PHOTOCOUPLER PS9617，PS9617L

HIGH NOISE REDUCTION，HIGH SPEED DIGITAL OUTPUT TYPE 8－PIN DIP PHOTOCOUPLER
－NEPOC Series－

DESCRIPTION

The PS9617 and PS9617L are optically coupled isolators containing a GaAIAs LED on the input side and a photo diode and a signal processing circuit on the output side on one chip．

The PS9617 is in a plastic DIP（Dual In－line Package）and the PS9617L is lead bending type（Gull－wing）for surface mounting．

FEATURES

－High common mode transient immunity（СМн，СМı $= \pm 20 \mathrm{kV} / \mu \mathrm{S}$ TYP．）
－High isolation voltage（BV＝ 5000 Vr．m．s．）
－High－speed response（10 Mbps）
－Pulse width distortion（ \mid tphl - tplh $\mid=3 \mathrm{~ns}$ TYP．）
－Open collector output
－Ordering number of tape product：PS9617L－E3，E4： 1000 pcs／reel
－Safety standards
－UL approved：File No．E72422

－DIN EN60747－5－2（VDE0884 Part2）approved No． 40008906 （Option）

APPLICATIONS

－FA Network
－Measurement equipment
－PDP

PACKAGE DIMENSIONS (UNIT: mm)

DIP Type

Lead Bending Type

FUNCTIONAL DIAGRAM

MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number ${ }^{*}$
PS9617	PS9617-A	Pb-Free	Magazine case 50 pcs	Standard products (UL approved)	PS9617
PS9617L	PS9617L-A				PS9617L
PS9617L-E3	PS9617L-E3-A		Embossed Tape 1000 pcs/reel		
PS9617L-E4	PS9617L-E4-A				
PS9617-V	PS9617-V-A		Magazine case 50 pcs	DIN EN60747-5-2 (VDE0884 Part2) Approved (Option)	PS9617
PS9617L-V	PS9617L-V-A				PS9617L
PS9617L-V-E3	PS9617L-V-E3-A		Embossed Tape $1000 \mathrm{pcs} / \mathrm{reel}$		
PS9617L-V-E4	PS9617L-V-E4-A				

*1 For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=2 \mathbf{2 5}^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current ${ }^{* 1}$	IF	30	mA
	Reverse Voltage	V_{R}	5	V
Detector	Supply Voltage	Vcc	7	V
	Output Voltage	Vo	7	V
	Output Current	lo	25	mA
	Power Dissipation ${ }^{* 2}$	Pc	40	mW
Isolation Voltage ${ }^{* 3}$		BV	5000	Vr.m.s.
Operating Ambient Temperature		TA	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

*1 Reduced to $0.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ or more.
*2 Applies to output pin Vo (Collector pin). Reduced to $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$ or more.
*3 AC voltage for 1 minute at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$ between input and output.
Pins 1-4 shorted together, 5-8 shorted together.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
High Level Input Current	I_{FH}	6.3	10	12.5	mA
Low Level Input Voltage	V_{FL}	0		0.8	V
Supply Voltage	V_{cc}	4.5	5.0	5.5	V
TTL (RL = $1 \mathrm{k} \Omega$, loads)	N			5	
Pull-up Resistance	RL	330		4 k	Ω

ELECTRICAL CHARACTERISTICS ($\mathrm{TA}_{A}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Conditions	MIN.	TYP. ${ }^{\text {¹ }}$	MAX.	Unit
Diode	Forward Voltage	V_{F}	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.4	1.65	1.8	V
	Reverse Current	IR	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
	Terminal Capacitance	Ct_{t}	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30		pF
Detector	High Level Output Current	Іон	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{o}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.8 \mathrm{~V}$		1	100	$\mu \mathrm{A}$
	Low Level Output Voltage ${ }^{* 2}$	Vol	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{If}=5 \mathrm{~mA}, \mathrm{loL}=13 \mathrm{~mA}$		0.2	0.6	V
	High Level Supply Current	Ісch	$\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}, \mathrm{If}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=$ open		5	8	mA
	Low Level Supply Current	Iccl	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{lf}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=$ open		9	11	mA
Coupled	Threshold Input Current $(\mathrm{H} \rightarrow \mathrm{~L})$	$\mathrm{IFHL}^{\text {f }}$	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=0.8 \mathrm{~V}, \mathrm{RL}=350 \Omega$		2.5	5	mA
	Isolation Resistance	Rı-0	$\begin{aligned} & \mathrm{V}_{\mathrm{I}-\mathrm{O}}=1 \mathrm{kV} \mathrm{Dc}, \mathrm{RH}=40 \text { to } 60 \%, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	10^{11}			Ω
	Isolation Capacitance	Clo	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.9		pF
	Propagation Delay Time $(\mathrm{H} \rightarrow \mathrm{L})^{\star 3}$	tPHL	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	75 100	ns
	Propagation Delay Time $(\mathrm{L} \rightarrow \mathrm{H})^{* 3}$	tplh			43	75 100	ns
	Rise Time	tr			20		ns
	Fall Time	tf			10		ns
	Pulse Width Distortion (PWD) ${ }^{* 3}$	\mid tphl-tplh \mid			3	35	ns
	Propagation Delay Skew	tpsk				40	ns
	Common Mode Transient Immunity at High Level Output ${ }^{* 4}$	СМн	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{o} \text { (MIN.) }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{kV}, \mathrm{R}_{\mathrm{L}}=350 \Omega \end{aligned}$	15	20		$\mathrm{kV} / \mu \mathrm{s}$
	Common Mode Transient Immunity at Low Level Output ${ }^{* 4}$	CML	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {(MAX.) }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{kV}, \mathrm{R}_{\mathrm{L}}=350 \Omega \end{aligned}$	15	20		$\mathrm{kV} / \mu \mathrm{s}$

*1 Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
*2 Because Vol of 2 V or more may be output when LED current input and when output supply of $\mathrm{Vcc}=2.6 \mathrm{~V}$ or less, it is important to confirm the characteristics (operation with the power supply on and off) during design, before using this device.
*3 Test circuit for propagation delay time

Remark C_{L} includes probe and stray wiring capacitance.
*4 Test circuit for common mode transient immunity

Remark CL includes probe and stray wiring capacitance.

USAGE CAUTIONS

1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
2. By-pass capacitor of more than $0.1 \mu \mathrm{~F}$ is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm .
3. Avoid storage at a high temperature and high humidity.

TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$, unless otherwise specified)

Remark The graphs indicate nominal characteristics.

THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE

SWITCHING TIME vs.
AMBIENT TEMPERATURE

Remark The graphs indicate nominal characteristics.
tPhL, tPLH, |tPHL-tPLH| vs.
AMBIENT TEMPERATURE

PROPAGATION DELAY TIME vs. FORWARD CURRENT

TAPING SPECIFICATIONS (UNIT: mm)

Outline and Dimensions (Tape)

Tape Direction

PS9617L-E3
PS9617L-E4

\longrightarrow
Outline and Dimensions (Reel)

Packing: 1000 pcs/reel

NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

- Peak reflow temperature
- Time of peak reflow temperature
- Time of temperature higher than $220^{\circ} \mathrm{C}$
- Time to preheat temperature from 120 to $180^{\circ} \mathrm{C}$
- Number of reflows
- Flux
$260^{\circ} \mathrm{C}$ or below (package surface temperature)
10 seconds or less
60 seconds or less
120 ± 30 s
Three
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

(2) Wave soldering
- Temperature
- Time
- Preheating conditions
- Number of times
- Flux
$260^{\circ} \mathrm{C}$ or below (molten solder temperature)
10 seconds or less
$120^{\circ} \mathrm{C}$ or below (package surface temperature)
One (Allowed to be dipped in solder including plastic mold portion.)
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

(3) Soldering by soldering iron

- Peak temperature (lead part temperature)
$350^{\circ} \mathrm{C}$ or below
- Time (each pins)

3 seconds or less

- Flux

Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead.
(b) Please be sure that the temperature of the package would not be heated over $100^{\circ} \mathrm{C}$.

(4) Cautions

- Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between collector-emitters at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

USAGE CAUTIONS

1. Protect against static electricity when handling.
2. Avoid storage at a high temperature and high humidity.

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	- -AZ	
Mercury	$<1000 \mathrm{PPM}$	Not Detected	(*)
Cadmium	$<100 \mathrm{PPM}$	Not Detected	
Hexavalent Chromium	$<1000 \mathrm{PPM}$	Not Detected	
PBB	$<1000 \mathrm{PPM}$	Not Detected	
PBDE	$<1000 \mathrm{PPM}$	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

[^0]
[^0]: Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
 In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
 See CEL Terms and Conditions for additional clarification of warranties and liability.

