
PT6320

Series

3 AMP ADJUSTABLE LOW VOLTAGE INPUT INTEGRATED SWITCHING REGULATORS

SLTS065 (Revised 6/4/98)

- Low Voltage Input (7V)
- 90% Efficiency

Pin-Out Information

Function

Inhibit

(30V max)

V_{out} Adj

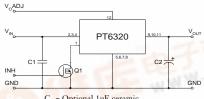
 V_{in}

Pin

9

10

11


12

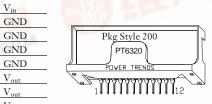
- Adjustable Output Voltage
- Internal Short Circuit Protection
- Over-Temperature Protection
- On/Off Control (Ground Off)

The PT6320 series is a low voltage input (typically 7V) version of Power Trends' high-performance 3A, 12 pin SIP Integrated Switching

Regulators (ISRs). These ISRs are designed with premium low threshold FETs for those applications requiring very low input/output voltage differentials such as battery powered equipment. This high-performance ISR family offers a unique combination of features combining 90% typical efficiency with open-collector on/off control and adjustable output voltage. Quiescent current in the shutdown mode is less than 100µA.

Standard Application

C₁ = Optional 1µF ceramic C₂ = Required 100µF electrolytic


 $Q_1 = NFET$

Ordering Information

PT6322□ = +5 Volts **PT6323**□ = +3.3 Volts

PT Series Suffix (PT1234X)

Case/Pin Configuration						
Vertical Through-Hole	N					
Horizontal Through-Hole	Α					
Horizontal Surface Mount	С					

Specifications

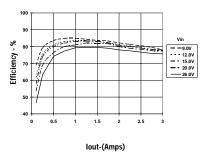
Characteristics			PT6320	C.Co.		
(T _a =25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	I_{o}	Over V _{in} range	0.1*	M.A.	3.0	A
Short Circuit Current	I_{sc}	$V_{in} = V_o + 5V$		5.0	_	Apk
Input Voltage Range (Note: inhibit function cannot be used	V _{in} l above 30V.)	$0.1 \le I_o \le 3.0 \text{ A}$ $V_o = 3.3 \text{ V}$ $V_o = 5 \text{ V}$	7 7	=	26 30/38**	V V
Output Voltage Tolerance	$\Delta { m V_o}$	Over V_{in} Range, $I_{o} = 3.0$ A $T_{a} = 0^{\circ}$ C to +60°C	_	±1.0	±2.0	$%\mathrm{V_{o}}$
Line Regulation	Regline	Over Vin range	_	±0.25	±0.5	$%V_{o}$
Load Regulation	Regload	$0.1 \le I_o \le 3.0 \text{ A}$	_	±0.25	±0.5	$%V_{o}$
V _o Ripple/Noise	V_n	$V_{in} = V_{in} \min, I_o = 3.0A$	_	±2	_	$%V_{o}$
Transient Response with C _o = 100μF	${ m t_{tr} \over m V_{os}}$	50% load change $ m V_o$ over/undershoot	_	100 5.0	200	uSec %V _o
Efficiency	η	V_{in} =9V, I_{o} = 0.5 A, V_{o} = 3.3V V_{in} =9V, I_{o} = 0.5 A, V_{o} = 5V	= -1	84 89	EP.	% %
Switching Frequency	f_{o}	Over V _{in} and I _o ranges	400	500	600	kHz
Shutdown Current	I_{sc}	$V_{in} = 15V$	1	100	<u> </u>	μA
Quiescent Current	I_{nl}	$I_{o} = 0A, V_{in} = 10V$		10	_	mA
Output Voltage Adjustment Range	V_{o}	$egin{array}{c} ext{Below V_o} \ ext{Above V_o} \end{array}$	See Application Notes.			
Absolute Maximum Operating Temperature Range	T_a	C COM	-40	_	+85	°C
Recommendated Operating Temperature Range	T _a	Free Air Convection, (40-60LFM) At V _{in} = 24V, I _o = 2.5A	-40	_	+80***	°C
Thermal Resistance	θ_{ja}	Free Air Convection (40-60LFM)	_	30	_	°C/W
Storage Temperature	T_s	_	-40	_	+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3, 1 msec, Half Sine, mounted to a fixture	_	500	_	G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz,Soldered in a PC board		10	_	G's
Weight	_	_	_	6.5	_	grams

ISR will operate to no load with reduced specifications.

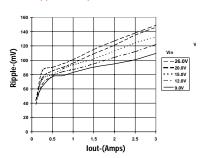
*** See Thermal Derating chart.

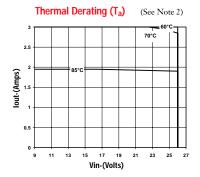
*** Note: The PT6320 Series requires a 100µF electrolytic or tantalum output capacitor for proper operation in all applications.

pdf.dzsc.com

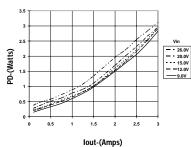

PT6320

Series

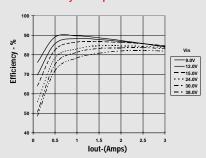

CHARACTERISTIC DATA


PT6323, 3.3 VDC (See Note 1)

Efficiency vs Output Current



Ripple vs Output Current

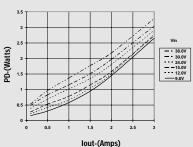


Power Dissipation vs Output Current

PT6322, 5.0 VDC (See Note 1)

Efficiency vs Output Current

Ripple vs Output Current



Thermal Derating (T_a) (See Note 2)

Vin-(Volts)

Power Dissipation vs Output Current

Note 1: All data listed in the above graphs except for derating data has been developed from actual products tested at 25°C. This data is considered typical data for the ISR Note 2: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM. (See Thermal Application note.)

More Application Notes

Adjusting the Output Voltage of Power Trends' Wide Input Range Bus ISRs

The output voltage of the Power Trends' Wide Input Range Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 accordingly gives the allowable adjustment range for each model for either series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 12 (V_o adjust) and pins 5-8 (GND).

Adjust Down: Add a resistor (R1), between pin 12 (V_o adjust) and pins 9-11(V_{out}).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor; either (R1) or R2 as appropriate.

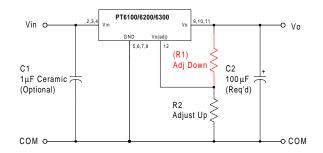
Notes:

- 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- 2. Never connect capacitors from V_o adjust to either GND or V_{out} . Any capacitance added to the V_o adjust pin will affect the stability of the ISR.
- 4. Adjustments to the output voltage may place additional limits on the maximum and minimum input voltage for the part. The revised maximum and minimum input voltage limits must comply with the following requirements. Note that the minimum input voltage limits are also model dependant.

$$V_{in}$$
 (max) = $(8 \times V_a)V$ or *30/38V, whichever is less.

*Limit is 30V when inhibit function is active.

PT6x0x/PT6x1x series:


$$V_{in}$$
 (min) = $(V_a + 4)V$ or $9V$,
whichever is greater.

PT6x2x series:

$$V_o$$
 <10V; V_{in} (min) = (V_a + 2.0)V or 7.0V, whichever is greater.

$$V_0 \ge 10V;$$
 $V_{in} (min) = (V_a + 2.5)V$

Figure 1

The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulae.

(R1) =
$$\frac{R_o (V_a - 1.25)}{V_o - V_a}$$
 $k\Omega$

$$R2 = \frac{1.25 R_o}{V_a - V_o} k\Omega$$

Where: Vo = Original output voltage

V_a = Adjusted output voltage

R_o = The resistance value from Table 1

Table 1

ISR ADJUSTMENT RANGE AND FORMULA PARAMETERS						
1Adc Rated	PT6102	PT6101		PT6103		
	PT6122	PT6121				
2Adc Rated	PT6213		PT6212	PT6214		
ZAUC Rateu	PT6223		PT6222			
3Adc Rated	PT6303		PT6302	PT6304		
	PT6323		PT6322			
V _O (nom)	3.3	5.0	5.0	12.0		
Va (min)	1.89	1.88	2.18	2.43		
Va (max)	6.07	11.25	8.5	22.12		
R_0 (k Ω)	66.5	150.0	90.9	243.0		

Table 2

ISR ADJUSTMENT RESISTOR VALUES					ISR ADJUSTMENT RESISTOR VALUES (Cont)				
1Adc Rated	PT6102	PT6101		PT6103	441-0-1-1	PT6101		PT6103	
TAUC Nateu	PT6122	PT6121			1Adc Rated	PT6121			
2Adc Rated	PT6213		PT6212	PT6214	2Adc Rated		PT6212	PT6214	
	PT6223		PT6222	DT/00/	Znuc Natcu		PT6222		
3Adc Rated	PT6303		PT6302	PT6304	3Adc Rated		PT6302	PT6304	
V _o (nom)	PT6323 3.3	5.0	PT6322 5.0	12.0	11. ()		PT6322	40.0	
V _a (req.d)	3.3	5.0	5.0	12.0	$\frac{V_0 \text{ (nom)}}{V_a \text{ (req.d)}}$	5.0	5.0	12.0	
1.9	(30.9)kΩ	(31.5)kΩ				156010	04.71-0	(207.0)1.0	
2.0	(38.4)kΩ	(37.5) k Ω			6.2	156.0kΩ	94.7kΩ	(207.0)kΩ	
2.1	(47.1)kΩ	(37.3)ks2 (44.0)kΩ			6.4	134.0kΩ	81.2kΩ	(223.0)kΩ	
2.2	(47.1)kΩ (57.4)kΩ	(50.9)kΩ	(30.8)kΩ	-	6.6	117.0kΩ	71.0kΩ	(241.0)kΩ	
2.3	` '		` '		6.8	104.0kΩ	63.1kΩ	(259.0)kΩ	
2.4	(69.8)kΩ (85.0)kΩ	(58.3)kΩ (66.3)kΩ	(35.4)kΩ (40.2)kΩ		7.0	93.8kΩ	56.8kΩ	(279.0)kΩ	
-				(22.0)1-0	7.2	85.2kΩ	51.6kΩ	(301.0)kΩ	
2.5	(104.0)kΩ	(75.0)kΩ	(45.5)kΩ	(32.0)kΩ	7.4	78.1kΩ	47.3kΩ	(325.0)kΩ	
2.6	(128.0)kΩ	(84.4)kΩ	(51.1)kΩ	(34.9)kΩ	7.6	72.1kΩ	43.7kΩ	(351.0)kΩ	
2.7	(161.0)kΩ	(94.6)kΩ	(57.3)kΩ	(37.9)kΩ	7.8	67.0kΩ	40.6kΩ	(379.0) k Ω	
2.8	(206.0)kΩ	(106.0)kΩ	(64.0)kΩ	(40.9)kΩ	8.0	62.5kΩ	37.9kΩ	(410.0)kΩ	
2.9	(274.0kΩ	(118.0)kΩ	(71.4)kΩ	(44.1)kΩ	8.2	58.6kΩ	35.5kΩ	(444.0)kΩ	
3.0	(388.0)kΩ	(131.0)kΩ	(79.5)kΩ	(47.3)kΩ	8.4	55.1kΩ	33.4kΩ	(483.0)kΩ	
3.1	(615.0)kΩ	(146.0)kΩ	(88.5)kΩ	(50.5)kΩ	8.6	52.1kΩ		(525.0)kΩ	
3.2	(1300.0)kΩ	(163.0)kΩ	(98.5)kΩ	(53.8)kΩ	8.8	49.3kΩ		(573.0)kΩ	
3.3		(181.0)kΩ	(110.0)kΩ	(57.3) k Ω	9.0	46.9kΩ		(628.0) k Ω	
3.4	831.0kΩ	(202.0)kΩ	(122.0)kΩ	(60.8)kΩ	9.5	41.7kΩ		(802.0) k Ω	
3.5	416.0kΩ	(225.0)kΩ	(136.0)kΩ	(64.3)kΩ	10.0	37.5kΩ		(1060.0) k Ω	
3.6	227.0kΩ	(252.0)kΩ	(153.0)kΩ	(68.0)kΩ	10.5	34.1kΩ		(1500.0) k Ω	
3.7	208.0kΩ	(283.0)kΩ	(171.0)kΩ	(71.7)kΩ	11.0	31.3kΩ			
3.8	166.0kΩ	(319.0) k Ω	(193.0) k Ω	(75.6) k Ω	11.5				
3.9	139.0kΩ	(361.0) k Ω	(219.0) k Ω	(79.5) k Ω	12.0				
4.0	119.0kΩ	(413.0) k Ω	(250.0) k Ω	(83.5) k Ω	12.5			$608.0 \mathrm{k}\Omega$	
4.1	$104.0 \mathrm{k}\Omega$	(475.0) k Ω	(288.0) k Ω	(87.7) k Ω	13.0			$304.0 \mathrm{k}\Omega$	
4.2	92.4kΩ	(533.0) k Ω	(335.0) k Ω	(91.9)kΩ	13.5			203.0 k Ω	
4.3	83.1kΩ	(654.0) k Ω	(396.0) k Ω	(96.3)kΩ	14.0			152.0 k Ω	
4.4	75.6kΩ	(788.0) k Ω	(477.0) k Ω	(101.0) k Ω	14.5			122.0kΩ	
4.5	69.3kΩ	(975.0) k Ω	(591.0) k Ω	(105.0) k Ω	15.0			101.0kΩ	
4.6	63.9kΩ	(1260.0) k Ω	(761.0) k Ω	(110.0) k Ω	15.5			86.8kΩ	
4.7	59.4kΩ	(1730.0) k Ω	(1050.0) k Ω	(115.0) k Ω	16.0			75.9kΩ	
4.8	55.4kΩ		(1610.0) k Ω	(120.0) k Ω	16.5			67.5kΩ	
4.9	52.0kΩ			(125.0) k Ω	17.0			60.8kΩ	
5.0	48.9 k Ω			(130.0) k Ω	17.5			55.2kΩ	
5.1	46.2kΩ	$1880.0 \mathrm{k}\Omega$	1140.0kΩ	(136.0)kΩ	18.0			50.6kΩ	
5.2	43.8 k Ω	937.0kΩ	568.0kΩ	(141.0)kΩ	18.5			46.7kΩ	
5.3	41.6kΩ	625.0kΩ	379.0kΩ	(147.0)kΩ	19.0			43.4kΩ	
5.4	39.6kΩ	469.0kΩ	284.0kΩ	(153.0)kΩ	19.5			40.5kΩ	
5.5	37.8kΩ	375.0kΩ	227.0kΩ	(159.0)kΩ	20.0			38.0kΩ	
5.6	36.1kΩ	313.0kΩ	189.0kΩ	(165.0)kΩ	20.5			35.7kΩ	
5.7	34.6kΩ	268.0kΩ	162.0kΩ	(172.0)kΩ	21.5			33.8kΩ	
5.8	33.3kΩ	234.0kΩ	142.0kΩ	(178.0)kΩ	21.5			32.0kΩ	
5.9	32.0kΩ	208.0kΩ	126.0kΩ	(185.0)kΩ	22.0			30.4kΩ	
6.0	30.8kΩ	188.0kΩ	114.0kΩ	(192.0)kΩ				J J. 1142	
				\					

R1 = (Red) R2 = Black

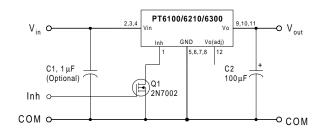
More Application Notes

Using the Inhibit Function on Power Trends' Wide Input Range Bus ISRs

For applications requiring output voltage On/Off control, the 12pin ISR products incorporate an inhibit function. The function has uses in areas such as battery conservation, power-up sequencing, or any other application where the regulated output from the module is required to be switched off. The On/Off function is provided by the *Inhibit* control, pin 1.

The ISR functions normally with pin 1 open-circuit, providing a regulated output whenever a valid source voltage is applied to V_{in} , (pins 2, 3, & 4). When a low-level² ground signal is applied to pin 1 the regulator output is disabled, and the input current to the ISR is reduced to about $100\mu A^{3/}$.

Figure 1 shows an application schematic, which details the typical use of the inhibit function. Note the discrete transistor, Q1. The inhibit control has its own internal pull-up with a maximum open-circuit voltage of 8.3VDC. Only devices with a true open-collector or open-drain output can be used to control this pin. A discrete bipolar transistor or MOSFET is recommended.


Notes:

- 1. The inhibit control logic is similar for all Power Trends' modules, but the flexibility and threshold tolerances will be different. For specific information on the inhibit function of other ISR models, consult the applicable application note.
- 2. Use only a true open-collector device (preferably a discrete transistor) for the inhibit input. <u>Do Not</u> use a pull-up resistor, or drive the input directly from the output of a TTL or other logic gate. To disable the output voltage, the control pin should be pulled low to less than +1.5VDC.
- 3. The following equation may be used to determine the approximate current drawn from the input supply at V_{in} , and through Q1 when the inhibit is active.

$$I_{stbv} = V_{in} \div 155k\Omega \pm 20\%$$

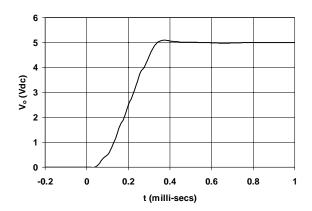

- 4. When the inhibit control pin is active, i.e. pulled low, the maximum input voltage is limited to +30Vdc.
- Do not control the inhibit input with an external DC voltage. This will lead to erratic operation of the ISR and may over-stress the regulator.
- 6. Avoid capacitance greater than 500pF at the Inhibit control pin. Excessive capacitance at this pin will cause the ISR to produce a pulse on the output voltage bus at turn-on.
- Keep the On/Off transition to less than 10µs. This prevents erratic operation of the ISR, which can cause a momentary high output voltage.

Figure 1

Turn-On Time: The output of the ISR is enabled automatically when external power is applied to the input. The *Inhibit* control pin is pulled high by its internal pull-up resistor. The ISR produces a fully regulated output voltage within 1-msec of either the release of the Inhibit control pin, or the application of power. The actual turn-on time will vary with the input voltage, output load, and the total amount of capacitance connected to the output Using the circuit of Figure 1, Figure 2 shows the typical rise in output voltage for the PT6101 following the turn-off of Q1 at time t =0. The waveform was measured with a 9Vdc input voltage, and 5-Ohm resistive load.

Figure 2

PACKAGE OPTION ADDENDUM

24-Jun-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)
PT6322C	NRND	SIP MOD ULE	EBC	12	12	TBD	Call TI	Level-1-215C-UNLIM
PT6322G	NRND	SIP MOD ULE	EBG	12	12	TBD	Call TI	Level-1-215C-UNLIM
PT6322N	NRND	SIP MOD ULE	EBD	12	12	TBD	Call TI	Level-1-215C-UNLIM
PT6322R	NRND	SIP MOD ULE	EBE	12	12	TBD	Call TI	Level-1-215C-UNLIM
PT6323C	NRND	SIP MOD ULE	EBC	12	12	TBD	Call TI	Level-1-215C-UNLIM
PT6323G	NRND	SIP MOD ULE	EBG	12	12	TBD	Call TI	Level-1-215C-UNLIM
PT6323N	NRND	SIP MOD ULE	EBD	12	12	TBD	Call TI	Level-1-215C-UNLIM
PT6323R	NRND	SIP MOD ULE	EBE	12	12	TBD	Call TI	Level-1-215C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265