NSTRUMENTS www.ti.com

旬PTH04070W供应商

FXAS

PTH04070W

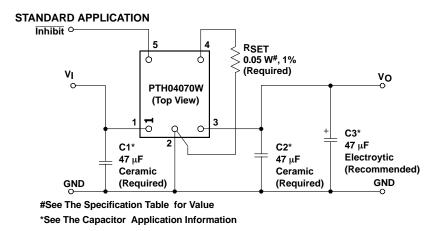
3-A, 3.3/5-V INPUT ADJUSTABLE SWITCHING REGULATOR

FEATURES

- Up to 3-A Output Current at 85°C
- 3.3-V / 5-V Input Voltage
- Wide-Output Voltage Adjust (0.9 V to 3.6 V)
- 160 W/in³ Power Density
- Efficiencies Up To 94%
- On/Off Inhibit
- Undervoltage Lockout (UVLO)
- Output Overcurrent Protection (Nonlatching, Auto-Reset)
- Overtemperature Protection

- Ambient Temp. Range: –40°C to 85°C
- Surface Mount Package
- Safety Agency Approvals: UL/CUL 60950, EN60950 VDE (Pending)

APPLICATIONS


• Telecommunications, Instumentation, and General-Purpose Circuits

DESCRIPTION

The PTH04070W is a highly integrated, low-cost switching regulator module that delivers up to 3 A of output current. Occupying less PCB area than a standard TO-220 linear regulator IC, the PTH04070W provides output current at a much higher efficiency and with much less power dissipation, thereby eliminating the need for a heat sink. Their small size (0.5×0.4 in), high efficiency, and low cost makes these modules attractive for a variety of applications.

The input voltage range of the PTH04070W is from 3 V to 5.5 V, allowing operation from either a 3.3-V or 5-V input bus. Using state-of-the-art switched-mode power-conversion technology, the PTH04070W can step down to voltages as low as 0.9 V from a 5-V input bus, with typically less than 1 W of power dissipation. The output voltage can be adjusted to any voltage over the range, 0.9 V to 3.6 V, using a single external resistor. Operating features include an undervoltage lockout (UVLO), on/off inhibit, output overcurrent protection, and overtemperature protection. Target applications include telecommunications, test and measurement applications, and high-end consumer products. The modules are available in both through-hole and surface-mount package options, including tape and reel.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PTH04070W

SLTS227-SEPTEMBER 2004

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

PTH04070 (Basic Model)							
Output Voltage	Part Number	Description	Package Designator				
0.9 V - 3.6 V	PTH04070WAH	Horizontal T/H	EVD				
	PTH04070WAS ⁽¹⁾	Horizontal SMD	EVE				

(1) Add a T suffix for tape and reel option on SMD packages.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

			PTH04070	UNIT
T _A	Operating free-air temperature	Over V _{in} range	-40 to 85	°C
	Solder reflow temperature	Surface temperature of module body or pins	235	°C
T _{stg}	Storage temperature		-40 to 125	°C

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
VI	Input voltage	3	5.5	V
T _A	Operating free-air temperature	-40	85	°C

PACKAGE SPECIFICATIONS

PTH04070x (Suffix AH & AS)						
Weight		1.5 grams				
Flammability	Meets UL 94 V-O					
Mechanical shock	Per Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted	500 Gs ⁽¹⁾				
Mechanical vibration	Mil-STD-883D, Method 2007.2, 20-2000 Hz	20 Gs ⁽¹⁾				

(1) Qualification limit.

ELECTRICAL CHARACTERISTICS

at 25°C free-air temperature, $V_1 = 5 V$, $V_0 = 3.3 V$, $I_0 = I_0$ (Max), C1 = 47 μ F, C2 = 47 μ F (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
I _O	Output current	$T_A = 85^{\circ}C$, natural convection airflow	0		3	А	
VI	Input voltage range	Over I _O range	3		5.5	V	
V _{O(tol)}	Set-point voltage tolerance	$T_A = 25^{\circ}C$			±2% ⁽¹⁾		
	Temperature variation	$-40 \le T_A \le +85^{\circ}C$		±0.5% V _O			
	Line regulation	Over V _I range		±1		mV	
	Load regulation	Over I _O range		±5		mV	
	Total output voltage variation	Includes set-point, line, load, -40 \leq T _A \leq +85°C			3% (1)		
		$V_1 \ge 4.5 V$	0.9		3.6	V	
V _{O(adj)}	Output voltage adjust range	V ₁ < 4.5 V	0.9		$V_{I} - 1.1^{(2)}$	V	
		$T_{A} = 25^{\circ}C, I_{O} = 2 A$					
		R_{SET} = 475 $\Omega,~V_O$ = 3.3 V $^{(2)}$		92%			
		R_{SET} = 2.32 kΩ, V_{O} = 2.5 V V $^{(2)}$		90%			
η		R_{SET} = 4.87 k Ω , V_O = 2 V		88%			
	Efficiency	$R_{SET} = 6.65 \text{ k}\Omega, \text{ V}_{O} = 1.8 \text{ V}$		87%			
		$R_{SET} = 11.5 \text{ k}\Omega, V_{O} = 1.5 \text{ V}$	85%				
		$R_{SET} = 26.1 \text{ k}\Omega, V_0 = 1.2 \text{ V}$	82%				
		R_{SET} = 84.5 kΩ, V _O = 1 V	= 1 V 80%				
	Output voltage ripple	20 MHz bandwith		10		тV _{PI}	
l _{O(trip)}	Overcurrent threshold	Reset, followed by autorecovery		7		А	
		C3 = 47 μ F, 1 A/ μ s load step from 50% to 100% l _o max					
	Transient response	Recovery time		70		μs	
		V _O over/undershoot 100			mV		
UVLO	Undervoltage lockout	V _I = increasing		2.95	3	V	
UVLO	Undervoltage lockout	V _I = decreasing	2.7 2.8		v		
		Input high voltage (V _{IH})	$V_{I} - 0.5$		Open (3)	V	
	Inhibit control (pin 5)	Input low voltage (VIL)	-0.2		0.6		
		Input low current (I _{IL})	-10			μA	
I _(stby)	Input standby current	Pins 5 and 2 connected		1		mA	
Fs	Switching frequency	Over V_I and I_O ranges		700		kHz	
	External input capacitance	Ceramic type (C1)	47 (4)			μF	
		Ceramic type (C2)	47 (5)		200		
	External output capacitance	Nonceramic type (C3)		47 (5)	560 (6)	(6) µF	
		Equivalent series resistance (nonceramic) 4 (7)			mΩ		
MTBF	Calculated reliability	Per Bellcore TR-332, 50% stress, $T_A = 40^{\circ}C$, ground benign	48			10 ⁶ H	

(1) The set-point voltage tolerance is affected by the tolerance and stability of R_{SET}. The stated limit is unconditionally met if R_{SET} has a tolerance of 1% with with 100 ppm/°C or better temperature stability.

(2) The minimum input voltage is 3 V or (V_O + 1.1) V, whichever is greater. A 5-V input bus is recommended for output voltages higher than 2 V.

(3) This control pin has an internal pullup to the input voltage V_I. If it is left open circuit, the module operates when input power is applied. A small low-leakage (<100 nA) MOS field effect transistor (MOSFET) is recommended for control. See the application information for further guidance.</p>

(4) An external 47-µF ceramic capacitor is required across the input (V_I and GND) for proper operation. Locate the capacitor close to the module.

(5) An external 47-μF ceramic capacitor is required across the output (V_O and GND) for proper operation. Locate the capacitor close to the module. Adding another 47 μF of electrolytic capacitance close to the load improves the response of the regulator to load transients.

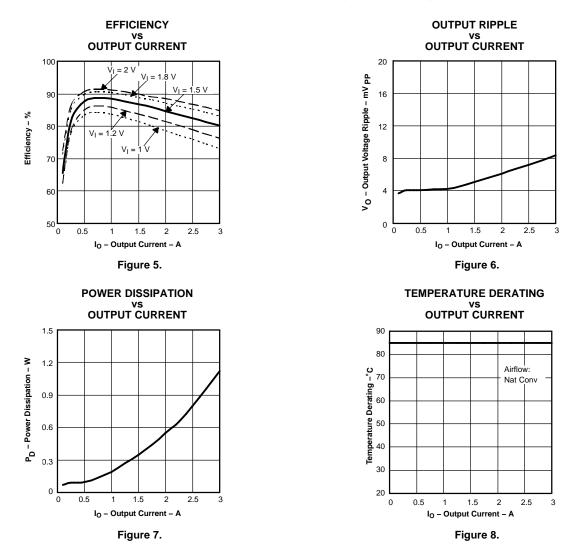
(6) This is the calculated maximum capacitance. The minimum ESR limitation often results in a lower value. See the capacitor application information for further guidance.

(7) This is the typical ESR for all the electrolytic (nonceramic) capacitance. Use 7 m Ω as the minimum when calculating the total equivalent series resistance (ESR) using the max-ESR values specified by the capacitor manufacturer.

PIN ASSIGNMENT

TERMINAL FUNCTIONS

TERMINAL		1/0	DECODIDION
NAME	NO.	I/O	DESCRIPTION
VI	1	Ι	The positive input voltage power node to the module, which is referenced to common GND.
GND	2		This is the common ground connection for the V_l and V_o power connections. It is also the 0 VDC reference for the <i>Inhibit</i> and V_o Adjust control inputs.
Vo	3	0	The regulated positive power output with respect to the GND node.
V _O Adjust	4	I	A 1% resistor must be connected between this pin and GND (pin 1) to set the output voltage of the module higher than 0.9 V. If left open-circuit, the output voltage defaults to this value. The temperature stability of the resistor should be 100 ppm/°C (or better). The set-point range is from 0.9 V to 3.6 V. The electrical specification table gives the standard resistor value for a number of common output voltages. Refer to the application information for further guidance.
Inhibit	5	I	The Inhibit pin is an open-collector/drain-negative logic input that is referenced to GND. Applying a low-level ground signal to this input disables the module's output. When the Inhibit control is active, the input current drawn by the regulator is significantly reduced. If the Inhibit pin is left open-circuit, the module will produce an output voltage whenever a valid input source is applied.


EFFICIENCY OUTPUT RIPPLE OUTPUT CURRENT vs OUTPUT CURRENT 100 20 Vo 3.3 V Vo 2.5 V ٧o '2 \ V_O – Output Voltage Ripple – mV pp 16 90 Efficiency - % 80 12 ν'n .ś v Ľ Vc = 1 70 8 ٧n 60 4 0 50 0 0.5 1 1.5 2 2.5 3 0 0.5 1.5 2 2.5 3 1 IO - Output Current - A Io - Output Current - A Figure 1. Figure 2. POWER DISSIPATION **TEMPERATURE DERATING** vs OUTPUT CURRENT vs OUTPUT CURRENT 1.5 90 80 P_D – Power Dissipation – W 1.2 Airflow: Temperature Derating -°C Nat Conv 70 0.9 60 50 0.6 40 0.3 30 0 20 0.5 2.5 1.5 2 0.5 1.5 2.5 0 1 3 0 1 2 3 Io - Output Current - A I_O – Output Current – A Figure 3. Figure 4.

- (1) The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to Figure 1, Figure 2, and Figure 3.
- (2) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to modules soldered directly to a 100 mm x 100 mm double-sided PCB with 1 oz. copper. Applies to Figure 4.

TYPICAL CHARACTERISTICS (5-V INPUT)⁽¹⁾⁽²⁾

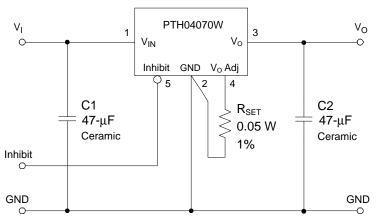
TYPICAL CHARACTERISTICS (3.3-V INPUT)⁽³⁾⁽⁴⁾

- (3) The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to Figure 5, Figure 6, and Figure 7.
 (4) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum
- (4) The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to modules soldered directly to a 100 mm x 100 mm double-sided PCB with 1 oz. copper. Applies to Figure 8.

APPLICATION INFORMATION

Adjusting the Output Voltage of the PTH04070W Wide-Output Adjust Power Modules

The V_O Adjust control (pin 4) sets the output voltage of the PTH04070W product. The adjustment range is from 0.9 V to 3.6 V. The adjustment method requires the addition of a single external resistor, R_{set}, that must be connected directly between the Vo Adjust and GND pin 2. Table 1 gives the standard external resistor for a number of common bus voltages, along with the actual voltage the resistance produces.


For other output voltages, the value of the required resistor can either be calculated using the following formula, or simply selected from the range of values given in Table 2. Figure 9 shows the placement of the required resistor.

$$R_{set} = 10 \text{ k}\Omega \times \frac{0.891 \text{ V}}{\text{V}_{out} - 0.9 \text{ V}} - 3.24 \text{ k}\Omega$$

V _{out} (Required)	R _{set} (Standard Value)	V _{out} (Actual)
3.3 V ⁽¹⁾	475 Ω	3.298 V
2.5 V ⁽¹⁾	2.32 kΩ	2.502 V
2 V	4.87 kΩ	1.999 V
1.8 V	6.65 kΩ	1.801 V
1.5 V	11.5 kΩ	1.504 V
1.2 V	26.1 kΩ	1.204 V
1 V	84.5 kΩ	1.001 V
0.9 V	Open	0.9 V

Table 1. Standard Values of R_{set} for Common Output

(1) The minimum input voltage is 3 V or $(V_0 + 1.1)$ V, whichever is greater.

- (1) A 0.05-W rated resistor may be used. The tolerance should be 1%, with a temperature stability of 100 ppm/°C (or better). Place the resistor as close to the regulator as possible. Connect the resistor directly between pins 4 and 2 using dedicated PCB traces.
- (2) Never connect capacitors from V_O Adjust to either GND or V_O. Any capacitance added to the V_O Adjust pin will affect the stability of the regulator.

Figure 9. Vo Adjust Resistor Placement

V _a Req'd	R _{set}	V _a Req'd	R _{set}	V _a Req'd	R _{set}
0.900	Open	1.475	12.3 kΩ	2.55	2.16 kΩ
0.925	353 kΩ	1.50	11.6 kΩ	2.60	2.00 kΩ
0.950	175 kΩ	1.55	10.5 kΩ	2.65	1.85 kΩ
0.975	116 kΩ	1.60	9.49 kΩ	2.70	1.71 kΩ
1.000	85.9 kΩ	1.65	8.64 kΩ	2.75	1.58 kΩ
1.025	68.0 kΩ	1.70	7.90 kΩ	2.80	1.45 kΩ
1.050	56.2 kΩ	1.75	7.24 kΩ	2.85	1.33 kΩ
1.075	47.7 kΩ	1.80	6.66 kΩ	2.90	1.22 kΩ
1.100	41.3 kΩ	1.85	6.14 kΩ	2.95	1.11 kΩ
1.125	36.4 kΩ	1.90	5.67 kΩ	3.00	1.00 kΩ
1.150	32.4 kΩ	1.95	5.25 kΩ	3.05	904 Ω
1.175	29.2 kΩ	2.00	4.86 kΩ	3.10	810 Ω
1.200	26.5 kΩ	2.05	4.51 kΩ	3.15	720 Ω
1.225	24.2 kΩ	2.10	4.19 kΩ	3.20	634 Ω
1.250	22.2 kΩ	2.15	3.89 kΩ	3.25	551 Ω
1.275	20.5 kΩ	2.20	3.61 kΩ	3.30	473 Ω
1.300	19.0 kΩ	2.25	3.36 kΩ	3.35	397 Ω
1.325	17.7 kΩ	2.30	3.12 kΩ	3.40	324 Ω
1.350	16.6 kΩ	2.35	2.90 kΩ	3.45	254 Ω
1.375	15.5 kΩ	2.40	2.70 kΩ	3.50	187 Ω
1.400	14.6 kΩ	2.45	2.51 kΩ	3.55	122 Ω
1.425	13.7 kΩ	2.50	2.33 kΩ	3.60	60 Ω
1.450	13.0 kΩ				

Table 2. Calculated Set-Point Resistor Values

CAPACITOR RECOMMENDATIONS for the PTH04070W WIDE-OUTPUT ADJUST POWER MODULES

Input Capacitor

The minimum recommended input capacitor(s) is 47-µF of ceramic capacitance, in either an X5R or X7R temperature tolerance. The ceramic capacitors should be located within 0.5 in. (1,27 cm) of the regulator's input pins. Electrolytic capacitors can also be used at the input, but only in addition to the required ceramic capacitance. The minimum ripple current rating for nonceramic capacitors should be at least 200 mA rms. The ripple current rating of electrolytic capacitors is a major consideration when they are used at the input.

When specifying regular tantalum capacitors for use at the input, a minimum voltage rating of $2 \times$ (maximum dc voltage + ac ripple) is highly recommended. This is standard practice to ensure reliability. Polymer-tantalum capacitors are not affected by this requirement.

For improved ripple reduction on the input bus, additional ceramic capacitors can be used to complement the minimum requirement.

Output Capacitors

For most applications only one (1) 47-µF ceramic capacitor is required. The ceramic capacitor should be located within 0.5 in. (1,27 cm) of the output pin. Adding a second 47-µF nonceramic capacitor allows the module to meet its transient response specification. For applications with load transients (sudden changes in load current), the regulator response benefits from additional external output capacitance. A high-quality computer-grade electrolytic capacitor should be adequate.

Electrolytic capacitors should be located close to the load circuit. These capacitors provide decoupling over the frequency range, 2 kHz to 150 kHz. Aluminum electrolytic capacitors are suitable for ambient temperatures above 0°C. For operation below 0°C, tantalum or Os-Con type capacitors are recommended. When using one or more nonceramic capacitors, the calculated equivalent ESR should be no lower than 4 m Ω (7 m Ω using the manufacturer's maximum ESR for a single capacitor). A list of preferred low-ESR type capacitors are identified in Table 3, the recommended capacitor table.

Ceramic Capacitors

Above 150 kHz the performance of aluminum electrolytic capacitors becomes less effective. To further improve the reflected input ripple current, or the output transient response, multilayer ceramic capacitors must be added. Ceramic capacitors have very low ESR and their resonant frequency is higher than the bandwidth of the regulator. When placed at the output their combined ESR is not critical as long as the total value of ceramic capacitance does not exceed 200 μ F. Also, to prevent the formation of local resonances, do not place more than three identical ceramic capacitors with values of 10 μ F or greater in parallel.

Tantalum Capacitors

Additional tantalum type capacitors can be used at both the input and output, and are recommended for applications where the ambient operating temperature can be less than 0°C. The AVX TPS, Sprague 593D/594/595 and Kemet T495/T510/T520 capacitors series are suggested over many other tantalum types due to their rated surge, power dissipation, and ripple current capability. As a caution, many general-purpose tantalum capacitors have considerably higher ESR, reduced power dissipation, and lower ripple current capability. These capacitors are also less reliable as they have lower power dissipation and surge current ratings. Tantalum capacitors that do not have a stated ESR or surge current rating are not recommended for power applications. When specifying Os-Con and polymer tantalum capacitors for the output, the minimum ESR limit is encountered well before the maximum capacitance value is reached.

Capacitor Table

The capacitor table, Table 3, identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The recommended number of capacitors required at both the input and output buses is identified for each capacitor type. This is not an extensive capacitor list. Capacitors from other vendors are available with comparable specifications. Those listed are for guidance. The rms rating and ESR (at 100 kHz) are critical parameters necessary to insure both optimum regulator performance and long capacitor life.

Designing for Load Transients

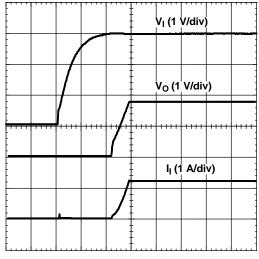
The transient response of the dc/dc converter has been characterized using a load transient with a di/dt of 1 A/µs. The typical voltage deviation for this load transient is given in the data sheet specification table using the optional value of output capacitance. As the di/dt of a transient is increased, the response of a converter's regulation circuit ultimately depends on its output capacitor decoupling network. This is an inherent limitation with any dc/dc converter once the speed of the transient exceeds its bandwidth capability. If the target application specifies a higher di/dt or lower voltage deviation, the requirement can only be met with additional output capacitor decoupling. In these cases, special attention must be paid to the type, value, and ESR of the capacitors selected.

If the transient performance requirements exceed those specified in the data sheet, the selection of output capacitors becomes more important. Review the minimum ESR in the characteristic data sheet for details on the capacitance maximum.

		CAPA	CITOR CHARACT	ERISTICS		QUANTITY			
CAPACITOR VENDOR/ COMPONENT SERIES	WORKING VOLTAGE	VALUE µF	EQUIVALENT SERIES RESISTANCE (ESR)	85°C MAXIMUM RIPPLE CURRENT (I _{rms})	PHYSICAL SIZE (mm)	INPUT BUS ⁽¹⁾	OUTPUT BUS	VENDOR NUMBER	
Panasonic WA (SMT) FC (SMT)	10 V 25 V	120 47	0.035 Ω 0.400 Ω	2800 mA 230 mA	8×6.9 8×6.2	1 1	$\leq 4^{(1)}$ 1 ⁽¹⁾	EEFWA1A121P ⁽²⁾ EEVFC1E470P ⁽²⁾	
Panasonic SL SP-cap(SMT)	6.3 V 6.3 V	47 56	0.018 Ω 0.009 Ω	2500 mA 3000 mA	7.3×4.3 7.3× 4.3	1 1	≤ 3 ≤ 2	EEFCD0J470R EEFSL0J560R	
United Chemi-con PXA (SMT) FS LXZ MVZ (SMT)	10 V 10 V 16 V 16 V	47 100 100 100	0.031 Ω 0.040 Ω 0.250 Ω 0.440 Ω	2250 mA 2100 mA 290 mA 230mA	6.3×5.7 6.3×9.8 6.3×11.5 6.3×5.7	1 1 1	1 ≤5 1 1	PXA10VC470MF60TP 10FS100M LXZ16VB101M6X11LL MVZ16VC101MF60TP	
Nichicon UWG (SMT) F559(Tantalum) PM	16 V 10 V 10 V	100 100 100	0.400 Ω 0.055 Ω 0.550 Ω	230mA 2000mA 210 mA	8×6.2 7.7 × 4.3 6×11	1 1 1	1 ≤5 1	UWG1C101MCR1GS F551A107MN UPM1A101MEH	
Sanyo Os-con\ POS-Cap SVP (SMT) SP	10V 6.3 V 10 V	68 47 56	0.025 Ω 0.074 Ω 0.045 Ω	2400 mA 1110 mA 1710 mA	7.3×4.3 5×6 6.3×5.0	1 1 1	≤ 5 ≤ 5 ≤ 5	10TPE68M 6SVP47M 10SP56M	
AVX Tantalum TPS (SMD)	10 V 10 V	47 47	0.100 Ω 0.060 Ω	1100 mA > 412 mA	$7.3L \times 4.3W \\ \times 4.1H$	1 1	≤ 5 ≤ 5	TPSD476M010R0100 TPSB476M010R0500	
Kemet T520 (SMD) AO-CAP	10 V 6.3 V	68 47	0.060 Ω 0.028 Ω	>1200 mA >1100 mA	$7.3L\times5.7W\\\times4.0H$	1 1	≤ 5 ≤ 3	T520V686M010ASE060 A700V476M006AT	
Vishay/Sprague 594D/595D (SMD)	10 V 10 V	68 68	0.100 Ω 0.240 Ω	>1000 mA 680 mA	$7.3L \times 6.0W \\ \times 4.1H$	1 1	≤ 5 ≤ 5	594D686X0010C2T 595D686X0010C2T	
94SL	16 V	47	0.070 Ω	1550 mA	8×5	1	≤ 5	94SL476X0016EBP	
TDK Ceramic X5R Murata Ceramic X5R Kemet	6.3 V 6.3 V 6.3 V	22 22 22	0.002 Ω 0.002 Ω 0.002 Ω	>1400 mA >1000 mA >1000 mA	1210 case 3225 mm		≤ 3 ≤ 3 ≤ 3	C3225X5R0J226KT/MT GRM32ER61J223M C1210C226K9PAC	
TDK Ceramic X5R Murata Ceramic X5R Kemet	6.3 V 6.3 V 6.3 V	47 47 47	0.002 Ω 0.002 Ω 0.002 Ω	>1400 mA >1000 mA >1000 mA	1210 case 3225 mm	≥ 1 ≥ 1 ≥ 1	≤ 3 ≤ 3 ≤ 3	C3225X5R0J476KT/MT GRM32ER60J476M/6.3 C1210C476K9PAC	

Table 3. Recommended Input/Output Capacitors

(1) A ceramic capacitor is required on both the input and the output. An electrolytic capacitor can be added to the output for improved transient response.


(2) An optional through-hole capacitor available.

(3) A total capacitance of 44 µF is an acceptable replacement for a single 47-µF capacitor.

Power-Up Characteristics

When configured per the standard application, the PTH04070 power module produces a regulated output voltage following the application of a valid input source voltage. During power up, internal soft-start circuitry slows the rate that the output voltage rises, thereby limiting the amount of in-rush current that can be drawn from the input source. The soft-start circuitry introduces a short time delay (typically 10 ms) into the power-up characteristic. This is from the point that a valid input source is recognized. Figure 10 shows the power-up waveforms for a PTH04070W, operating from a 3-V input and with the output voltage adjusted to 1.8 V. The waveforms were measured with a 2-A resistive load.

t – 10 ms/div

Figure 10. Power-Up Waveforms

Current Limit Protection

The PTH04070 modules protect against load faults with a continuous current limit characteristic. Under a load fault condition, the output current cannot exceed the current limit value. Attempting to draw current that exceeds the current limit value causes the output voltage to be progressively reduced. Current is continuously supplied to the fault until it is removed. Upon removal of the fault, the output voltage will promptly recover.

Thermal Shutdown

Thermal shutdown protects the module internal circuitry against excessively high temperatures. A rise in temperature may be the result of a drop in airflow, a high ambient temperature, or a sustained current limit condition. If the junction temperature of the internal components exceeds 150°C, the module shuts down. This reduces the output voltage to zero. The module will start up automatically, by initiating a soft-start power up when the sensed temperature decreases 10°C below the thermal shutdown trip point.

Output On/Off Inhibit

For applications requiring output voltage on/off control, the PTH04070 power module incorporates an output on/off Inhibit control (pin 5). The inhibit feature can be used wherever there is a requirement for the output voltage from the regulator to be turned off.

The power module functions normally when the Inhibit pin is left open-circuit, providing a regulated output whenever a valid source voltage is connected to Vin with respect to GND.

Figure 11 shows the typical application of the inhibit function. Note the discrete transistor (Q1). The Inhibit control has its own internal pullup to V_I potential. An open-collector or open-drain device is recommended to control this input.

Turning Q1 on applies a low voltage to the *Inhibit* control pin and disables the output of the module. If Q1 is then turned off, the module will execute a soft-start power-up sequence. A regulated output voltage is produced within 20 msec. Figure 12 shows the typical rise in the output voltage, following the turn off of Q1. The turn off of Q1 corresponds to the fall in the waveform, Q1 Vgs. The waveforms were measured with a 2-A resistive load.

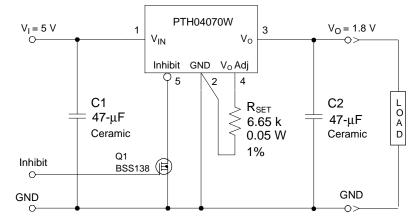


Figure 11. On/Off Inhibit Control Circuit

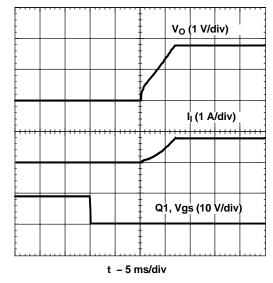
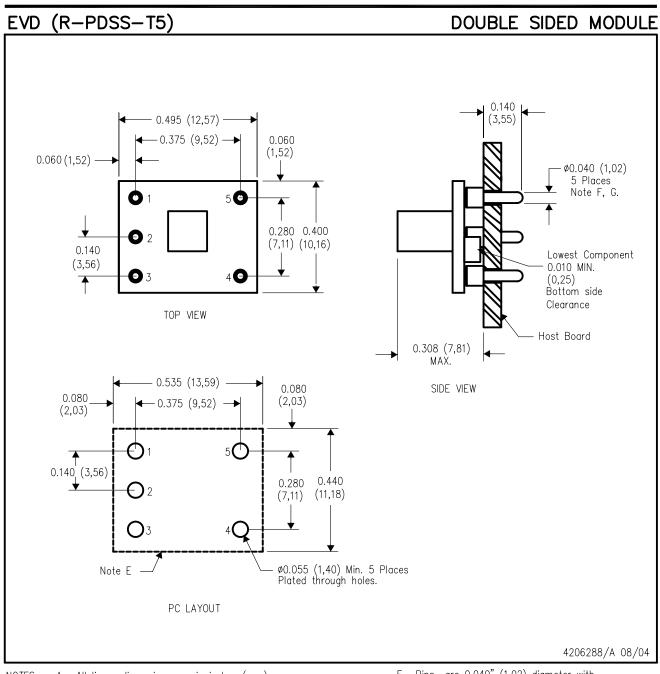
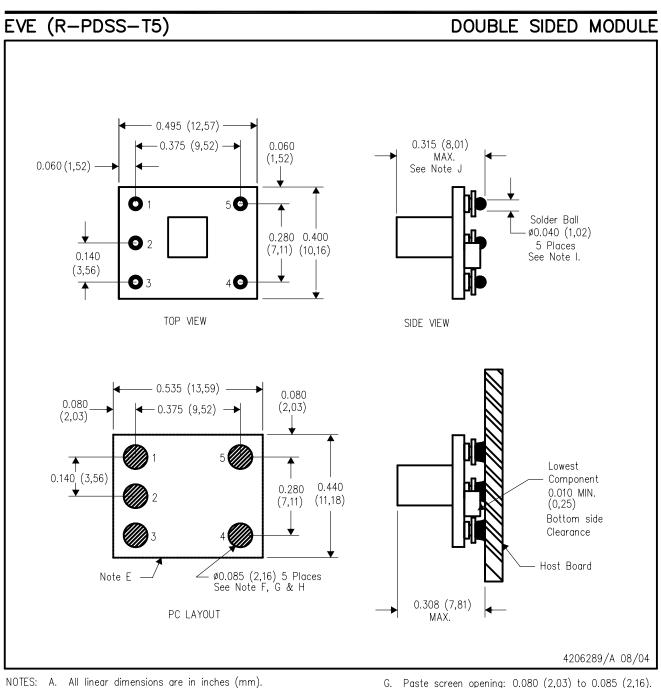



Figure 12. Power Up Response From Inhibit Control

MECHANICAL DATA



NOTES:

- All linear dimensions are in inches (mm). This drawing is subject to change without notice. Α. Β.
- C. 2 place decimals are ± 0.030 (± 0.76 mm). D. 3 place decimals are ± 0.010 (± 0.25 mm).
- E. Recommended keep out area for user components.
- F. Pins are 0.040" (1,02) diameter with 0.070" (1,78) diameter standoff shoulder.
- G. All pins: Material Copper Alloy
 - Finish Tin (100%) over Nickel plate

TEXAS INSTRUMENTS www.ti.com

MECHANICAL DATA

NOTES:

- All linear dimensions are in inches (mm). This drawing is subject to change without notice. Β.
- C. 2 place decimals are ± 0.030 ($\pm 0,76$ mm).
- D. 3 place decimals are ± 0.010 (± 0.25 mm).
- Ε. Recommended keep out area for user components.
- F. Power pin connection should utilize two or more vias to the interior power plane of 0.025 (0,63) I.D. per input, ground and output pin (or the electrical equivalent).
- Paste screen opening: 0.080 (2,03) to 0.085 (2,16). G. Paste screen thickness: 0.006 (0,15).
- H. Pad type: Solder mask defined.
- I. All pins: Material Copper Alloy Finish Tin (100%) over Nickel plate Solder Ball See product data sheet.
- J. Dimension prior to reflow solder.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com