－State－of－the－Art EPIC－IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
－ESD Protection Exceeds 2000 V Per MIL－STD－883，Method 3015；Exceeds 200 V Using Machine Model（ $\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$ ）
－Latch－Up Performance Exceeds 500 mA Per JEDEC Standard JESD－17
－Typical $\mathrm{V}_{\text {OLP }}$（Output Ground Bounce）$<1$ V at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－High－Drive Outputs（ $-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{IOL}^{\text {）}}$
－Package Options Include Plastic Small－Outline（DW），Shrink Small－Outline （DB），and Thin Shrink Small－Outline（PW） Packages，Ceramic Chip Carriers（FK）， Ceramic Flat（W）Package，and Plastic（N） and Ceramic（JT）DIPs

description

The SN54ABT623A and SN74ABT623 bus transceivers are designed for asynchronous communication between data buses．The control－function implementation allows for maximum flexibility in timing．The SN54ABT623A and SN74ABT623 provide true data at their outputs．

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus， depending on the logic levels at the output－enable （OEAB and $\overline{O E B A}$ ）inputs．

SN54ABT623A ．．JT OR W PACKAGE
SN74ABT623 ．．．DB，DW，N，OR PW PACKAGE
（TOP VIEW）
OEAB

SN54ABT623A ．．．FK PACKAGE （TOP VIEW）

The output－enable inputs can be used to disable the device so that the buses are effectively isolated．The dual－enable configuration gives the transceivers the capability of storing data by simultaneously enabling OEAB and $\overline{O E B A}$ ．Each output reinforces its input in this configuration．When both OEAB and $\overline{O E B A}$ are enabled and all other data sources to the two sets of bus lines are at high impedance，both sets of bus lines（16 total）remain at their last states．

To ensure the high－impedance state during power up or power down，$\overline{\mathrm{OEBA}}$ should be tied to V_{CC} through a pullup resistor；the minimum value of the resistor is determined by the current－sinking capability of the driver． OEAB should be tied to GND through a pulldown resistor；the minimum value of the resistor is determined by the current－sourcing capability of the driver．
The SN54ABT623A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ． The SN74ABT623 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
FUNCTION TABLE

INPUTS		OPERATION
$\overline{\text { OEBA }}$	OEAB	
L	L	B data to A bus
L	H	B data to A bus, A data to B bus H
H	H	Isolation
H data to B bus		

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) .. } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT623A .. } 96 \mathrm{~mA} \\
& \text { SN74ABT623 .. } 128 \text { mA } \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {... }-18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Package thermal impedance, } \theta_{\mathrm{JA}} \text { (see Note 2): DB package } 115^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { DW package } 97^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { N package .. } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { PW package .. } 128^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, } \\
& \text { which use a trace length of zero. }
\end{aligned}
$$

recommended operating conditions (see Note 3)

			SN54ABT623A		SN74ABT623		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	VCC	V
$\mathrm{IOH}^{\text {l }}$	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

* On products compliant to MIL-PRF-38535, this parameter does not apply.
** These limits apply only to the SN74ABT623.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{l}_{\mathrm{OZL}}$ include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT623A		SN74ABT623		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.6	4.1	1	4	1	4.6	ns
tPHL			1	2.6	4.2	0.8	4.1	1	4.6	
tPZH	$\overline{\text { OEBA }}$	A	1.7	3.4	6.5	1.2	5.4	1.7	7.5	ns
tpZL			1.7	3.8	6.5	1.5	6.8	1.7	7.5	
tpHZ	$\overline{\text { OEBA }}$	A	1.7	4.2	6.5	1.7	7.1	1.7	7.5	ns
tPLZ			1.7	4.7	6.5	1.5	7.1	1.7	7.5	
tPZH	OEAB	B	1.7	4.8	6.5	1.2	6.8	1.7	7.5	ns
tpZL			1.7	4	6.5	1.7	6.5	1.7	7.5	
tPHZ	OEAB	B	1.7	3.9	6.5	1.5	6.8	1.7	7.5	ns
tpLZ			1.7	3.2	6.5	1.3	5.8	1.7	7.5	

PARAMETER MEASUREMENT INFORMATION

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9461801Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
5962-9461801QRA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Level-NC-NC-NC
5962-9461801QSA	ACTIVE	CFP	W	20	1	TBD	Call TI	Level-NC-NC-NC
SN74ABT623DBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74ABT623DBR	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623DBRE4	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623DW	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623DWE4	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623DWRE4	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74ABT623NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74ABT623NSR	ACTIVE	SO	NS	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623NSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623PWE4	ACTIVE	TSSOP	PW	20	70	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623PWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
SN74ABT623PWR	ACTIVE	TSSOP	PW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT623PWRE4	ACTIVE	TSSOP	PW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SNJ54ABT623AFK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54ABT623AJ	ACTIVE	CDIP	J	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54ABT623AW	ACTIVE	CFP	W	20	1	TBD	Call TI	Level-NC-NC-NC

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^0]at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

4040180-4/D 07/03
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G2O)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AC.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

[^0]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The Pb-Free/Green conversion plan has not been defined.
 Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered

