Application Notes 捷多邦,专业PCB打样工厂,24小时加急出货Mechanical Outline

Product Selector Guide

PT4100 Series

- -40°C to +85°C Operating Temperature Range
- 1500 VDC Isolation
- Power Density 15 Watts/in³
- Wide Input Voltage Range 18V to 40V
- 83% Efficiency
- Small Footprint
- UL Approved
- **Standard Application**
- On/Off

+Vin 3 -Vin 2 PT4100 4 -Vout 15 WATT 24V TO 5V/12V/15V ISOLATED DC-DC CONVERTER

Revised 5/15/98

Power Trends' PT4104A (5V), PT4105A (12V) and PT4106A (15V). Isolated DC-DC Converters advance the state-of-the-art for board-mounted converters by employing high switching frequencies greater than 650 KHz and planar magnetics and surface-mount construction. They feature the industry's smallest footprint, a power density of 15 Watts/in³, and operate at 83% efficiency. They are designed for Telecom, Industrial, Computer, Medical, and other distributed power applications requiring input-tooutput isolation and an industrial temperature range.

Pin-Out Information

Pin	Function
1	Remote ON/OFF
2	-V _{in}
3	$+V_{in}$
4	-V _{out}
5	+V _{out}
6	Do not connect
- 11	COM

Ordering Information

Through-He	
PT4104A	= 5 Volts
PT4105A	= 12 Volts
PT4106A	= 15 Volts

Surface Mount PT4104C = 5 Volts

T4105C = 12 Volts T4106C = 15 Volts

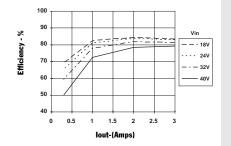
(For dimensions and PC board layout, see Package Style 700.)

Specifications

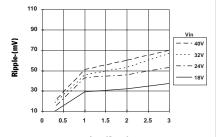
Characteristics			PT4100			
(T _a =25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	Io	Over V_{in} range, $V_o = 5V$	0	-	3.0	A
		$V_o = 12V$ $V_o = 15V$	$\begin{array}{c} 0\\ 0\end{array}$	-	1.25 1.0	A A
Current Limit	I _{cl}	$V_{in} = 18V$, $V_0 = 5V$	_	4.0		А
	CI .	$V_o = 12V$ $V_o = 15V$	—	1.75 1.4	_	A A
On/Off Standby Current	I _{in standby}	$V_0 = 15V$ $V_{in} = 24V$, Pin 1 = - V_{in}		7	10	mA
Short Circuit Current	I _{sc}	$V_{in} = 24V,$ $V_o = 5V$		6.25	_	A
	-sc	$V_0 = 12V$	—	2.5	-	A
	т	$V_0 = 15V$		2.0	-	A
Inrush Current	I _{ir} t _{ir}	V _{in} = 24V @ max I _o On start-up	_	1.0 1.0	2.0 5.0	A mSec
Input Voltage Range	Vin	$I_0 = 0.1$ to max I_0	18.0	24.0	40.0	V
Output Voltage Tolerance	ΔV_o	Over V _{in} Range	NU.	±1.0	±2.0	%Vo
1 0		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		_	±2.0	
Ripple Rejection	RR	Over V _{in} range @ 120 Hz	_	60	_	dB
Line Regulation	Reg _{line}	Over V _{in} range @ max I _o		±0.2	±1.0	%Vo
Load Regulation	Regload	10% to 100% of I _o max	—	±0.4	±1.0	$%V_{o}$
V _o Ripple/Noise	Vn	$V_{in}=24V, I_{o}=3.0A, V_{o}=5V$	—	75 75	100 150	${}^{mV_{pp}}_{mV_{pp}}$
		$V_{in}=24V, I_o=1.25A, V_o=12V$ $V_{in}=24V, I_o=1.25A, V_o=15V$	_	100	200	mV_{pp}
Transient Response	t _{tr}	50% load change V _o over/undershoot	_	125 3.0	200 5.0	μSec %V _o
Efficiency	η	V _{in} =24V, I _o =3.0A, V _o =5V	_	82		%
		$V_{in}=24V$, $I_o=1.25A$, $V_o=12V$ $V_{in}=24V$, $I_o=1A$, $V_o=15V$	—	82 83		%
Switching Frequency	f_{o}	$V_{in}=2+V$, $I_0=1/A$, $V_0=1/V$ Over V_{in} and I_0 , $V_0=5V$	800	850	900	kHz
Switching Prequency	Jo	$V_{o}=12V/15V$	600	650	700	kHz
Recommended Operating	Та	$V_{in} = 24V @ max I_o$	-40		+85*	°C
Temperature Range		Free air convection, (40-60LFM)		_		
Thermal Resistance	θ_{ja}	Free air convection, (40-60LFM)		12	_	°C/W
Case Temperature	T _c	@ Thermal shutdown		-	100	°C
Storage Temperature	T _s		-40	-	110	°C
Mechanical Shock	_	Per Mil-STD-202F, Method 213B, 6mS, Half-sine, mounted to a PCB	—	50	—	G's
Mechanical Vibration	—	Per Mil-STD-202F, Method 204D, 10-500Hz, Soldered in a PCB	_	10	—	G's
Weight	_	_	_	28		grams
Isolation	_	_	1500	-	_	V
Capacitance Resistance	_	_	10	1100	_	$_{M\Omega}^{pF}$
lammability			10			11122
Remote On/Off	On On	Open or 2.5 to 7.0 VDC above -V _{in}		-		_
	Off	Short or 0 to 0.8 VDC above -Vin				

For assistance or to order, call (800) 531-5782

CHARACTERISTIC DATA

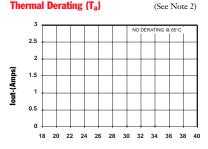

PT4100 Series

24V Bus Products

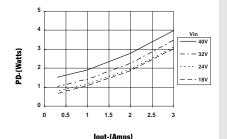

PT4104, 5.0 VDC

(See Note 1)

Efficiency vs Output Current

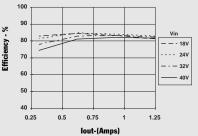


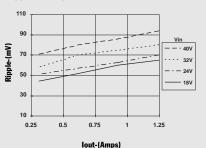
Ripple vs Output Current


lout-(Amps)

Thermal Derating (T_a)

Vin-(Volts)

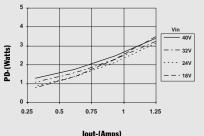

Power Dissipation vs Output Current


PT4105, 12.0 VDC

(See Note 1)

Efficiency vs Output Current

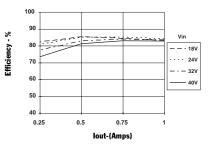
Ripple vs Output Current

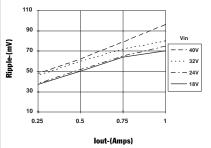

Thermal Derating (T_a)

(See Note 2)

1.25 NO DERATING @ 85°C 0.75 lout-(Amps) 0.5 0 25 n 18 20 22 24 26 28 30 32 34 36 38 40

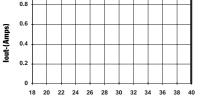
Vin-(Volts)


Power Dissipation vs Output Current

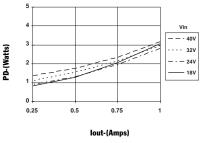

PT4106, 15.0 VDC

(See Note 1)

Efficiency vs Output Current


Ripple vs Output Current

Thermal Derating (T_a)


NO DERATING @ 85°

(See Note 2)

Vin-(Volts)

Power Dissipation vs Output Current

Note 1: All data listed in the above graphs, except for derating data, has been developed from actual products tested at 25°C. This data is considered typical data for the DC-DC Converter. Note 2: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated