulator, mixer, Bufmi1, Bufmi2TXON1 / PUPLO2/FP%2 dividerSLEEP:BufRF, prescaler with its input buffer BufPLLPUPLO2/BU:Input buffer BufTX for external IF oscillator-signalPUPLO2/FP:fixed-PLL, (%492; %13; phase detector, charge pump)PDBUFRX / SLEEPBufRX

For normal operation only three modes are used: sleep mode, TX-mode, RX-mode. Depending on the application some power down-pins can be combined, and others can be fixed to supply rails.

4.4 Matching with Timing Signals of GOLD-uC

In application with PMB2405 and GOLD-uC the power down pins of PMB2240 must be connected to the timing signals of GOLD-uC as follows:


<u>PMB 2240</u> TXON1 PUPLO2/BU, PUPLO2/FP SLEEP, PDBUFRX

connected to connected to connected to

<u>GOLD-uC</u> TXON1 PUPLO2 general purpose port pin

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

5 Internal Input/Output Circuits

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

6 Electrical Characteristics

6.1 Absolute Maximum Ratings

The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result.

#	Parameter	Symbol	Limit	Values	Unit	Remarks
			min.	max.		
1	Supply Voltage	V _{CC}	-0.3	5.0	V	
2	Input/Output Voltage	V _{IO}	-0.3	5.0	V	
3	Open Collector Output Voltage at E/EX	V _{OCE}	V _{CC} - 1.5	V _{CC} + 1.0	V	
4	Open Collector Output Voltage at MO/MOX	V _{OCM}	-0.3	5.0	V	
5	Differential Input Voltage	V _{ID}		2	V	
	(any differential Input)					
6	Junction Temperature	Τ _J	-40	125	°C	
7	Storage Temperature	Т _S	-55	125	°C	
8	Thermal Resistance (junction to ambient)	R _{thJA}		165	K/W	
9	ESD integrity *	V _{ESD}	-1000	+1000	V	according MIL-Std. 883D, method 3015.7

* exception:

Pin 47 to GND and a negative Pulse to pin 11 => 800V ESD-integrity

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

6.2 Operational Range

Within the operational range the IC operates as described in the circuit description. The AC/DC characteristics limits are not guaranteed.

 $V_{CC} = 2.7V$ to 4.5V; TA = -30 to 85°C;

#	Parameter	Symbol	Limit	Limit Values		Remarks
			min.	max.	-	
1	RFB1/RFB2 Input Level	P _{RFIN}	-10	0	dBm	
2	RFB1/RFB2 Input Frequency	f _{RFIN}	900	1300	MHz	
3	IF/IFX Input Level	P _{IFIN}	-15	0	dBm	
4	IF/IFX Input Frequency	f _{IFIN}	400	600	MHz	
5	LO/LOX Input Level	P _{LO}	-15	0	dBm	
6	LO/LOX Input Frequency	f _{LO}	800	1000	MHz	
7	Mixer output Frequency Range	f _{MO}	800	1000	MHz	wanted sideband
8	PD-Signals Voltage-L	V _{PDL}	0	0.8	V	
9	PD-Signals Voltage-H	V _{PDH}	2.0	V _{CC}	V	

Note:

Power levels are referred to impedance of 50 Ohms

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

6.3 AC/DC Characteristics

AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production.

 $V_{CC} = 2.7V/4.5V; TA = 25^{\circ}C;$

	Parameter	Sym-	Liı	nit Value	S	Unit	Test Condition	Test-
#		bol						circuit
			min.	typ.	max.			
1	Supply Current	I _{vcc1}	16	22	29	mA	TXON1	1
	all powered up	l _e +l _{ex}	9	13	18	mA	& PUPLO2/FP	
		I _{mo} +	7	10	13	mA	& PUPLO2/BU	
		I _{mox}					& SLEEP	
		I _{vcc2}	5	6.3	7.5	mA	& PDBUFRX	
		I _{vcc3}	9.3	11	13.2	mA	=	
		I _{vccpr}	2.5	3.3	4	mA	HIGH	
2	Supply Current	I _{vcc1}			2	uA	TXON1	1
	all powered down	I_{e}, I_{ex}			2	uA	& PUPLO2/FP	
		I _{mo} ,			2	uA	& PUPLO2/BU	
		I _{mox}					& SLEEP	
		I _{vcc2}			2	uA	& PDBUFRX	
		I _{vcc3}			2	uA	=	
		I _{vccpr}			2	uA	LOW	
Tra	nsmit Mixer Output				1			ł
3	Output impedance (open collector diff. output)			See	S-parame	eter 9.1		
4	Output level	P _{MO}	-18	-15	-12	dBm	900 MHz	1
5	Carrier suppression	a _{Cmix}	25	30		dB		1
6	Output Frequency	f _{MO}	800		1000	MHz	wanted sideband	1
IF i	nput at IF/IFX	1			1			
7	Input Level	P _{IFIN}	-15		0	dBm		1
			110		600	mVpp *		
8	Input Frequency	f _{IFIN}	400		600	MHz		1

* referred to 50 Ohm

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

_	Parameter	Symbl	Limit Values		Unit	Test Condition	Test	
#			min.	typ.	max.	1		Circuit
Fix	ed PLL							
9	lock in time	t		250		usec	Application hint	
10	Power on delay	t _{po}		0.3		usec	Application hint	
11	Input level at FREF	V _{FREFI}	0.4	1	2	Vpp	high input levels may cause spurious problems	1
12	Output current at CHP	I _{CHP}	+-450	+-600	+-750	uA		1
Dut	put to receiver RF/R	FX						
13	Internal DC bias	V _{RFDC}		V _{CC} - 0.6		V		1
14	Output impedance			see	S-parame	eter 9.4		
15	Output level	P _{RFOUT}	-11	-8	-5	dBm	f = 1200 MHz	1
RF	input at RFB1/RFB2	. I						
16	Input Level	P _{RFIN}	-10		0	dBm		1
17	Input Frequency	f _{RFIN}	900		1300	MHz		1
LO	input at LO/LOX							
18	Input impedance			see	S-parame	eter 9.6		
19	Input Level	P _{LO}	-15		0	dBm	into 50 Ohm	1
20	Input Frequency	fLO	800		1000	MHz		1
21	suppression of image in mixer output signal	a _{IM}	14			dB	Application hint	
Pre	escaler							
22	Input at FMOD voltage-L	V _{FMOD}	0		0.8	V		1
23	Input at FMOD voltage-H	V _{FMOD}	2.3		V _{CC}	V		1
24	Output DC level at TOUT	VTOUTDC	V _{CC} -1		V _{CC} - 0.7	V		1
25	Output AC amplitude at TOUT	V _{TOUTAC}	160		300	mVpp	f = 13.5MHz to 20.5MHz	1

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

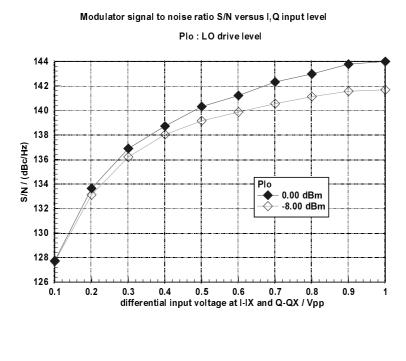
	Parameter	Symbl	Limit Values			Unit	Test Condition	Test	
#			min.	typ.	max.	1		Circuit	
Ref	ference current for e	ternal PL	.L	·	·				
26	External voltage of current sink fed to IREF/PLL	VIREF/PLL			1.2	V		1	
27	Current sourced at IREF/PLL	I _{IREF/PLL}		100**	360	uA	dependent of resistor value at RREF/PLL ***	1	
28	Temperature dependency of current sourced at IREF/PLL *	I _{IREF/PLL}		+-2		%	temperature range: -30 to 85 °C nominal current: 300uA		
29	Iulator inputs I/IX and I-IX and Q-QX differential input level	V _{I-IX.}		500	1000	mVpp			
30	Recommended range for ext DC voltage to compen- sate internal offset at I-IX and Q/QX *	V _{DCext}			15	mV			
31	Reference voltage for I,Q modulating inputs	V _{TREF}	1.25	1.35	1.45	V	Reference to external GMSK basebandcircuit to bias I and Q of PMB2240 (temperature compensated)	1	
32	Resistive load at TREF *	R _{TREF}	3			kOhm			
33	Input base current	I _{I/Q_DC}	1	6	12	uA			
34	Differential input resistance *	R _{I-IX}	50			kOhm	at 200 kHz		
35	Differential input capacitance *	C _{I-IX}		1		pF			
36	Input frequency *	f _{I-IX} f _{Q-QX}			10	MHz			

* Design hint

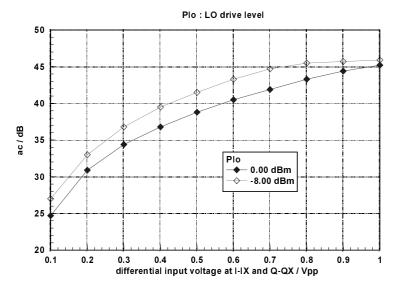
** required by PMB2306 R19 = $6.8k\Omega$ *** R19 at pin RREF/PLL gives constant PLL reference current at pin IREF/PLL:

$$(R19_{max} = open \rightarrow I_{IREF/PLLmin} = 0, R19_{min} = 2 \text{ KOhm } \rightarrow I_{IREF/PLLmax} = 360 \text{uA})$$

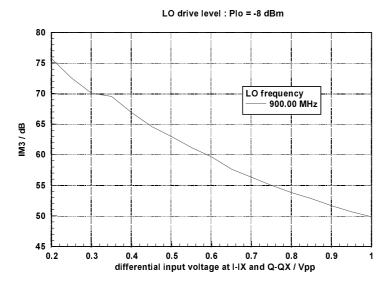
The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.


	Parameter	Symbl	Li	mit Value	es	Unit	Test Condition	Test
#			min.	typ.	max.		[[Circuit
Mod	ulator output E/EX	f _{LO} =	: 900 MH2	z; f _{I-IX} = f	_{Q-QX} =101	MHz;		
37	Output impedance (open collector diff. output)			See	e S-param	neter 9.5		
38	Output power	P _{E_b}	-12	-9	-6	dBm	cond1 **	1
,			-6	-3	0	dBm	cond2 ***	1
39	Carrier suppression	a _{Cmod}	26	32		dB	cond1 **	1
			32	38		dB	cond2 ***	1
40	Single sideband suppression	a _{SSB}	35			dB	with 90° phase shift between I and Q; ROFF1,ROFF2 tuned to maximum SSB suppression (appl.	1
41	Suppression of third order distortion products	a _{IM3}		62		dB	hint: fig.1,sec. 8.3) cond1 ** cond2 ***	1
42	Signal to noise	S/N		-139		dBc/Hz	cond1 **	1
42	ratio *	0/11		-139			P _{LO} = -8 dBm f _{offset} = 20MHz	
				-142		dBc/Hz	cond2 *** P _{LO} = -8 dBm f _{offset} = 20MHz	1

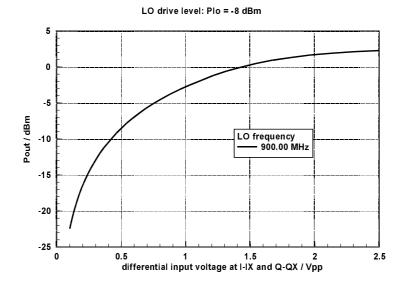
* Design hint ** cond1 means $V_{I-IX} = V_{Q-QX} = 500 \text{ mV}_{pp}$ *** cond2 means $V_{I-IX} = V_{Q-QX} = 1 \text{ V}_{pp}$


The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

6.4 Typical modulator measurement results

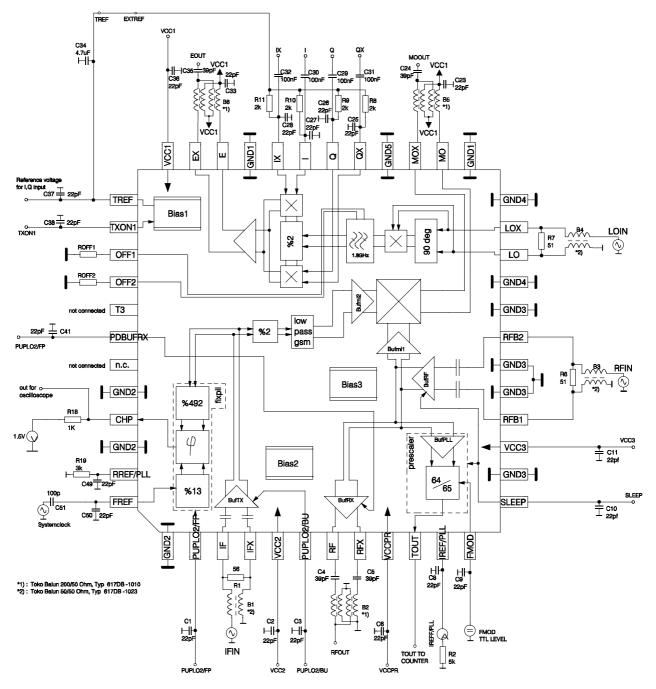

The following measurements refer to Testcircuit 1 (item 7.1, page 21)

Modulator carrier suppression ac versus I,Q input level



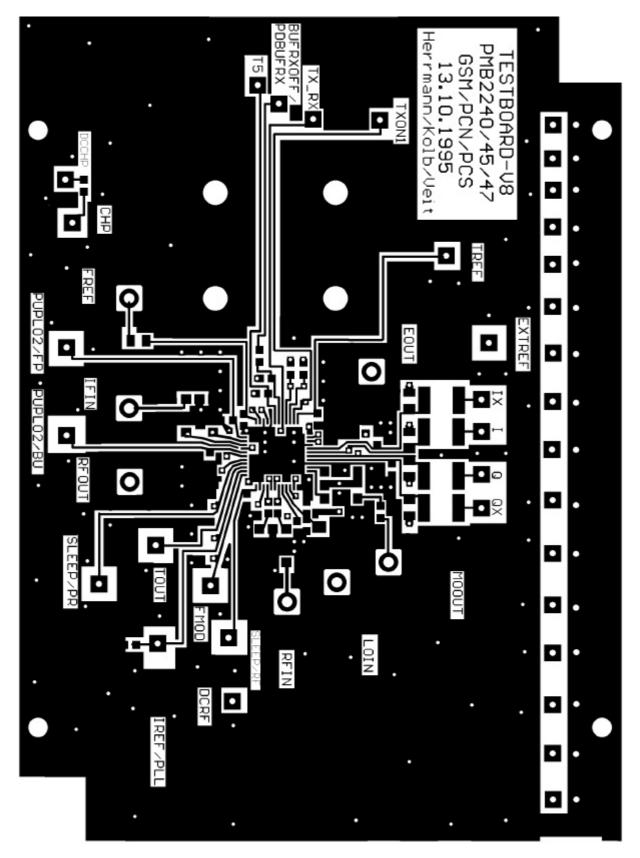
The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Modulator third order intermodulation product IM3 versus I,Q input level


Modulator output power Pout versus I,Q input level

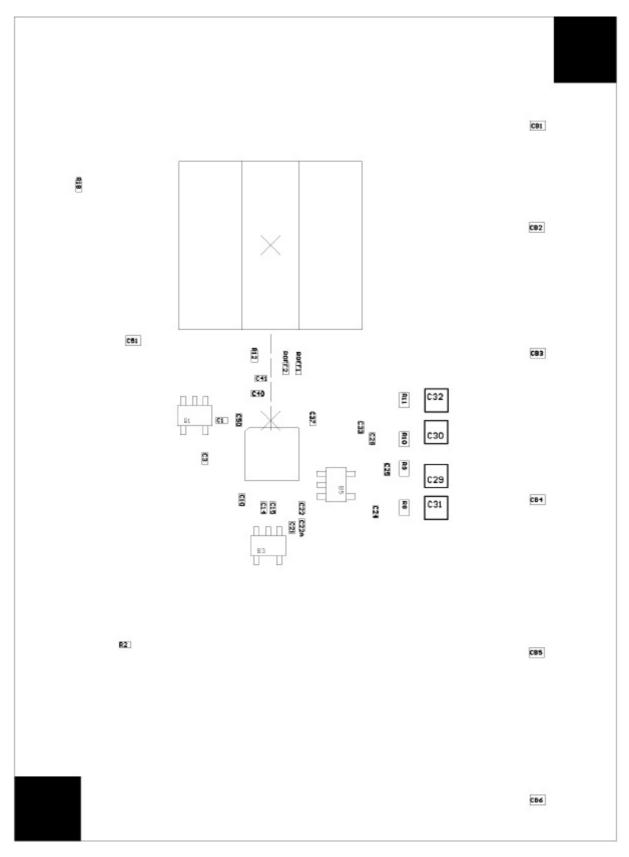
The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

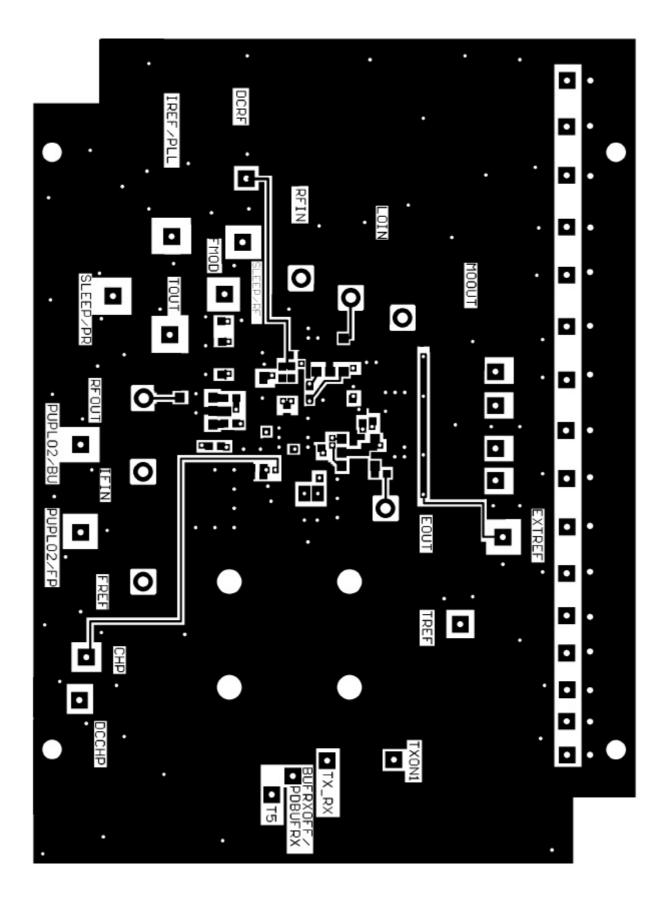
7 Test Circuits


7.1 Test Circuit 1

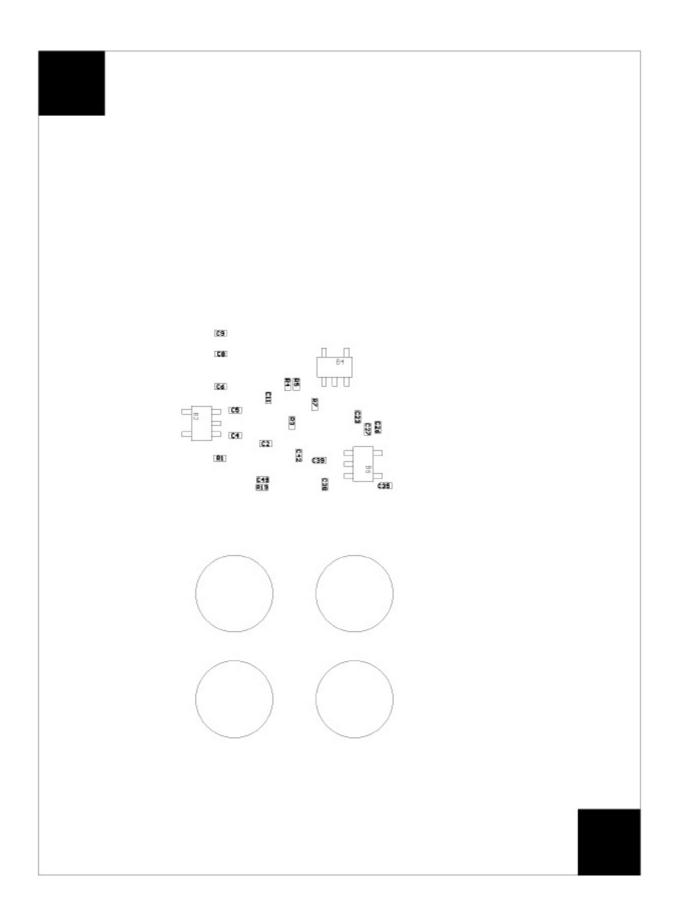
ROFF1/ROFF2 = 0 ... 600 Ohm; see application hint on page 26

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.


7.2 Test board Layout top, (M 2:1)

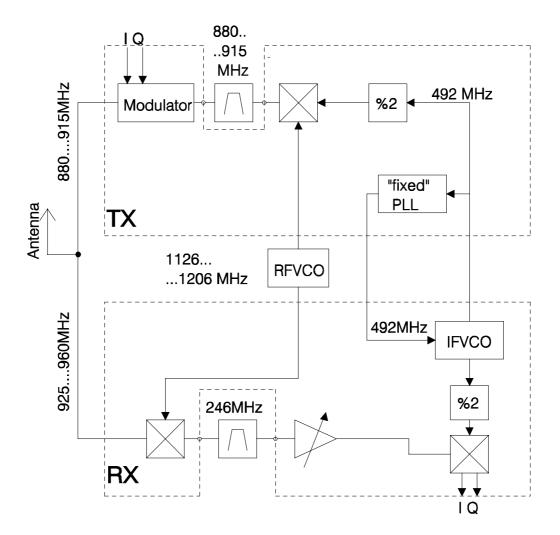

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

GSM-Transmitter


7.3 Test board Top place

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.



The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

8 Application

8.1 Frequency plan for GSM application

In the application the IF oscillator on the receive chip is locked at a frequency of 492 MHz by the fixed-PLL circuit. The RF oscillator module is tuned from 1126 MHz to 1206 MHz.

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

8.2 Application hint for phase adjust

The LO level for maximum SSB suppression can be tuned to every value within its operational range (-15 dBm to 0 dBm) by appropriate choice of ROFF1/ROFF2.

At pins OFF1 and OFF2 always a resistor or a short cicuit to ground is required. The recommended range of values is:

0 > ROFF1,ROFF2 < 600 Ohm.

In fig. 1 the maximum single sideband suppression (a_{ssb}) is tuned to -7dBm LO input power according test circuit 1. ROFF1=0 and ROFF2=200 Ohms. The LO level can vary +/- 4dB around its optimum value with assb \leq -35dB.

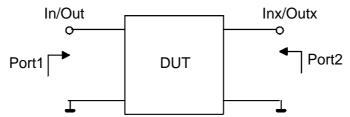
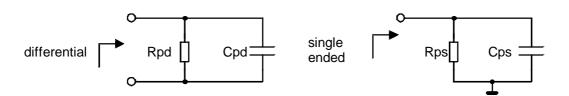

Single Sideband suppression assb versus lo input power Plo

fig. 1: Phase adjust with ROFF1=short, ROFF2=200 Ohms

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

9 S-Parameters and Input/Output Impedances

The S-parameters provided in this section are based on measurements. Measurement setup for differential in-/outputs:



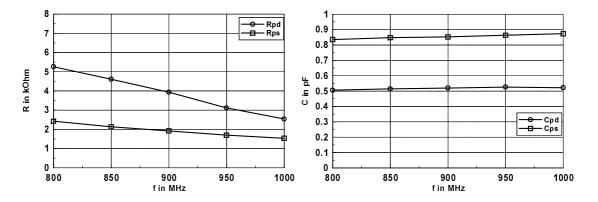
The input/output impedances are calculated from these parameters.

The impedances are given as equivalent circuit with lumped elements for differential and single ended in-/outputs.

The high frequency in-/outputs in this section are base inputs or collector outputs.

As equivalent circuit for these in-/outputs a resistor Rp in parallel to a capacitance Cp is derived:

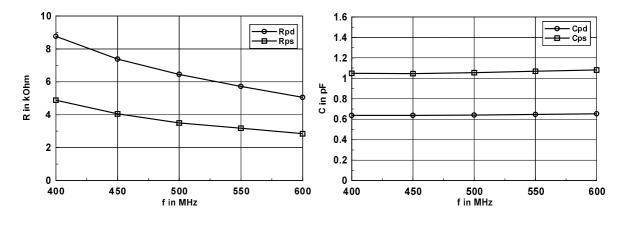
The S-parameters are available on disk.


The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

9.1 Transmit Mixer Output MO/MOX

S-	para	ame	eter	rs:
	parc			υ.

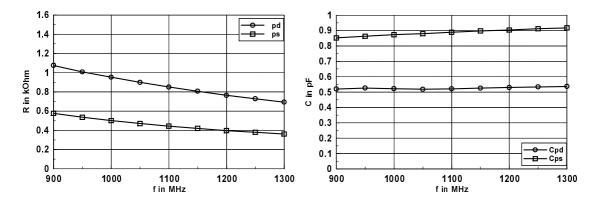
f	S	11	S21 S12		12	S22				
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		
0.80	0.957	-23.7	0.093	70.4	0.092	71.7	0.952	-22.4		
0.85	0.951	-25.5	0.098	69.3	0.097	70.7	0.944	-24.3		
0.90	0.946	-27.1	0.103	68.2	0.102	69.4	0.932	-26.2		
0.95	0.940	-28.9	0.107	67.2	0.106	68.4	0.913	-28.0		
1.00	0.935	-30.7	0.111	66.8	0.109	68.0	0.892	-28.5		


Output impedance at MO/MOX:

9.2 IF Input IF/IFX

f	S11		S21		S12		S22	
GHZ	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
0.40	0.978	-15.0	0.057	74.0	0.057	73.7	0.977	-14.7
0.45	0.974	-16.8	0.063	72.5	0.064	72.0	0.972	-16.6
0.50	0.970	-18.8	0.070	70.8	0.070	70.2	0.968	-18.5
0.55	0.967	-20.9	0.076	69.2	0.076	68.4	0.963	-20.5
0.60	0.963	-23.0	0.082	67.5	0.082	66.7	0.957	-22.5

Input impedance at IF/IFX:

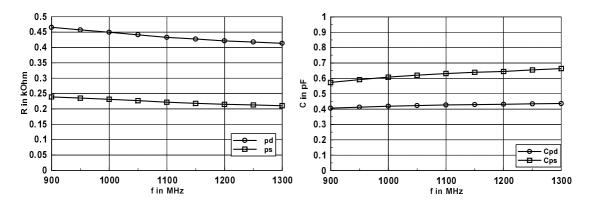

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

9.3 RF Input RFB1/RFB2

S-parameters:

f	S11		S21		S12		S22	
GHZ	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
0.90	0.850	-29.7	0.020	43.1	0.021	47.5	0.843	-31.8
0.95	0.840	-31.5	0.020	41.8	0.022	46.1	0.836	-33.6
1.00	0.832	-33.2	0.021	41.0	0.024	45.4	0.830	-35.4
1.05	0.823	-34.8	0.022	40.3	0.025	43.9	0.823	-37.2
1.10	0.815	-36.5	0.022	39.1	0.026	41.5	0.817	-39.0
1.15	0.807	-38.1	0.022	37.8	0.027	38.8	0.810	-40.8
1.20	0.799	-39.7	0.023	37.7	0.028	36.6	0.803	-42.6
1.25	0.792	-41.3	0.023	35.8	0.028	33.1	0.797	-44.3
1.300	0.785	-42.8	0.023	36.0	0.028	31.1	0.790	-46.0

Input impedance:

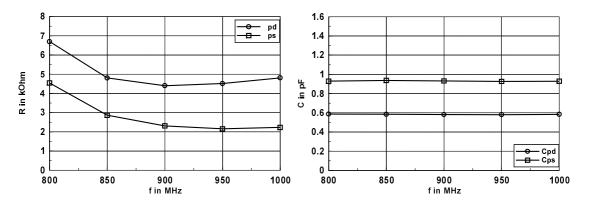

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

9.4 Output to Receiver RF/RFX

S-parameters:

f	S11		S21		S12		S22	
GHZ	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
0.90	0.556	-19.6	0.164	21.2	0.149	122.2	0.789	-20.8
0.95	0.543	-19.5	0.165	14.7	0.168	117.8	0.795	-23.4
1.00	0.532	-19.2	0.164	7.5	0.187	113.2	0.800	-26.3
1.05	0.524	-18.3	0.161	-0.6	0.207	108.3	0.805	-29.4
1.10	0.520	-17.2	0.155	-9.8	0.228	103.1	0.806	-32.8
1.15	0.524	-16.0	0.144	-19.6	0.248	97.3	0.803	-36.3
1.20	0.534	-14.8	0.132	-31.1	0.267	91.5	0.796	-40.0
1.25	0.551	-14.2	0.116	-43.9	0.283	85.2	0.783	-43.6
1.30	0.572	-14.1	0.101	-59.6	0.297	78.7	0.765	-47.2

Output impedance at RF/RFX:

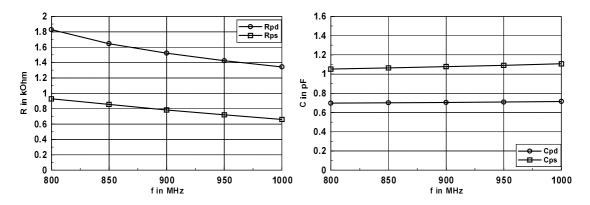

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

9.5 Modulator Output E/EX

S-parameters:

f	S11		S21		S12		S22	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
0.80	0.972	-26.2	0.116	65.2	0.126	64.7	0.957	-25.2
0.85	0.960	-28.0	0.120	64.1	0.131	63.2	0.947	-26.4
0.90	0.951	-29.4	0.125	63.3	0.136	61.9	0.946	-27.8
0.95	0.948	-30.8	0.131	62.4	0.142	60.7	0.948	-29.3
1.00	0.949	-32.4	0.137	60.9	0.148	58.9	0.950	-31.2

Output impedance at E/EX:



9.6 Modulator Input LO/LOX

S-parameters:

f	S11		S21		S12		S22	
GHZ	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
0.80	0.896	-29.6	0.125	62.4	0.126	62.4	0.887	-32.1
0.85	0.888	-31.7	0.130	61.2	0.131	61.2	0.871	-34.1
0.90	0.879	-33.9	0.136	59.9	0.136	59.6	0.863	-35.9
0.95	0.871	-36.1	0.140	58.7	0.141	58.4	0.854	-37.9
1.00	0.861	-38.4	0.145	57.1	0.145	56.8	0.850	-40.0

Input impedance at LO/LOX:

The reproduction, transmission or use of this document is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.