
������

�����
	����
�


XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID Filters, transport layer
co-processor

Preliminary specification
Supersedes data of 1999 Dec 20

2000 Jan 25

INTEGRATED CIRCUITS查询PXAC37供应商

http://www.dzsc.com/stock_PXA/PXAC37.html


Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 i

GENERAL DESCRIPTION 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
FEATURES IN COMMON WITH XA-G3 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
XA-C3 SPECIFIC FEATURES 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
XA-C3 CAN AND CTL FEATURES 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
LOGIC SYMBOL AND BLOCK DIAGRAM 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
UPGRADING XA-G3 DESIGNS TO CAN 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ORDERING INFORMATION 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

44-Pin PLCC Package 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
44-pin LQFP package 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

LOGIC SYMBOL 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
BLOCK DIAGRAM 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
PIN DESCRIPTIONS 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SPECIAL FUNCTION REGISTERS 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MEMORY-MAPPED REGISTERS 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
XA-C3 TIMER/COUNTERS 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Timer 0 and Timer 1 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
New Enhanced Mode 0 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Mode 1 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Mode 2 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Mode 3 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
New Timer-Overflow Toggle Output 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Timer T2 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Capture Mode 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Auto-Reload Mode (Up or Down Counter) 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Baud Rate Generator Mode 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Programmable Clock-Out 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
WATCHDOG TIMER 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Watchdog Function 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Watchdog Control Register (WDCON) 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Watchdog Detailed Operation 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

WDCON Register Bit Definitions 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
UART 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Serial Port Control Register 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Transmit Interrupt Flag 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9-Bit Mode 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Bypassing Double-Buffering 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CLOCKING SCHEME AND BAUD RATE GENERATION 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Clock Rates for all UART Modes 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Baud Rates for UART Modes 0 and 2 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Baud Rate Calculations for UART Modes 0 and 2 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Baud Rates for UART Modes 1 and 3 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Baud Rate Calculations for UART Modes 1 and 3 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Baud Rate calculations for UART Mode 1 and 3: 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Using Timer 2 to Generate Baud Rates 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
UART Interrupt Scheme 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Multiprocessor Communications 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Error Handling, Status Flags and Break Detect 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Automatic Address Recognition 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

INPUT/OUTPUT PORT PIN CONFIGURATION 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
EXTERNAL BUS 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
RESET 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

RST/Pin Properties and Requirements 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Power-On Reset 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Other Reset Effects 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 ii

Reset Timing 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Power Reduction Modes 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Interrupts 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Interrupt Types 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Interrupt Structures 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Event Interrupt Handling 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Interrupt Priority Details 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ABSOLUTE MAXIMUM RATINGS 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
DC ELECTRICAL CHARACTERISTICS 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
AC ELECTRICAL CHARACTERISTICS 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
EPROM CHARACTERISTICS 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Security Bits 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
XA-C3 OVERVIEW 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Introduction 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Definition of Terms 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Standard and Extended CAN Frames 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Acceptance Filtering 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Object 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CAN Arbitration ID 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Screener ID 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Match ID 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Mask 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CTL 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Fragmented Message 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Buffer 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MMR 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CTL/CAN Functionality of the XA-C3 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Objects / Message Management 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Acceptance Filtering 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Storage 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Transmit Pre–Arbitration 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Remote Frame Handling 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

MEMORY MAPS 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Data Memory Space 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Code Memory Space 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CAN CORE BLOCK (CCB) 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CAN Bus Timing 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CAN System Clock 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Samples Per Bit 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Location of Sample Point 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Synchronization Jump Width 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CANBTR: CAN Bus Timing Register 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CAN Command and Status Registers 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Two Modes in CAN Core Operation 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CANCMR: CAN Command Register 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CANSTR: CAN Status Register 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CAN/CTL MESSAGE HANDLER 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Objects 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Receive Message Objects and the Receive Process 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Acceptance Filtering 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Storage 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Assembly 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Transmit Message Objects and the Transmit Process 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Pre–Arbitration Based on Priority (default mode) 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 iii

Pre–Arbitration Based on Object Number 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Retrieval 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Transmission of Fragmented Messages 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

RTR Handling 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Receiving an RTR Frame 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Transmitting an RTR Frame 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Data integrity issues 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Using the Semaphore Bits, SEM1 and SEM0 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Avoiding Data Corruption for Transmit Message Objects 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

OSEK, DEVICENET, AND CANOPEN FRAMES OF INTEREST 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
OSEK ConsecutiveFrame 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
DeviceNet I/O Message 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CANopen Download Domain Segment Request 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CANopen Auto–Acknowledge Tx Response to Download Domain Segment 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CAN/CTL RELATED INTERRUPTS 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Rx and Tx Message Complete Interrupts 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Rx Buffer Full Interrupt 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Message Error Interrupt 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tx Buffer Underflow 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Fragmentation Error 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Frame Error Interrupt 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Bus Error 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Pre–Buffer Overflow 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Arbitration Lost 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Error Warning 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Error Passive 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Bus Off 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CAN Interrupt Registers 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CANINTFLG (CAN Interrupt Flag Register) 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
FESTR (Frame Error Status Register) 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
FEENR (Frame Error Enable Register) 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MCIR (Message Complete Info Register) 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MEIR (Message Error Info Register) 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MCPLH (Message Complete Status Flags High) 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MCPLL (Message Complete Status Flags Low) 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TxERC (Tx Error Counter) 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
RxERC (Rx Error Counter) 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
EWLR (Error Warning Limit Register) 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ECCR (Error Code Capture Register) 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ALCR (Arbitration Lost Capture Register) 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CAN Interrupt SFRs 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
POWER–DOWN AND IDLE MODE 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Background: XA Power–Down and Idle modes 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
XA-C3 Idle Mode 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
XA-C3 Power–Down Mode 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CAN Sleep Enable 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

MEMORY INTERFACE UNIT 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
General Description 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Summary of features 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Memory Mapped Registers (MMRs) 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Special Function Register MRBH 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Special Function Register MRBL 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

On–Chip Message Buffer RAM (XRAM) 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MBXSR (Message Buffer and XRAM Segment Register) 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 iv

XRAMB (XRAM Base Address) 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MIF Control and Configuration Registers 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

MIFCNTL (SFR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MIFBTRL (Memory Interface Bus Timing Register Low, MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MIFBTRH (Memory Interface Bus Timing Register High, MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Bus Arbitration 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SPI Port 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SPICFG (MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SPIDATA (MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SPICS (MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 v

LIST OF FIGURES
Figure 1.  44-pin PLCC package 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.  44-pin PLCC package 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.  Logic Symbol 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 4.  XA-C3 Simplified Block Diagram 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.  System Configuration Register (SCR) 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.  Timer/Counter Mode Control (TMOD) Register 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 7.  Timer/Counter Control (TCON) Register 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.  Timer/Counter 2 Control (T2CON) Register 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 9.  Timer 0 and 1 Extended Status (TSTAT) 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 10.  Timer 2 Mode Control (T2MOD) 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 11.  Timer 2 in Capture Mode 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 12.  Timer 2 in Auto-Reload Mode (DCEN = 0) 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 13.  Timer 2 Auto Reload Mode (DCEN = 1) 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 14.  Watchdog Timer in XA-C3 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 15.  Serial Port Extended Status (S0STAT) Register 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 16.  Serial Port Control (S0CON) Register 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 17.  UART Framing Error Detection 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 18.  UART Multiprocessor Communication, Automatic Address Recognition 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 19.  Recommended Reset Circuit 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 20.  EA/ Timing Diagram 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 21.  External PROGRAM Memory Read Cycle (ALE Cycle) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 22.  External PROGRAM Memory Read Cycle (Non-ALE Cycle) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 23.  External DATA Memory Read Cycle (ALE Cycle) 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 24.  External DATA Memory Write Cycle 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 25.  WAIT Signal Timing 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 26.  External Clock Drive 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 27.  AC Testing Input/Output 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 28.  Float Waveform 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 29.  IDD Test Condition, Active Mode 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 30.  IDD Test Condition, Idle Mode 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 31.  IDD vs. Frequency at VDD = 5.0V 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 32.  Clock Signal Waveform for IDD Tests in Active and Idle Modes 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 33.  IDD Test Condition, Power-Down Mode 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 34.  Interleaved CAN Data Frames 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 35.  CAN Frame Formats 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 36.  MMRs and XRAM mapped into Segment 00h. 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 37.  External Code Memory starts at 008000h. 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 38.  Memory Image for Non–Fragmented Messages 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 39.  Retrieving the Screener ID for an Extended CAN Frame 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 40.  Memory Image for Fragmented CTL Messages (FRAG = 1 and Prtcl1 Prtcl0 p 00) 43. . . . . . . . . . . . . . . . . . . . . . 
Figure 41.  Memory Image for CAN Frame Buffering (FRAG = 1 and Prtcl1 Prtcl0 = 00) 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 42.  Format for Storing the Tx Frame Info in MnMSKH 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 43.  Formation of the MMR Base Address 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 44.  Detail of MMR space showing block of Message Object Registers 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 45.  Formation of the XRAM base address, with object n message buffer mapped to off–chip data memory. 56. . . . . 
Figure 46.  Object n Message Buffer mapped into the on–chip XRAM. 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 vi

LIST OF TABLES
Table 1.  Ordering Information 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.  44-pin PLCC package pin functions 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 3.  44-pin LQFP package pin functions 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 4.  Pin Descriptions 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.  Special Function Registers 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 6.  Memory-Mapped Registers 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 7.  Timer 2 Operating Modes 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 8.  Prescalar Select Values in WDCON 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 10.  T2CON Settings 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 11.  Prescaler Select for Timer Clock 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 12.  Vector Locations for UART in XA 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 13.  Port Configuration Register Settings 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 14.  Interrupt Priority Levels 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 15.  Exception and Trap Interrupt Vectors 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 16.  Event Interrupt Vectors 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 17.  Software Interrupt Vectors 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 18.  Absolute Maximum Ratings 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 19.  DC Electrical Characteristics 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 20.  AC Electrical Characteristics 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 21.  PROGRAM Security Bits 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 22.  Message Object Register Functions for Tx and Rx 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 23.  Allowable Message Buffer Sizes 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 24.  Format for storing the CANopen Acknowledge byte 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 25.  Error Codes for the Error Code Capture Register (ECCR) 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 26.  Arbitration Lost Codes 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 27.  SFR Interrupt Enable/Priority Bit Positions 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

12000 Jan 25

GENERAL DESCRIPTION
The XA–C3 is a member of the Philips XA (eXtended Architecture)
family of high–performance 16–bit single–chip microcontrollers. The
XA–C3 combines an array of standard  peripherals together with a
PeliCAN CAN 2.0B engine and unique ”Message Management”
hardware to provide integrated support for most CAN Transport
Layer (CTL) protocols such as DeviceNet, CANopen and OSEK. For
additional details, refer to the XA-C3 Overview on page 35.

The XA architecture supports:
� Easy 16-bit migration from the 80C51 architecture.

� 16–bit fully static CPU with 24–bit addressed PROGRAM and
DATA spaces.

� Twenty–one 16–bit CPU core registers capable of all arithmetic
and logic operations while serving as memory pointers.

� An enhanced orthogonal instruction set tailored for high–level
support of the C language.

� Multi–tasking and direct real–time executive support.

� Low–power operation intrinsic to the XA architecture includes
Power–Down and Idle modes.

FEATURES IN COMMON WITH XA-G3
� Pin–compatibility (CAN RxD and CAN TxD use the XA-G3 NC

pins).

� 32K bytes of on–chip EPROM PROGRAM memory (see Table 1).

� 44–pin PLCC (Figure 1 and Table 2) and 44–pin LQFP (Figure 2
and Table 3) packages.

� Commercial (0 to 70oC) and Industrial (–40 to 85oC) ranges.

� Supports off–chip addressing of PROGRAM and DATA memory
up to 1 megabyte each (20 address lines).

� Three standard counter/timers (T0, T1, and T2) with
enhancements such as Auto Reload for PWM outputs.

� UART–0 with enhancements such as separate Rx and Tx
interrupts, Break Detection, and Automatic Address Recognition.

� Watchdog with a secure WFEED1 / WFEED2 sequence.

� Four 8–bit I/O ports with 4 programmable output configurations
per pin.

XA-C3 SPECIFIC FEATURES
� 32 MHz operating frequency at 4.5 to 5.5V operation.

� One Serial Port Interface (SPI)

� 1024 bytes of on–chip DATA RAM.

� 42 vectored interrupts. These include 13 maskable Events, 7
Software interrupts, 6 Exceptions, 16 software Traps, segmented
DATA memory, multiple User stacks, and banked registers to
support rapid context switching.

� External interfacing via a 16–bit DATA bus width.

XA-C3 CAN AND CTL FEATURES
� A PeliCAN CAN 2.0B engine from the SJA1000 Stand–alone CAN

controller which supports 11– and 29–bit IDentifiers and the
maximum CAN data rate (1 Mbps) and CAN Diagnostics.

� Hardware “Message Management” support for all major CTL
protocols: DeviceNet, CANopen, OSEK.

� Automatic (hardware) assembly of Fragmented Messages via a
Transport Layer Co-Processor. Concurrent assembly of up to 32
separate interleaved Fragmented Messages

� 32 CAN Transport Layer (CTL) Message Objects are modelled as
a FullCAN Object Superset.

� 32 separate filters/screeners (one per Message Object), each
allowing a 30–bit ID Match and full 29–bit Mask (i.e., each
filter/screener represents a unique Group address).

� Each Message Object can be configured as Receive or Transmit.

� A separate message buffer is associated with each CTL Message
Object.  32 message buffers are located in XRAM and managed
by 32 DMA channels.  Message buffer size for each Message
Object is independently configurable in length (from 2 to 256
bytes).

� For single–chip systems there is a 512–byte (on–chip) XRAM
message buffer, independent of the 1K on–chip DATA RAM, which
is extendable (off–chip) to 8K bytes (i.e., 32 Message Objects that
can be up to 256 bytes each).

LOGIC SYMBOL AND BLOCK DIAGRAM

Refer to Figure 3 for the logic symbol for the XA-C3 and to Figure 4
for a simplified block diagram representation.

UPGRADING XA-G3 DESIGNS TO CAN
� XA-G3 NC pins are XA-C3 CAN RxD and CAN TxD pins.

� XA-G3 UART–1 is replaced by a Serial Port Interface (SPI)

� XA-C3 software must never write to the BCR register

� XA-C3 software must initialize BTRH and BTRL with 00h



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 2

ORDERING INFORMATION

Table 1.  Ordering Information
XA–C3 Type &
Part Number

Temperature Range 
(degrees C)

Package Description Operating Frequency
(MHz)

Drawing Number

OTP

PXAC37KBBD 0 to +70 Low Profile PQFP [LQFP44] 32 SOT389–1

PXAC37KBA 0 to +70 PLCC [PLCC44] 32 SOT187–2

PXAC37KFBD –40 to +85 Low Profile PQFP [LQFP44] 32 SOT389–1

PXAC37KFA –40 to +85 PLCC [PLCC44] 32 SOT187–2



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 3

PIN CONFIGURATIONS

44-Pin PLCC Package

Figure 1.  44-pin PLCC package

Table 2.  44-pin PLCC package pin functions
Pin Function (see Note) Pin Function (see Note)

1 VSS 23 VDD

2 P1.0 ; WRH/ 4 P2.0 ; A12D8

3 P1.1 ; A1 25 P2.1 ; A13D9

4 P1.2 ; A2 26 P2.2 ; A14D10

5 P1.3 ; A3 27 P2.3 ; A15D11

6 P1.4 ; SPIRx 28 P2.4 ; A16D12

7 P1.5 ; SPITx 29 P2.5 ; A17D13

8 P1.6 ; T2 ; SPICLK 30 P2.6 ; A18D14

9 P1.7 ; T2EX 31 P2.7 ; A19D15

10 RST/ 32 PSEN/

11 P3.0 ; RxD0 33 ALE ; PROG/

12 CAN RxD 34 CAN TxD

13 P3.1 ; TxD0 35 EA/ ; Vpp ; WAIT

14 P3.2 ; INT0/ 36 P0.7 ; A11D7

15 P3.3 ; INT1/ 37 P0.6 ; A10D6

16 P3.4 ; T0 38 P0.5 ; A9D5

17 P3.5 ; T1 39 P0.4 ; A8D4

18 P3.6 ; WRL/ 40 P0.3 ; A7D3

19 P3.7 ; RD/ 41 P0.2 ; A6D2

20 XTAL2 42 P0.1 ; A5D1

21 XTAL1 43 P0.0 ; A4D0

22 VSS 44 VDD

NOTE:
1. All active–low signals are indicated by a “/” symbol



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 4

44-pin LQFP package

Figure 2.  44-pin PLCC package

Table 3.  44-pin LQFP package pin functions
Pin Function (see Note) Pin Function (see Note)

1 P1.5 ; SPITx 23 P2.5 ; A17D13

2 P1.6 ; T2 ; SPICLK 4 P2.6 ; A18D14

3 P1.7 ; T2EX 25 P2.7 ; A19D15

4 RST/ 26 PSEN/

5 P3.0 ; RxD0 27 ALE ; PROG/

6 CAN RxD 28 CAN TxD

7 P3.1 ; TxD0 29 EA/ ; Vpp ; WAIT

8 P3.2 ; INT0/ 30 P0.7 ; A11D7

9 P3.3 ; INT1/ 31 P0.6 ; A10D6

10 P3.4 ; T0 32 P0.5 ; A9D5

11 P3.5 ; T1 33 P0.4 ; A8D4

12 P3.6 ; WRL/ 34 P0.3 ; A7D3

13 P3.7 ; RD/ 35 P0.2 ; A6D2

14 XTAL2 36 P0.1 ; A5D1

15 XTAL1 37 P0.0 ; A4D0

16 VSS 38 VDD

17 VDD 39 VSS

18 P2.0 ; A12D8 40 P1.0 ; WRH/

19 P2.1 ; A13D9 41 P1.1 ; A1

20 P2.2 ; A14D10 42 P1.2 ; A2

21 P2.3 ; A15D11 43 P1.3 ; A3

22 P2.4 ; A16D12 44 P1.4 ; SPIRx

NOTE:
1. All active–low signals are indicated by a “/” symbol



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 5

LOGIC SYMBOL

VDD VSS

XTAL1

XTAL2

RST/

VPP; WAIT; EA/

T2/SPICLK
T2EX; INT2/

A3
A2

SU01316

A1
WRH/

P
O

R
T

 1
P

O
R

T
 2

PSEN/

ALE; PROG/

P
O

R
T

 0

A
D

D
R

E
S

S
B

U
S

P
O

R
T

 3

T0
T1

WRL/
RD/

RxD0
TxD0

INT0/
INT1/

A
LT

E
R

N
A

T
E

 F
U

N
C

T
IO

N
S

SPITx

SPIRX

CAN Tx

CAN Rx

ADDRESS
AND

16-BIT DATA BUS

INCLUDING
32 DMA CHANNELS

FOR
 32 CAL MESSAGE

OBJECTS

Figure 3.  Logic Symbol



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 6

BLOCK DIAGRAM

XA CPU Core

SFR BUS

32K BYTES
OTP

1024 BYTES
DATA RAM

512 BYTES XRAM
CTL MESSAGE

 OBJECTS

32 CTL DMA
CHANNELS

32 OBJECT PTRS
32 ID FILTERS

2.0B CAN/DLL
PELICAN CORE

UART0

SPI

TIMER 0
TIMER 1

TIMER 2

WATCHDOG
TIMER

SU01317

PROGRAM
BUS

DATA BUS

PORTS 0–3

M
E

M
O

R
Y

 IN
T

E
R

FA
C

E

CORE DATA BUS

MMR BUS

E
X

T
E

R
N

A
L 

A
D

D
R

E
S

S
 / 

D
A

TA
 B

U
S

CAN RxD

CAN TxD

Figure 4.  XA-C3 Simplified Block Diagram



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 7

PIN DESCRIPTIONS

Table 4.  Pin Descriptions
MNEMONIC PIN NUMBERS TYPE NAME AND FUNCTION

PLCC LQFP
VSS 1, 22 16, 39 I Ground: 0V Reference.

VDD 23, 44 17, 38 I Power Supply: This is the power supply voltage for normal, Idle and Power–Down op-
eration.

P0.0 – P0.7 43 – 36 37–30 I/O Port 0: Port 0 is an 8–bit I/O Port with user –configurable pins.  Port 0 latches have 1’s
written to them and are configured in the Quasi–Bidirectional mode during Reset.  The
operation of Port 0 pins as inputs or outputs depends upon the Port configuration se-
lected. Each Port pin is configured independently.  Refer to the sections on I/O Port
configuration and DC Electrical Characteristics for details.
NOTE:
2. When the External PROGRAM/DATA bus is used, Port 0 becomes the multiplexed

low DATA/Instruction Byte and Address lines 4 through 11.

P1.0 – P1.7 2 – 9 40 – 44
1 – 3

I/O Port 1:  Port 1 is an 8–bit I/O Port with user –configurable pins.  Port 1 latches have 1’s
written to them and are configured in the Quasi–Bidirectional mode during Reset.  The
operation of Port 1 pins as inputs or outputs depends upon the Port configuration se-
lected. Each Port pin is configured independently.  Refer to the sections on I/O Port
configuration and DC Electrical Characteristics for details.

P1.0 2 40 O WRH/: Address bit 0 of the External Address bus when the External DATA bus is config-
ured for 8–bit width.  When the External DATA bus is used, this pin becomes the High
Byte Write Strobe (WRH).

P1.1 3 41 O A1:       Address bit 1 of the External Address bus.

P1.2 4 42 O A2:       Address bit 2 of the External Address bus.

P1.3 5 43 O A3:       Address bit 3 of the External Address bus.

P1.4 6 44 I SPIRx:  Receiver serial input of SPI.

P1.5 7 1 O SPITx:  Transmitter serial output of SPI.

P1.6 8 2 I T2 ; SPICLK:   Timer/counter 2 external clock input or Timer/counter 2 Clock–Out mode
output, or SPI Clock output.
NOTES:
3. SPICLK must be configured to idle in the logic ‘1’ state in order to use either the T2

or P1.6 output functions, even if the SPI Port is not in use!
4. The default state from Reset of the SPICLK polarity is “inverted” which yields an

SPICLK idle state of logic ‘1’.
5. If the SPI Clock polarity is changed by the user during SPI Port usage, it must be

restored to “inverted” polarity before using either the P1.6 or Timer/counter 2 output
functions.

P1.7 9 3 O T2EX: Timer/counter 2 reload/capture/direction control.

P2.0 – P2.7 24 – 31 18 – 25 I/O Port 2: Port 2 is an 8–bit I/O port with user–configurable pins.  Port 2 latches have 1’s
written to them and are configured in the Quasi–Bidirectional mode during Reset.  The
operation of Port 2 pins as inputs or outputs depends upon the Port configuration se-
lected. Each Port pin is configured independently.
Refer to the sections on I/O port configuration and DC Electrical Characteristics for de-
tails.
NOTES:
6. When the External 16–bit PROGRAM/DATA bus is used, Port 2 is MUXed between

High (DATA/Instruction) Byte and Address lines 12 through 19.

P3.0 – P3.7 11,
13 – 19

5,
7 –12

I/O Port 3: Port 3 is an 8–bit I/O Port with user–configurable pins.
NOTES:
7. Port 3 latches have 1’s written to them and are configured in the Quasi–Bidirectional

mode during Reset.
8. The operation of Port 3 pins as inputs or outputs depends upon the Port

configuration selected.
9. Each Port pin is configured independently.
Refer to the sections on I/O Port configuration and DC Electrical Characteristics for
details.

P3.0 11 5 I RxD0: Receiver serial input of UART 0.

P3.1 13 7 O TxD0: Transmitter serial output of UART 0.

P3.2 14 8 I INT0/: External interrupt 0 input.

P3.3 15 9 I INT1/: External interrupt 1 input.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 8

MNEMONIC NAME AND FUNCTIONTYPEPIN NUMBERS
LQFPPLCC

P3.4 16 10 I/O T0: Timer 0 External count input or Timer 0 Overflow output.

P3.5 17 11 I/O T1 : Timer 1 External count input or Timer 1 Overflow output.

P3.6 18 12 O WRL/: External DATA memory Low Byte Write Strobe.

P3.7 19 13 O RD/: External DATA memory Read Strobe.

RST/ 10 4 I RESET/:
NOTE:
10. A low on this pin resets the XA–C3, causing I/O Ports and peripherals to take on

their default states, and the processor to begin execution at the Address contained in
the Reset Vector.

Refer to the Reset section for details.

ALE ; PROG/ 33 27 I/O Address Latch Enable ; Program Pulse/:
NOTES:
11. A high output on the ALE pin signals External circuitry to latch the address portion of

the multiplexed Address/DATA bus.
12. A pulse on ALE occurs only when needed to process an External bus cycle. During

EPROM programming, this pin is used as the Program pulse input.

PSEN/ 32 26 O Program Store Enable/:
This is the Read Strobe for External PROGRAM memory.
NOTES:
13. When the microcontroller accesses External PROGRAM memory, PSEN/ is driven

low in order to enable memory devices.
14. PSEN/ is only active when External code accesses are performed.

EA/ ; WAIT ;
VPP

35 29 I External Access/ ; WAIT ; Programming Supply Voltage:
NOTES:
15. The EA/ input determines whether the internal PROGRAM memory of the XA–C3 is

used for code execution.
16. The EA/ pin is latched as the (External) Reset input is released and its value applied

during later execution.  When latched as a 0, External PROGRAM memory is used
exclusively.  When latched as a 1, internal PROGRAM memory will be used up to its
limit, and External PROGRAM memory is used above that point.

17. After Reset is released, this pin takes on the function of a Bus WAIT input.  If WAIT
is asserted High during any External bus access, that cycle will be extended until
WAIT is released.

18. During EPROM programming, this pin is also the programming supply voltage input.

CAN RxD 12 6 I CAN Receive Data input:  CAN serial receiver input to the SJA1000 PeliCAN core.

CAN TxD 34 28 O CAN Transmit Data output:  CAN serial transmitter output from the SJA1000 PeliCAN
core.

XTAL1 21 15 I Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the
internal clock generator circuits.

XTAL2 20 14 O Crystal 2: Output from the oscillator amplifier.

NOTE:
1. All active–low signals are indicated by a “/” symbol.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 9

SPECIAL FUNCTION REGISTERS

Table 5.  Special Function Registers
NAME DESCRIPTION SFR BIT FUNCTIONS AND BIT ADDRESSES RESET

ADDRESS 7 6 5 4 3 2 1 0  VALUE

BCR Bus Configuration Register 46Ah – – – WAITD BUSD – – – 07h (Note 1)
BTRH Bus Timing Register High 469h DW1 DW0 DWA1 DWA0 DR1 DR0 DRA1 DRA0 FFh (Note 2)
BTRL Bus Timing Register Low 468h WM1 WM0 ALEW – CR1 CR0 CRA1 CRA0 EFh (Note 2)
MIFCNTL MIF Control Register 495h – – – WDSBL BUSD – – –

MRBL MMR Base address Low 496h MA15 MA14 MA13 MA12 – – – MRBE F0h
MRBH MMR Base address High 497h MA23 MA22 MA21 MA20 MA19 MA18 MA17 MA16 0Fh
DS Data Segment 441h 00h
ES Extra Segment 442h 00h
CS Code Segment 443h 00h

33F 33E 33D 33C 33B 33A 339 338

IEH* Interrupt Enable High 427h EMRI EMTI EMER ECER ESPI – ETI0 ERI0 00h
337 336 335 334 333 332 331 330

IEL* Interrupt Enable Low 426h EA – EBUFF ET2 ET1 EX1 ET0 EX0 00h

IPA0 Interrupt Priority Assignment 0 4A0h – PT0 – PX0 00h
IPA1 Interrupt Priority Assignment 1 4A1h – PT1 – PX1 00h
IPA2 Interrupt Priority Assignment 2 4A2h – PBUFF – PT2 00h
IPA4 Interrupt Priority Assignment 4 4A4h – PTI0 – PRI0 00h
IPA5 Interrupt Priority Assignment 5 4A5h – PSPI – – 00h
IPA6 Interrupt Priority Assignment 6 4A6h – PMER – PCER 00h
IPA7 Interrupt Priority Assignment 7 4A7h – PMRI – PMTI 00h

387 386 385 384 383 382 381 380

P0* Port 0 430h A11D7 A10D6 A9D5 A8D4 A7D3 A6D2 A5D1 A4D0 FFh
38F 38E 38D 38C 38B 38A 389 388

P1* Port 1 431h T2EX T2 ;
SPICLK

SPITx SPIRx A3 A2 A1 WRH/ FFh

397 396 395 394 393 392 391 390

P2* Port 2 432h A19D15 A18D14 A17D13 A16D12 A15D11 A14D10 A13D9 A12D8 FFh
39F 39E 39D 39C 39B 39A 399 398

P3* Port 3 433h RD/ WRL/ T1 T0 INT1/ INT0/ TxD0 RxD0 FFh

P0CFGA Port 0 Configuration A 470h Note 3
P1CFGA Port 1 Configuration A 471h Note 3
P2CFGA Port 2 Configuration A 472h Note 3
P3CFGA Port 3 Configuration A 473h Note 3
P0CFGB Port 0 Configuration B 4F0h Note 3
P1CFGB Port 1 Configuration B 4F1h Note 3
P2CFGB Port 2 Configuration B 4F2h Note 3
P3CFGB Port 3 Configuration B 4F3h Note 3

227 226 225 224 223 222 221 220

PCON* Power Control Reg 404h – – – – – – PD IDL 00h
20F 20E 20D 20C 20B 20A 209 208

PSWH* Program Status Word High 401h SM TM RS1 RS0 IM3 IM2 IM1 IM0 Note 4
207 206 205 204 203 202 201 200

PSWL* Program Status Word Low 400h C AC – – – V N Z Note 4
217 216 215 214 213 212 211 210

PSW51* 80C51–compatible PSW 402h C AC F0 RS1 RS0 V F1 P Note 5

RTH0
Timer 0 extended reload, high
byte 455h 00h

RTH1
Timer 1 extended reload, high
byte 457h 00h

RTL0
Timer 0 extended reload, low
byte 454h 00h

RTL1
Timer 1 extended reload, low
byte 456h 00h

307 306 305 304 303 302 301 300

S0CON* Serial port 0 control register 420h SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00h



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 10

NAME RESETBIT FUNCTIONS AND BIT ADDRESSESSFRDESCRIPTION

 VALUE01234567ADDRESS

30F 30E 30D 30C 30B 30A 309 308

S0STAT* Serial port 0 extended status 421h – – – – FE0 BR0 OE0 STINT0 00h
S0BUF Serial port 0 buffer register 460h xxh
S0ADDR Serial port 0 address register 461h 00h

S0ADEN
Serial port 0 address enable
register 462h 00h

SCR System configuration register 440h – – – – PT1 PT0 CM PZ 00h
21F 21E 21D 21C 21B 21A 219 218

SSEL* Segment selection register 403h ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG R0SEG 00h
SWE Software Interrupt Enable 47Ah – SWE7 SWE6 SWE5 SWE4 SWE3 SWE2 SWE1 00h

357 356 355 354 353 352 351 350

SWR* Software Interrupt Request 42Ah – SWR7 SWR6 SWR5 SWR4 SWR3 SWR2 SWR1 00h
2C7 2C6 2C5 2C4 2C3 2C2 2C1 2C0

T2CON* Timer 2 control register 418h TF2 EXF2 RCLK0 TCLK0 EXEN2 TR2 C2 or
T2/

CP or
RL2/ 00h

2CF 2CE 2CD 2CC 2CB 2CA 2C9 2C8

T2MOD* Timer 2 mode control 419h – – – – – – T2OE DCEN 00h
TH2 Timer 2 high byte 459h 00h
TL2 Timer 2 low byte 458h 00h

T2CAPH
Timer 2 capture register, high
byte 45Bh 00h

T2CAPL
Timer 2 capture register, low
byte 45Ah 00h

287 286 285 284 283 282 281 280

TCON* Timer 0 and 1 control register 410h TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00h
TH0 Timer 0 high byte 451h 00h
TH1 Timer 1 high byte 453h 00h
TL0 Timer 0 low byte 450h 00h
TL1 Timer 1 low byte 452h 00h
TMOD Timer 0 and 1 mode control 45Ch GATE1 C1 or T1/ M1 M0 GATE0 C0 or T0/ M1 M0 00h

28F 28E 28D 28C 28B 28A 289 288

TSTAT* Timer 0 and 1 extended status 411h – – – – – T1OE – T0OE 00h
2FF 2FE 2FD 2FC 2FB 2FA 2F9 2F8

WDCON* Watchdog control register 41Fh PRE2 PRE1 PRE0 – – WDRUN WDTOF – Note 6
WDL Watchdog timer reload 45Fh 00h
WFEED1 Watchdog feed 1 45Dh xxh
WFEED2 Watchdog feed 2 45Eh xxh

NOTES:
1. Users should never write to the BCR register.
2. Users must ALWAYS INITIALIZE (Write) 00h to this register.
3. Port configurations default to Quasi–Bidirectional when the XA begins execution from Internal code memory after Reset, based on the

condition found on the EA/ pin. Thus, all PnCFGA registers will contain FFh and PnCFGB registers will contain 00h. When the XA begins
execution using External code memory, the default configuration for pins that are associated with the External bus will be Push–Pull. The
PnCFGA and PnCFGB register contents will reflect this difference.

4. SFR is loaded from the Reset vector.
5. All bits except F1, F0, and P are loaded from the Reset vector. Those bits are all 0.
6. The WDCON Reset value is E6h for a Watchdog Reset, E4h for all other Reset causes.  The Watchdog is always turned ON as one

consequence of RST/. Therefore, the user should turn OFF the Watchdog if immediate Watchdog operation is not desired: See the
Watchdog Timer section in this Data Sheet for a recommended code example.

GENERAL NOTES:
– SFRs marked with an asterisk (*) are bit–addressable.
– The XA–C3 implements an 8–bit SFR bus, as stated in Chapter 8 of the XA User Guide. All SFR accesses must be 8–bit operations.

Attempts to write 16 bits to an SFR will actually write only the lower 8 bits. Sixteen–bit SFR reads will return undefined data in the upper byte.
– Unimplemented bits in SFRs (indicated by ”–”} are unknown at all times. Ones should not be written to these bits since they may be used for

other purposes in future XA derivatives. In general, the Reset value shown for these unimplemented bits is 00h.
– The XA guards writes to all SFR bits that can be modified by hardware, including all SFR resident interrupt flags, as well as the WDTOF bit in

WDCON. This mechanism, called Read–Modify–Write Lockout, prevents loss of an interrupt (or other status) flag if a bit is written to directly
by hardware between the read and write of an instruction that performs a read–modify–write operation.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 11

MEMORY-MAPPED REGISTERS

Table 6.  Memory-Mapped Registers
Name Description Address Offset Operation ACCESS Reset Value

MESSAGE OBJECT REGISTERS (n = 0 – 31)
MnMIDH Message n Match ID High 000n4n3n2n1n00000b (n0h) R/W Word only xxxxh

MnMIDL Message n Match ID Low 000n4n3n2n1n00010b (n2h) R/W Word only x…x00b

MnMSKH Message n Mask High 000n4n3n2n1n00100b (n4h) R/W Word only xxxxh

MnMSKL Message n Mask Low 000n4n3n2n1n00110b (n6h) R/W Word only x…x000b

MnCTL Message n Control 000n4n3n2n1n01000b (n8h) R/W Byte 00000xxxb

MnBLR Message n Buffer Location 000n4n3n2n1n01010b (nAh) R/W Word only xxxxh

MnBSZ Message n Buffer Size 000n4n3n2n1n01100b (nCh) R/W Byte 00000xxxb

MnFCR Message n Fragmentation Count 000n4n3n2n1n01110b (nEh) R/W Byte 00xxxxxxb
CAN/CTL INTERRUPT COMPLETE (CIC) REGISTERS

MCPLH Message Complete Status Flags High 226h RC Word 0000h

MCPLL Message Complete Status Flags Low 224h RC Word 0000h

CANINTFLG CAN Interrupt Flag Register 228h RC Byte 00h

MCIR Message Complete Information 229h RO Byte 00h

MEIR Message Error Information 22Ah RO Byte 00h

FEENR Frame Error Enable 22Eh R/W Byte 00h

FESTR Frame Error Status 22Ch RC Byte 00h
SPI REGISTERS

SPICFG SPI Configuration 260h R/W Byte 00h

SPIDATA SPI Data 262h R/W Byte 00h

SPICS SPI Control and Status 263h R/W Byte 00h
CAN CORE BLOCK (CCB) REGISTERS

CANCMR CAN Core Command 270h R/W* Byte 01h (Note 1)

CANSTR CAN Core Status 271h RO Byte 00h

CANBTR CAN Core Bus Timing 272h R/W* Word 0000h

TxERC Tx Error Counter 274h R/W* Byte 00h

RxERC Rx Error Counter 275h R/W* Byte 00h

EWLR Error Warning Limit 276h R/W Byte 96h

ECCR Error Code Capture 278h RO Byte 00h

ALCR Arbitration Lost Capture 27Ah RO Byte 00h

GCTL Global Control 27Eh R/W Byte 00h
MEMORY INTERFACE (MIF) REGISTERS

MIFBTRH MIF Bus Timing Register High 293h R/W Byte FFh

MIFBTRL MIF Bus Timing Register Low 292h R/W Byte EFh

MBXSR
Message Buffer and XRAM Segment
Register 291h R/W Byte FFh

XRAMB XRAM Base Address 290h R/W Byte FEh

Possible Operations:  R/W = Read & Write, RO = Read Only, RC = Read then Clear via a service routine, W* = Writable only while the CAN
Core is in Reset mode, x = Undefined after Reset
NOTE:
1. SLPEN (Sleep Enable), CANCMR[3], is writable only when the CAN Core is in Normal mode.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 12

XA-C3 TIMER/COUNTERS
The XA has two standard 16–bit enhanced Timer/Counters: Timer 0
and Timer 1. Additionally, it has a third 16–bit Up/Down
timer/counter, T2. A central timing generator in the XA core provides
the time–base for all XA Timers and Counters. The timer/event
counters can perform the following functions:

– Measure time intervals and pulse duration

– Count External events

– Generate interrupt requests

– Generate PWM or timed output waveforms

All timer/counters (Timer 0, Timer 1 and Timer 2) can be
independently programmed to operate either as timers or event
counters. Timer 0 and Timer 1 are selectable via TMOD[6] and
TMOD[2], respectively. Timer 2 is selectable via T2CON[1]. All
timers may be dynamically read during program execution. All timers
count up unless otherwise stated.

When running in timer mode (as opposed to counter mode) the base
clock rate of all timers, including the Watchdog timer, is
user–programmable. The clock driving the timers is called TCLK
and is determined by the setting of two bits (PT1, PT0) (SCR[3:2]) in
the System Configuration Register  – See Table 5. The frequency of
TCLK may be selected to be the oscillator input divided by 4 (fc/4),

the oscillator input divided by 16 (fc/16), or the oscillator input

divided by 64 (fc/64). This gives a range of possibilities for the XA
timer functions, including baud rate generation and Timer 2 capture.
Note: This single SCR rate setting applies to all timers.

When timers T0, T1, or T2 are used in the counter mode, the timers
will increment whenever a falling edge (high–to–low transition) is
detected on an External clock pin. These inputs are sampled once
every two oscillator cycles, so it can take as many as four oscillator
cycles to detect a transition. Thus, the maximum count rate that can
be supported is fc /4. In general, the duty cycle of the timer clock
inputs is not important. However, any high or low state on the timer
clock input pins must be present for two oscillator cycles before it is
guaranteed to be “seen” by the timer logic.

Timer 0 and Timer 1
These two Timer/Counters have four operating modes, which are
selected by bit–pairs (M1, M0) in the TMOD register. Timer modes
1, 2, and 3 in XA are kept identical to the 80C51 timer modes for
code compatibility. Only the mode 0 is replaced in the XA by a more
powerful 16–bit auto–reload mode. This gives the XA timers a much
larger range when used as time bases.
The recommended M1, M0 settings for the different modes are
shown in Figure 6.

— — — — PT1 PT0 CM PZ

PT1 PT0 OPERATING
Prescaler selection.

0 0 Osc/4
0 1 Osc/16
1 0 Osc/64
1 1 Reserved
CM Compatibility Mode allows the XA to execute most translated 80C51 code on the XA. The 

XA register file must copy the 80C51 mapping to data memory and mimic the 80C51 indirect 
addressing scheme.

PZ Page Zero mode forces all program and data addresses to 16-bits only. This saves stack space 
and speeds up execution but limits memory access to 64k.

SU00589

SCR               Address:440
Not Bit Addressable
Reset Value: 00H

LSBMSB

Figure 5.  System Configuration Register (SCR)

GATE
C1 or
T1/ M1 M0 GATE

C0 or
T0/ M1 M0

LSBMSB

GATE Gating control when set. Timer/Counter “n” is enabled only while “INTn” pin is high and 
“TRn” control bit is set. When cleared Timer “n” is enabled whenever “TRn” control bit is set.

C/T Timer or Counter Selector cleared for Timer operation (input from internal system clock.) 
Set for Counter operation (input from “Tn” input pin).

M1 M0 OPERATING
0 0 16-bit auto-reload timer/counter
0 1 16-bit non-auto-reload timer/counter
1 0 8-bit auto-reload timer/counter
1 1 Dual 8-bit timer mode (timer 0 only)

SU01325

TIMER 1 TIMER 0

TMOD            Address:45C
Not Bit Addressable
Reset Value: 00H

Figure 6.  Timer/Counter Mode Control (TMOD) Register



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 13

New Enhanced Mode 0
For timers T0 or T1 the 13–bit count mode on the 80C51 (current
Mode 0) has been replaced in the XA with a 16–bit auto–reload
mode. Four additional 8–bit data registers (two per timer: RTHn and
RTLn) are created to hold the auto–reload values. In this mode, the
TH overflow will set the TF flag in the TCON register (see Figure 7)
and cause both the TL and TH counters to be loaded from the RTL
and RTH registers respectively.

These new SFRs will also be used to hold the TL reload data in the
8–bit auto–reload mode (Mode 2) instead of TH.

The overflow rate for Timer 0 or Timer 1 in Mode 0 may be
calculated as follows:

Timer_Rate = fosc / (N * (65536 – Timer_Reload_Value))

where N = the TCLK prescaler value: 4 (default), 16, or 64.

Mode 1
Mode 1 is the 16–bit non–auto reload mode.

Mode 2
Mode 2 configures the Timer register as an 8–bit Counter (TLn) with
automatic reload. Overflow from TLn not only sets TFn, but also

reloads TLn with the contents of RTLn, which is preset by software.
The reload leaves THn unchanged.

Mode 2 operation is the same for Timer/Counter 0.

The overflow rate for Timer 0 or Timer 1 in Mode 2 may be
calculated as follows:

Timer_Rate = fosc / (N * (256 – Timer_Reload_Value))

where N = the TCLK prescaler value: 4, 16, or 64.

Mode 3
Timer 1 in Mode 3 simply holds its count. The effect is the same as
setting TR1 = 0.

Timer 0 in Mode 3 establishes TL0 and TH0 as two separate
counters.  TL0 uses the Timer 0 control bits: C0 ; T0/, GATE0, TR0,
INT0/ and TF0. TH0 is locked into a timer function and takes over
the use of TR1 and TF1 from Timer 1. Thus, TH0 now controls the
“Timer 1” interrupt.

Mode 3 is provided for applications requiring an extra 8–bit timer.
When Timer 0 is in Mode 3, Timer 1 can be turned on and off by
switching it out of and into its own Mode 3, or can still be used by
the serial port as a baud rate generator, or in fact, in any application
not requiring an interrupt.

IT0

LSBMSB

BIT SYMBOL FUNCTION
TCON.7 TF1 Timer 1 overflow flag. Set by hardware on Timer/Counter overflow. 

This flag will not be set if T1OE (TSTAT.2) is set.
Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software.

TCON.6 TR1 Timer 1 Run control bit. Set/cleared by software to turn Timer/Counter 1 on/off.
TCON.5 TF0 Timer 0 overflow flag. Set by hardware on Timer/Counter overflow.

This flag will not be set if T0OE (TSTAT.0) is set.
Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software.

TCON.4 TR0 Timer 0 Run control bit. Set/cleared by software to turn Timer/Counter 0 on/off.
TCON.3 IE1 Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected.

Cleared when interrupt processed.
TCON.2 IT1 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered

external interrupts.
TCON.1 IE0 Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected.

Cleared when interrupt processed.
TCON.0 IT0 Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level

triggered external interrupts.
SU00604C

IE0IT1IE1TR0TF0TR1TF1

TCON            Address:410
Bit Addressable
Reset Value: 00H

Figure 7.  Timer/Counter Control (TCON) Register



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 14

CP or
RL2/

BIT SYMBOL FUNCTION
T2CON.7 TF2 Timer 2 overflow flag. Set by hardware on Timer/Counter overflow. Must be cleared by software.

TF2 will not be set when RCLK0, RCLK1, TCLK0, TCLK1 or T2OE=1.
T2CON.6 EXF2 Timer 2 external flag is set when a capture or reload occurs due to a negative transition on T2EX (and

EXEN2 is set). This flag will cause a Timer 2 interrupt when this interrupt is enabled. EXF2 is cleared by
software.

T2CON.5 RCLK0 Receive Clock Flag.
T2CON.4 TCLK0 Transmit Clock Flag. RCLK0 and TCLK0 are used to select Timer 2 overflow rate as a clock source for

UART0 instead of Timer T1.
T2CON.3 EXEN2 Timer 2 external enable bit allows a capture or reload to occur due to a negative transition on T2EX.
T2CON.2 TR2 Start=1/Stop=0 control for Timer 2.
T2CON.1 C2 or T2/ Timer or counter select. 

0=Internal timer
1=External event counter (falling edge triggered)

T2CON.0 CP or RL2/ Capture/Reload flag.
If CP/RL2 & EXEN2=1 captures will occur on negative transitions of T2EX.
If CP/RL2=0, EXEN2=1 auto reloads occur with either Timer 2 overflows or negative transitions at T2EX.
If RCLK or TCLK=1 the timer is set to auto reload on Timer 2 overflow, this bit has no effect.

SU001326

C2 or 
T2/

TR2EXEN2TCLK0RCLK0EXF2TF2

T2CON       Address:418
Bit Addressable
Reset Value: 00H

LSBMSB

Figure 8.  Timer/Counter 2 Control (T2CON) Register

New Timer-Overflow Toggle Output
In the XA, the timer module now has two outputs, which toggle on
overflow from the individual timers. The same device pins that are
used for the T0 and T1 count inputs are also used for the new
overflow outputs. An SFR bit (TnOE in the TSTAT register – see
Figure 9 –– is associated with each counter and indicates whether
Port–SFR data or the overflow signal is output to the pin. These
outputs could be used in applications for generating variable duty
cycle PWM outputs (changing the auto–reload register values).
Also, variable frequency (fosc/8 to fosc/8,388,608) outputs could be
achieved by adjusting the prescaler along with the auto–reload
register values.

Timer T2
Timer 2 in the XA is a 16–bit Timer/Counter which can operate as
either a timer or as an event counter. This is selected by {C2 or T2/}
(T2CON[1]) (see Figure 8). Upon timer T2 overflow/underflow, the
TF2 flag is set, which may be used to generate an interrupt. It can
be operated in one of three operating modes: auto–reload (up or
down counting), capture, or as the baud rate generator (for the
UART via SFRs T2CON and T2MOD – see Figure 10.
These modes are shown in Table 7.

Capture Mode
In the capture mode there are two options which are selected by bit
EXEN2 (T2CON[3]). If EXEN2  = 0, then timer 2 is a 16–bit timer or
counter, which upon overflowing sets bit TF2 (T2CON[7]), the timer
2 overflow bit. This will cause an interrupt when the timer 2 interrupt
is enabled.

If EXEN2 = 1, then Timer 2 still does the above, but with the added
feature that a 1–to–0 transition at External input T2EX causes the
current value in the Timer 2 registers, TL2 and TH2, to be captured
into registers RCAP2L and RCAP2H, respectively. In addition, the
transition at T2EX causes bit EXF2 (T2CON[6]) to be set. This will
cause an interrupt in the same fashion as TF2 when the Timer 2
interrupt is enabled. The capture mode is illustrated in Figure 11.

Auto-Reload Mode (Up or Down Counter)
In the auto–reload mode, the timer registers are loaded with the
16–bit value in T2CAPH and T2CAPL when the count overflows.
T2CAPH and T2CAPL are initialized by software. If the EXEN2 bit
(T2CON[3]) is set, the timer registers will also be reloaded and the
EXF2 flag T2CON[6] set when a 1–to–0 transition occurs at input
T2EX. The auto–reload mode is shown in Figure 12.

In this mode, Timer 2 can be configured to count up or down. This is
done by setting or clearing the DCEN (Down Counter Enable) bit
T2MOD[0] (see Table 7). The T2EX pin then controls the count
direction. When T2EX is high, the count is in the up direction, when
T2EX is low, the count is in the down direction.

Figure 12 shows Timer 2, which will count up automatically, since
DCEN = 0. In this mode there are two options selected by bit
EXEN2 in the T2CON register. If EXEN2 bit = 0, then Timer 2 counts
up to FFFFh and sets the TF2 (Overflow Flag) bit T2CON[7] upon
overflow. This causes the Timer 2 registers to be reloaded with the
16–bit value in T2CAPL and T2CAPH, whose values are preset by
software. If EXEN2 bit T2CON[3] = 1, a 16–bit reload can be
triggered either by an overflow or by a 1–to–0 transition at input
T2EX. This transition also sets the EXF2 bit. If enabled, either TF2
bit or EXF2 bit can generate the Timer 2 interrupt.

In Figure 13 where the DCEN bit = 1; this enables the Timer 2 to
count up or down. In this mode, the logic level of T2EX pin controls
the direction of count. When a logic ‘1’ is applied at pin T2EX, the
Timer 2 will count up. The Timer 2 will overflow at FFFFh and set the
TF2 bit flag, which can then generate an interrupt if enabled. This
timer overflow also causes the 16–bit value in T2CAPL and
T2CAPH to be reloaded into timer registers TL2 and TH2,
respectively.

A logic ‘0’ at pin T2EX causes Timer 2 to count down. When
counting down, the timer value is compared to the 16–bit value
contained in T2CAPH and T2CAPL. When the value is equal, the



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 15

timer register is loaded with FFFF hex. The underflow also sets the
TF2 flag, which can generate an interrupt if enabled.

The External flag EXF2 bit toggles when Timer 2 underflows or
overflows. This EXF2 bit can be used as a 17th bit of resolution, if
needed. the EXF2 bit flag does not generate an interrupt in this
mode. As the baud rate generator, timer T2 is incremented by TCLK.

Baud Rate Generator Mode
By setting the TCLK0 and/or RCLK0 in T2CON, Timer 2 can be
chosen as the baud rate generator for the Transmitter and/or
Receiver sides of UART–0.

Programmable Clock-Out
A 50% duty cycle clock can be programmed to come out on P1.6.
This pin, besides being a regular I/O pin, has two alternate
functions. Either it can be programmed to input the External clock for
Timer/Counter 2 or to output a 50% duty cycle clock.

To configure the Timer/Counter 2 as a clock generator, bit {C2 or
T2/} (T2CON[1]) must be cleared and bit T2OE (T2MOD[1]) must be
set. Bit TR2 (T2CON[2]) also must be set to start the timer.

The Clock–Out frequency depends on the oscillator frequency and
the reload value of Timer 2 capture registers (TCAP2H, TCAP2L) as
shown in this equation:

TCLK
2� (65536–TCAP2H, TCAP2L)

In the Clock–Out mode Timer 2 roll–overs will not generate an
interrupt. This is similar to when it is used as a baud–rate generator.
It is possible to use Timer 2 as a baud–rate generator and a clock
generator simultaneously. Note, however, that the baud–rate will be
1/8 of the Clock–Out frequency.

Table 7.  Timer 2 Operating Modes
Bits of Special Function Registers

TR2
T2CON[2]

CP or RL2/
T2CON[0]

RCLK0 or TCLK0
T2CON[5] or T2CON[4]

DCEN
T2MOD[0]

MODE

0 X X X Timer off (stopped)

1 0 0 0 16–bit auto–reload, counting up

1 0 0 1 16–bit auto–reload, counting up or down depending on T2EX pin

1 1 0 X 16–bit capture

1 X 1 X Baud rate generator

T0OE

LSBMSB

BIT SYMBOL FUNCTION
TSTAT.2 T1OE When 0, this bit allows the T1 pin to clock Timer 1 when in the counter mode. 

When 1, T1 acts as an output and toggles at every Timer 1 overflow.
TSTAT.0 T0OE When 0, this bit allows the T0 pin to clock Timer 0 when in the counter mode. 

When 1, T0 acts as an output and toggles at every Timer 0 overflow.
SU00612B

—T1OE—————

TSTAT           Address:411
Bit Addressable
Reset Value: 00H

Figure 9.  Timer 0 and 1 Extended Status (TSTAT)

DCEN

BIT SYMBOL FUNCTION
T2MOD.5 RCLK1 Receive Clock Flag.
T2MOD.4 TCLK1 Transmit Clock Flag. RCLK1 and TCLK1 are used to select Timer 2 overflow rate as a clock source

for UART1 instead of Timer T1.
T2MOD.1 T2OE When 0, this bit allows the T2 pin to clock Timer 2 when in the counter mode. 

When 1, T2 acts as an output and toggles at every Timer 2 overflow.
T2MOD.0 DCEN Controls count direction for Timer 2 in autoreload mode.

DCEN=0 counter set to count up only
DCEN=1 counter set to count up or down, depending on T2EX (see text).

SU00610B

T2OE——TCLK1RCLK1——

T2MOD               Address:419
Bit Addressable
Reset Value: 00H

LSBMSB

Figure 10.  Timer 2 Mode Control (T2MOD)



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 16

TCLK
C2 or T2/ = 0

TR2

Control

TL2
(8-bits)

TH2
(8-bits) TF2

T2CAPL T2CAPH

EXEN2

Control

EXF2

Timer 2
Interrupt

T2EX Pin

Transition
Detector

T2 Pin

Capture

SU01327

C2 or T2/ = 1

Figure 11.  Timer 2 in Capture Mode

TCLK C2 or T2/ = 0

C2 or T2/ = 1

TR2

Control

TL2
(8-bits)

TH2
(8-bits)

TF2
T2CAPL T2CAPH

EXEN2

Control

EXF2

Timer 2
Interrupt

T2EX Pin

Transition
Detector

T2 Pin

Reload

SU01328

Figure 12.  Timer 2 in Auto-Reload Mode (DCEN = 0)



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 17

TCLK C2 or T2/ = 0

C2 or T2/ = 1

TL2 TH2

TR2

CONTROL
T2 PIN

SU01329

FFH FFH

T2CAPL T2CAPH

(UP COUNTING RELOAD VALUE) T2EX PIN

TF2 INTERRUPT

COUNT
DIRECTION
1 = UP
0 = DOWN

EXF2

OVERFLOW

(DOWN COUNTING RELOAD VALUE)

TOGGLE

Figure 13.  Timer 2 Auto Reload Mode (DCEN = 1)



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 18

WATCHDOG TIMER
The watchdog timer subsystem protects the system from incorrect
code execution by causing a system Reset when the watchdog
timer underflows as a result of a failure of software to feed the timer
prior to the timer reaching its terminal count. It is important to note
that the watchdog timer is running after any type of Reset and must
be turned off by user software if the application does not use the
watchdog function.

Watchdog Function
The watchdog consists of a programmable prescaler and the main
timer. The prescaler derives its clock from the TCLK source that also
drives timers 0, 1, and 2. The watchdog timer subsystem consists of
a programmable 13–bit prescaler, and an 8–bit main timer. The main
timer is clocked (decremented) by a tap taken from one of the top
8–bits of the prescaler as shown in Figure 14.

The clock source for the prescaler is the same as TCLK (same as
the clock source for the timers). Thus the main counter can be
clocked as often as once every 32 TCLKs (see Table 8). The
watchdog generates an underflow signal (and is autoloaded from
WDL) when the watchdog is at count 0 and the clock to decrement
the watchdog occurs. The watchdog is 8 bits wide and the autoload
value can range from 0 to FFh. (The autoload value of 0 is
permissible since the prescaler is cleared upon autoload).

This leads to the following user design equations:

tMIN = tOSC × 4 × 32 (W = 0, N = 4)

tMAX = tOSC × 64 × 4096 × 256 (W = 255, N = 64)

tD = tOSC × N × P × (W + 1)

where

tOSC   is the oscillator period

N is the selected prescaler tap value

W is the main counter autoload value

P is the prescaler value from Table 8

tMIN is the minimum watchdog time–out value (when the
autoload value is 0)

tMAX is the maximum time–out value (when the autoload value
is FFh)

tD is the design time–out value.

The watchdog timer is not directly loadable by the user. Instead, the
value to be loaded into the main timer is held in an autoload register.
In order to cause the main timer to be loaded with the appropriate
value, a special sequence of software action must take place. This
operation is referred to as feeding the watchdog timer.

To feed the watchdog, two instructions must be sequentially
executed successfully. No intervening SFR accesses are allowed,
so interrupts should be disabled before feeding the watchdog. The
instructions should move A5h to the WFEED1 register and then 5Ah
to the WFEED2 register. If WFEED1 is correctly loaded and
WFEED2 is not correctly loaded, then an immediate watchdog
Reset will occur.  The program sequence to feed the watchdog timer
or cause new WDCON settings to take effect is as follows:

clr ea ; disable global interrupts.
mov.b wfeed1,#A5h ; do watchdog feed part 1
mov.b wfeed2,#5Ah ; do watchdog feed part 2
setb ea ; re–enable global interrupts.

This sequence assumes that the XA interrupt system is enabled and
there is a possibility of an interrupt request occurring during the feed
sequence. If an interrupt was allowed to be serviced and the service
routine contained any SFR access, it would trigger a watchdog
Reset. If it is known that no interrupt could occur during the feed
sequence, the instructions to disable and re–enable interrupts may
be removed.

The software must be written so that a feed operation takes place
every tD seconds from the last feed operation. Some tradeoffs may
need to be made. It is not advisable to include feed operations in
minor loops or in subroutines unless the feed operation is a specific
subroutine.

To turn the watchdog timer completely off, the following code
sequence should be used:

mov.b wdcon,#0 ; set WD control register to clear
 WDRUN.

mov.b wfeed1,#A5h ; do watchdog feed part 1
mov.b wfeed2,#5Ah ; do watchdog feed part 2

This sequence assumes that the watchdog timer is being turned off
at the beginning of the User’s initialization code and that the XA
interrupt system has not yet been enabled. If the watchdog timer is
to be turned off at a point when interrupts may be enabled,
instructions to disable and re–enable interrupts should be added to
this sequence.

Watchdog Control Register (WDCON)
The Reset values of the WDCON and WDL registers will be such
that the watchdog timer has a timeout period of 4 × 4096 × tOSC and
the watchdog is running. WDCON can be written by software but the
changes only take effect after executing a valid watchdog feed
sequence.

Table 8.  Prescalar Select Values in WDCON
PRE2 PRE1 PRE0 DIVISOR

0 0 0 32
0 0 1 64
0 1 0 128
0 1 1 256
1 0 0 512
1 0 1 1024
1 1 0 2048
1 1 1 4096

Watchdog Detailed Operation
When External Reset is applied, the following takes place:
� Watchdog run control bit set to ON (1).

� Autoload register WDL set to 00 (min. count).

� Watchdog time–out flag cleared.

� Prescaler is cleared.

� Prescaler tap set to the highest divide.

� Autoload takes place.

When coming out of a hardware Reset, the software should load the
autoload register and then feed the watchdog (i.e., cause an
autoload).
If the watchdog is running and happens to underflow at the time the
External Reset is applied, the watchdog time–out flag will be
cleared.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 19

PRE2 PRE1 PRE0 — — WDRUN WDTOF WDCON

8–BIT DOWN 
COUNTER

PRESCALERTCLK

MOV  WFEED1,#A5H
MOV  WFEED2,#5AH

WATCHDOG FEED SEQUENCE

WDL

SU00581A

—

INTERNAL RESET

Figure 14.  Watchdog Timer in XA-C3

When the watchdog underflows, the following action takes place
(see Figure 14):
� Autoload takes place.

� Watchdog time–out flag is set

� Watchdog run bit unchanged.

� Autoload (WDL) register unchanged.

� Prescaler tap unchanged.

� All other device action same as External Reset.

Note that if the watchdog underflows, the Program counter will be
loaded from the Reset vector as in the case of an internal Reset.
The watchdog time–out flag can be examined to determine if the
watchdog has caused the Reset condition. The watchdog time–out
flag bit can be cleared by software.

WDCON Register Bit Definitions

WDCON[7] PRE2 Prescaler Select 2, Reset to 1

WDCON[6] PRE1 Prescaler Select 1, Reset to 1

WDCON[5] PRE0 Prescaler Select 0, Reset to 1

WDCON[2] WDRUN Watchdog Run Control bit, Reset to 1

WDCON[1] WDTOF Timeout flag

UART
The XA–C3 includes 1 UART port (UART–0) that is compatible with
the enhanced UART used on the 8xC51FB. Baud rate selection is
somewhat different due to the clocking scheme used for the XA
timers.

Four other enhancements have been made to UART operation:
First, there are separate interrupt vectors for UART transmit and
receive functions. Second, the UART–0 transmitter has been
double–buffered, allowing packed transmission of data with no gaps
between bytes and less critical interrupt service routine timing.
Third, a break detect function has been added to UART–0. This
operates independently of the UART and provides a start–of–break
status bit that the User program may use to test BR0 (S0STAT[2]).
Fourth, an Overrun Error flag has been added to detect missed
characters in the received data stream.

The UART baud rate is determined by either a fixed division of the
oscillator (in UART–0 Modes 0 and 2) or by the Timer 1 or Timer 2
overflow rate (in UART–0 Modes 1 and 3).

Timer 1 defaults to clock UART–0. Timer 2 can clock UART–0
through T2CON via bits RCLK0 (T2CON[5]) and/or TCLK0
(T2CON[4]).

The serial port receive and transmit registers are both accessed at
Special Function Register S0BUF.  Writing to S0BUF loads the
transmit register, and reading S0BUF accesses the physically
separate receive register.

The serial port can operate in 4 modes:

Mode 0: Serial I/O expansion mode.  Serial data enters and exits
through RxD. TxD outputs the shift clock. 8 bits are
transmitted/received (LSB first). (The baud rate is fixed at 1/16 the
oscillator frequency.)

Mode 1: Standard 8–bit UART mode.  10 bits are transmitted
(through TxD) or received (through RxD): a start bit (0), 8 data bits
(LSB first), and a stop bit (1). On receive, the stop bit goes into bit
RB8_0 (S0CON[2]). The baud rate is variable via Timer 1 or Timer 2
overflow rates.

Mode 2: Fixed rate 9–bit UART mode.  11 bits are transmitted
(through TxD) or received (through RxD): start bit (0), 8 data bits
(LSB first), a programmable 9th data bit, and a stop bit (1). On
Transmit, the 9th data bit TB8_0 (S0CON[3]) can be assigned the
value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could
be moved into TB8_0. On receive, the 9th data bit goes into bit
RB8_0, while the stop bit is ignored. The baud rate is programmable
to 1/32 of the oscillator frequency.

Mode 3: Standard 9–bit UART mode.  11 bits are transmitted
(through TxD) or received (through RxD): a start bit (0), 8 data bits
(LSB first), a programmable 9th data bit, and a stop bit (1). In fact,
Mode 3 is the same as Mode 2 in all respects except baud rate. The
baud rate in Mode 3 is variable via Timer 1 or Timer 2 overflow
rates.

In all four modes, transmission is initiated by any instruction that
uses S0BUF as a destination register. Reception is initiated in Mode
0 by the condition RI_0 (S0CON[0]) = 0 AND REN_0 (S0CON[4]) =



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 20

1. Reception is initiated in Mode 1, 2, or 3 by the incoming start bit if
REN_0 = 1.

Serial Port Control Register
The serial port control and status register is the Special Function
Register S0CON, shown in Figure 16. This register contains not only
the mode selection bits, but also the 9th data bit for transmit and
receive TB8_0 (S0CON[3]) and RB8_0 (S0CON[2]), and the serial
port interrupt bits Transmit Interrupt flag TI_0 (S0CON[1]) and
Receive Interrupt flag RI_0 (S0CON[0]) .

Transmit Interrupt Flag
In order to allow easy use of the double–buffered UART–0
transmitter feature, the TI_0 flag is set by the UART–0 hardware
under two conditions. The first condition is the completion of any
byte transmission. This occurs at the end of the stop bit in modes 1,
2, or 3, or at the end of the eighth data bit in mode 0. The second
condition is when S0BUF is written while the UART–0 transmitter is
idle.

Generally, UART transmitters generate one interrupt per byte
transmitted. However, UART–0 generates one additional interrupt
(as defined by the stated conditions for setting the TI_0 flag). This
additional interrupt does not occur if double–buffering is bypassed
as explained below. Note: If character–oriented transmission is used
(not block–transmission of characters), there could be a second
interrupt for each character transmitted, depending on the timing of
the writes to S0BUF. For this reason, it is generally better to bypass
double–buffering when UART–0 is used in character–oriented
mode. This is also true if UART–0 is polled rather than
interrupt–driven. The interrupt occurs at the end of the last byte
transmitted when the UART becomes idle. Among other things, this
allows a program to determine when a message has been
transmitted completely. The interrupt service routine should handle
this additional interrupt.

The recommended way to use transmit double–buffering in an
application program is to have the UART interrupt service routine
handle a single byte for each interrupt occurrence. Thus, the
program will not require any special considerations for
double–buffering. Transmitted bytes will then be tightly packed with
no intervening gaps. Note: Be aware that higher priority interrupts
may cause delays in servicing a transmitter interrupt, and this would
defeat double–buffering.

9-Bit Mode
Because the ninth data bit TB8_0 (S0CON[3]) is not
double–buffered, you must insure S0CON[3] contains the intended
ninth data bit whenever it is transmitted. Alternatively, to synchronize
the ninth data bit with the rest of the data stream, you could bypass
double–buffering.

Bypassing Double-Buffering
The UART transmitter may be used as if it is single–buffered. The
recommended UART transmitter interrupt service routine (ISR)
technique to bypass double–buffering first clears the TI_0 flag
(S0CON[1]) upon entry into the ISR, as in standard practice. This
clears the interrupt that activated the ISR. Secondly, the TI_0 flag is
cleared immediately following each write to S0BUF. This clears the
interrupt flag that would otherwise direct the program to write to the
second transmitter buffer. If there is any possibility that a higher
priority interrupt might become active between the write to S0BUF
and the clearing of the TI_0 flag, the interrupt system may have to

be temporarily disabled during that sequence by clearing, then
setting the EA bit (IEL[7]).

CLOCKING SCHEME AND BAUD RATE
GENERATION

Clock Rates for all UART Modes
For UART Modes 0 and 2 the UART clock rate is determined by a
fixed division of the oscillator clock. For Modes 1 and 3 the UART
clock rate is determined by the overflow rates of either T1 or T2.

Baud Rates for UART Modes 0 and 2
In UART Mode 0, the baud rate is fixed at fosc/16. In Mode 2,

however, it is fixed rate at fosc/32.

Baud Rate Calculations for UART Modes 0 and 2
Baud Rate for UART Mode 0:

Baud_Rate = fosc/16

Baud Rate for UART Mode 2:
Baud_Rate = fosc/32

Baud Rates for UART Modes 1 and 3
Table 9 shows the relationship of TCLK to pre–scalar settings for all
Timers T0, T1, and T2.

Table 9.  TCLK Frequencies
Pre–scalar

Value
PT1 ; SCR[3] PT0 ;

SCR[2]
TCLK

4 0 0 fosc/4
16 0 1 fosc/16
64 1 0 fosc/64
– 1 1 reserved

Thus, when Timers T0, T1, and T2 are used to establish the baud
rate for Baud Clock, the maximum speed of timers/(Baud Clock) is
fosc/4 (since the minimum pre–scalar value N is equal to 4).
Consequently, the maximum Baud_Rate equals Timer_Rate (timer
overflow) divided by 16, i.e., fosc/64.

Baud Rate Calculations for UART Modes 1 and 3

Baud Rate calculations for UART Mode 1 and 3:

Baud_Rate = Timer_Rate/16

Timer_Rate = fosc/(N x (Timer_Range – Timer_Reload_Value))

where N = the TCLK prescaler value (4, 16, or 64).
and Timer_Range = 256 for Timer 1 in Mode 2.
and Timer_Range = 65536 for Timer 1 in Mode 0 and
Timer 2 in count–up mode.

The timer reload value may be calculated as follows:
Timer_Reload_Value = Timer_Range –
(fosc/(Baud_Rate*N*16))

NOTES:
1. The maximum baud rate for UART–0 in Mode 1 or 3 is fosc/64.

2. The lowest possible baud rate (for a given oscillator frequency
and N value) may be found by using a timer reload value of 0.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 21

3. The timer reload value may never be larger than the timer range.

4. If a timer reload value calculation gives a negative or fractional
result, the baud rate requested is not possible at the given
oscillator frequency and N value.

Using Timer 2 to Generate Baud Rates
Timer T2 is a 16–bit up/down counter. As a baud rate generator,
Timer 2 is selected as a clock source for UART–0 transmitter and/or
receiver by setting TCLK0 and/or RCLK0 in T2CON (see Table 10).
As the baud rate generator, T2 is incremented as fosc/N where N =
4, 16, or 64 depending on TCLK as programmed in SCR bits PT1
(SCR[3]) and PTO (SCR[2]). See Table 11).

NOTE: Pin T2EX [P1.7] acts as an additional External interrupt
“INT2/” whenever Timer T2 is used as a baud rate generator.

Table 10.  T2CON Settings
T2CON
0x418

T2CON[5] T2CON[4]

RCLK0 TCLK0

Table 11.  Prescaler Select for Timer Clock
SCR
0x440

SCR[3] SCR[2]

PT1 PT0

STINT0

BIT SYMBOL FUNCTION
S0STAT.3 FE0 Framing Error flag is set when the receiver fails to see a valid STOP bit at the end of the frame.

Cleared by software.
S0STAT.2 BR0 Break Detect flag is set if a character is received with all bits (including STOP bit) being logic ‘0’. Thus

it gives a “Start of Break Detect” on bit 8 for Mode 1 and bit 9 for Modes 2 and 3. The break detect
feature operates independently of the UARTs and provides the START of Break Detect status bit that
a user program may poll. Cleared by software.

S0STAT.1 OE0 Overrun Error flag is set if a new character is received in the receiver buffer while it is still full (before
the software has read the previous character from the buffer), i.e., when bit 8 of a new byte is
received while RI_0 in S0CON is still set. Cleared by software.

S0STAT.0 STINT0 This flag must be set to enable any of the above status flags to generate a receive interrupt (RI_0).
The only way it can be cleared is by a software write to this register.

SU01315

OE0BR0FE0————

S0STAT Address: S0STAT 421
Bit Addressable
Reset Value: 00H

LSBMSB

Figure 15.  Serial Port Extended Status (S0STAT) Register

Note: See also Figure 17 regarding Framing Error flag.

UART Interrupt Scheme
There are separate interrupt vectors for UART–0 transmit and
receive functions (see Table 12 below).

Table 12.  Vector Locations for UART in XA
Vector Address Interrupt Source Arbitration

00A0h – 00A3h UART 0 Receiver 10

00A4h – 00A7h UART 0 Transmitter 11

NOTE:
The transmit and receive vectors could contain the same ISR
address to work like an 8051 interrupt scheme.

Multiprocessor Communications
Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received. The 9th
one goes into bit RB_8 (S0CON[2]). Then comes a stop bit.
UART–0 can be programmed such that when the stop bit is
received, the serial port interrupt will be activated only if RB_8 = 1.
This feature is enabled by setting bit SM2_0 (S0CON[5]).  A way to
use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one
of several slaves, it first sends out an address byte which identifies
the target slave. An address byte differs from a data byte in that the
9th bit is 1 in an address byte and 0 in a data byte. With SM2_0 = 1,
no slave will be interrupted by a data byte. An address byte,
however, will interrupt all slaves, so that each slave can examine the

received byte and see if it is being addressed. The addressed slave
will clear its SM2_0 bit and prepare to receive the data bytes that will
be coming. The slaves that weren’t being addressed leave their
SM2_0 bits set and go on about their business, ignoring the
incoming data bytes.

SM2_0 has no effect in UART Mode 0, and in UART Mode 1 can be
used to check the validity of the stop bit although this is better done
with the Framing Error  flag (FE0) {S0STAT[3]}. In a Mode 1
reception, if SM2_0 = 1, the receive interrupt will not be activated
unless a valid stop bit is received.

Error Handling, Status Flags and Break Detect
UART–0 has the four error flags as described in Figure 15.

Automatic Address Recognition
Automatic Address Recognition is a feature which allows UART–0 to
recognize certain addresses in the serial bit stream by using
hardware to make the comparisons. This feature saves a great deal
of software overhead by eliminating the need for the software to
examine every serial address which passes by the serial port. This
feature is enabled by setting the SM2_0 bit. In the 9–bit UART
Modes (Mode 2 and Mode 3) the Receive Interrupt flag (RI_0)
(S0CON[0]) will be automatically set when the received byte
contains either the “Given” address or the “Broadcast” address. The
9–bit mode requires that the 9th information bit is a 1 to indicate that
the received information is an address and not data. Automatic
address recognition is shown in Figure 16.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 22

Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the
Given slave address or addresses. All of the slaves may be
contacted by using the Broadcast address. Two special Function
Registers are used to define the slave’s address, S0ADDR, and the
address mask, S0ADEN. S0ADEN is used to define which bits in the
S0ADDR are to be used and which bits are “don’t care”. The
S0ADEN mask can be logically ANDed with the S0ADDR to create
the “Given” address which the master will use for addressing each
of the slaves. Use of the Given address allows multiple slaves to be
recognized while excluding others. The following examples will help
to show the versatility of this scheme:

Slave 0 S0ADDR = 1100  0000
S0ADEN = 1111  1101
Given = 1100 00X0

Slave 1 S0ADDR = 1100 0000
S0ADEN = 1111 1110
Given = 1100 000X

In the above example S0ADDR is the same and the S0ADEN data
is used to differentiate between the two slaves. Slave 0 requires a 0
in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is
ignored. A unique address for Slave 0 would be 1100 0010 since
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address which has bit 0 = 0 (for
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed
with 1100 0000.

In a more complex system the following could be used to select
slaves 1 and 2 while excluding slave 0:

Slave 0 S0ADDR = 1100  0000
S0ADEN = 1111  1001
Given = 1100 0XX0

Slave 1 S0ADDR = 1110  0000
 S0ADEN = 1111  1010

Given = 1110 0X0X

Slave 2 S0ADDR = 1110  0000
S0ADEN = 1111  1100
Given = 1110 00XX

In the above example the differentiation among the 3 slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and
it can be uniquely addressed by 1110 and 0101. Slave 2 requires
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0
and 1 and exclude Slave 2 use address 1110 0100, since it is
necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the
logical OR of S0ADDR and S0ADEN. Zeros in this result are treated
as don’t–cares. In most cases, interpreting the don’t–cares as ones,
the broadcast address will be FF hexadecimal.

Upon Reset, S0ADDR and S0ADEN are loaded with 0s. This
produces a given address of all “don’t cares” as well as a Broadcast
address of all “don’t cares”. This effectively disables the Automatic
Addressing mode and allows the microcontroller to use standard
UART drivers which do not make use of this feature.

BIT SYMBOL FUNCTION
S0CON.5 SM2_0 Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2_0 is set to 1, then

RI_0 will not be activated if the received 9th data bit (RB8_0) is 0. In Mode 1, if SM2_0=1 then RI_0 will not be
activated if a valid stop bit was not received. In Mode 0, SM2_0 should be 0.

S0CON.4 REN_0 Enables serial reception. Set by software to enable reception. Clear by software to disable reception.
S0CON.3 TB8_0 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired. The TB8_0 bit is

not double buffered. See text for details.
S0CON.2 RB8_0 In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, if SM2_0=0, RB8_0 is the stop bit that was

received. In Mode 0, RB8_0 is not used.
S0CON.1 TI_0 Transmit interrupt flag. Set when another byte may be written to the UART transmitter. See text for details.

Must be cleared by software.
S0CON.0 RI_0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the end of the stop bit time

in the other modes (except see SM2_0). Must be cleared by software.

Where SM0_0, SM1_0 specify the serial port mode, as follows:

SM0_0 SM1_0 Mode Description Baud Rate
0 0 0 shift register fOSC/16
0 1 1 8-bit UART variable
1 0 2 9-bit UART fOSC/32
1 1 3 9-bit UART variable

SU01330

RI_0TI_0RB8_0TB8_0REN_0SM2_0SM1_0SM0_0

S0CON Address: S0CON 420

Bit Addressable
Reset Value: 00H

LSBMSB

Figure 16.  Serial Port Control (S0CON) Register



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 23

D0 D1 D2 D3 D4 D5 D6 D7 D8

STOP 
BIT

DATA BYTE ONLY IN 
MODE 2, 3

START 
BIT

SU01331

— — — — FE0 BR0 OE0 STINT0 S0STAT

if 0, sets FE

Figure 17.  UART Framing Error Detection

SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 S0CON

D0 D1 D2 D3 D4 D5 D6 D7 D8

1
1

1
0

COMPARATOR

1 1 X

RECEIVED ADDRESS D0 TO D7

PROGRAMMED ADDRESS

IN UART MODE 2 OR MODE 3 AND SM2_0 = 1:
     INTERRUPT IF REN_0=1, RB8_0=1 AND “RECEIVED ADDRESS” = “PROGRAMMED ADDRESS”
– WHEN OWN ADDRESS RECEIVED,  CLEAR SM2_0 TO RECEIVE DATA BYTES
– WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2_0 TO WAIT FOR NEXT ADDRESS.

SU01332

Figure 18.  UART Multiprocessor Communication, Automatic Address Recognition

INPUT/OUTPUT PORT PIN CONFIGURATION
Each I/O port pin can be user–configured to one of four modes:
Quasi–Bidirectional (essentially the same as standard 80C51 family
I/O ports), Open–Drain, Push–Pull, and Off (High Impedance). After
Reset, the default configuration is Quasi–Bidirectional.

I/O port pin configurations are determined by the settings in port
configuration SFRs. There are two SFRs for each port, called
PnCFGA and PnCFGB, where “n” is the port number. One bit in
each of the two SFRs relates to the setting for the corresponding
port pin, allowing any combination of the four modes to be mixed on
any port pins. For instance, the mode of port 1 pin 3 (P1.3) is
controlled by setting bit 3 (P1CFGA[3] and P1CFGB[3]).

Table 13 shows the configuration register settings for the four port
pin modes. The DC electrical characteristics of each mode may be
found in Table 19.

Table 13.  Port Configuration Register Settings

PnCFGB PnCFGA Port Pin Mode

0 0 Open–Drain

0 1 Quasi–Bidirectional

1 0 Off (High Impedance)

1 1 Push–Pull

Note: Mode changes may cause glitches to occur during transitions.
When modifying both registers, WRITE instructions should be
carried out consecutively.

EXTERNAL BUS
If off chip code is selected (through the use of the EA/ pin), initial
code fetches will be done within a full 20–bit address space.  The
External PROGRAM/DATA bus provides 16 bit width in a 20–bit
ADDRESS space.

RESET
Refer to Figure 19 for a recommended Reset circuit example.

VDD

R

C

RESET

XA

SOME TYPICAL VALUES FOR R AND C:
R = 100K, C = 1.0µF
R = 1.0M, C = 0.1µF

(ASSUMING THAT THE VDD RISE TIME IS 1ms OR LESS) SU00702

Figure 19.  Recommended Reset Circuit



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 24

RST/Pin Properties and Requirements
� Active LOW for improved noise immunity

� Schmitt Trigger with Threshold = 0.7 Vdd

� RST/ must be low for the longer of 10 µs or 10 clocks

� If EA/ = 1, all Port pins are set to Quasi–Bidirectional mode

� If EA/ = 0, all External Bus pins are set to Push–Pull mode

Power-On Reset
� Must be > 10 msec to allow the on–chip oscillator to stabilize

Other Reset Effects
� Register File is zeroed except [R7] USP/SSP is set to 100h

� Internal DATA RAM is not affected

� All maskable interrupts are disabled

� DS, ES, CS, SSEL, PZ, CM, PT0 and PT1 are zeroed

� The Watchdog Timer is turned ON

Reset Timing

The EA/ pin is sampled on the rising edge of the Reset (RST/) pulse.
The result of this sampling determines whether the device is to
begin execution from internal or External PROGRAM memory.
Specifically, if EA/ is pulled high, the XA starts in Single–Chip mode.

Lastly, after RST/ is released, the {WAIT ; Vpp ; EA/} pin becomes a
bus WAIT signal for External bus transactions.

P3.5 is weakly pulled high whenever RST/  is asserted.  Given EA/
is used at RESET to request code starts from External memory, this
weak pull up assures the PXAC3 will set–up a 16 bit External bus.
Thus, if External code operation is desired, the User must NEVER
put a LOW on P3.5 during RESET.

Note: EA/  must be held for eight equivalent oscillator clock periods
after RST/  is deasserted (i.e., after RST/  returns to ONE) to
guarantee that the desired EA/  value is latched correctly.

The relationship of EA/  timing with respect to both RST/  and ALE
signals is shown in Figure 20.

RST/

EA/

ALE

< 1 CLK

At least 8 equivalent CLK periods

At least 5 equivalent CLK periods

EA/ Held Stable

Alternate “Hold” reference

SU01333

Figure 20.  EA/ Timing Diagram

Power Reduction Modes
The XA–C3 supports Idle and Power–Down modes of power
reduction. The Idle mode leaves some peripherals running to allow
them to wake up the processor when an interrupt is generated. The
Power–Down mode stops the oscillator in order to minimize power.
The processor can be made to exit Power–Down mode via Reset or
one of the External interrupt inputs. In order to use an External
interrupt to re–activate the XA while in Power–Down mode, the
External interrupt must be enabled and be configured to
level–sensitive mode. In Power–Down mode, the power supply
voltage may be reduced to the RAM keep–alive voltage (2V),
retaining the RAM, register, and SFR values at the point where the
Power–Down mode was entered.

Interrupts

Interrupt Types

There are four types of interrupts:
� Event Interrupts  – service peripherals such as UARTs and

timers.

� Software Interrupts  – demote the priority level of a running Event
Interrupt below the lowest Event priority level (i.e., 9), thereby
permitting lower priority Event Interrupts to run.

� Trap Interrupts  –accomplish multi–tasking services, such as
RTOS, via non–maskable interrupts.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 25

� Exception Interrupts  – process non–maskable events, such as
Reset, Stack Overflow, and Divide–by–zero.

The XA–C3 supports 42 vectored interrupts. These include 13
maskable Event Interrupts, 7 Software Interrupts, 16 Trap interrupts,
and 6 Exception Interrupts. The number of Event Interrupts is
related to the number of on–chip peripherals. The XA–C3 supports
13 maskable Event Interrupts. However, Software, Trap, and
Exception Interrupts are standardized within the XA core. For core
details refer to the XA User Guide.

Interrupt Structures

Four tables provide details of the XA-C3 Interrupt structure.
� Table 14 defines the sixteen interrupt priority levels

� Table 15 describes the Exception and Trap Interrupts

� Table 16 explains the Event Interrupts

� Table 17 lists the Software Interrupts

Event Interrupt Handling

If a higher priority Event occurs while a lower priority Event is being
serviced, the higher priority Event takes over.

When Events of different priorities occur simultaneously, the highest
priority Event is serviced first.

When Events of equal priority occur simultaneously, Arbitration
Ranking determines which Event is serviced first. See Table 15 and
Table 16.

Interrupt Priority Details

Each Event interrupt has 8 priority levels. Event interrupts may be
individually masked by bits in SFR Registers IEL and IEH (see
Table 5). Event interrupts can also be globally disabled via the EA bit
(IEL[7]).

Using 3–bit sub–groups, Interrupt Priority Assignment (IPA) registers
(IPA0, IPA1, IPA2, IPA4, IPA5, IPA6, and IPA7) assign 1 of 8 priority
levels per Event Interrupt. A zero value assigns interrupt priority 0, in
effect disabling an interrupt. The remaining seven priority levels are
defined in Table 14.

Table 14.  Interrupt Priority Levels
Priority Level Type of Interrupt

15 Event Interrupt

14 Event Interrupt

13 Event Interrupt

12 Event Interrupt

11 Event Interrupt

10 Event Interrupt

9 Event Interrupt

8

7 Software Interrupt

6 Software Interrupt

5 Software Interrupt

4 Software Interrupt

3 Software Interrupt

2 Software Interrupt

1 Software Interrupt

0 Interrupt Disable

NOTE:
1. Details of the priority scheme may be found in the XA User

Guide.

Table 15.  Exception and Trap Interrupt Vectors
DESCRIPTION VECTOR ADDRESS ARBITRATION RANKING

Reset (h/w, watchdog, s/w) 0000 – 0003 0 (High)

Breakpoint (h/w trap 1) 0004 – 0007 1

Trace (h/w trap 2) 0008 – 000B 1

Stack Overflow (h/w trap 3) 000C – 000F 1

Divide by 0 (h/w trap 4) 0010 – 0013 1

User RETI (h/w trap 5) 0014 – 0017 1

TRAP 0– 15 (software) 0040 – 007F 1



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 26

Table 16.  Event Interrupt Vectors

DESCRIPTION FLAG BIT VECTOR AD-
DRESS ENABLE BIT INTERRUPT

PRIORITY
ARBITRATION

RANKING

External interrupt 0 IE0 ; TCON[1] 0080–0083 EX0 ; IEL[0] PX0 ; IPA0[2:0] 2

Timer 0 interrupt TF0 ; TCON[5] 0084–0087 ET0 ; IEL[1] PT0 ; IPA0[6:4] 3

External interrupt 1 IE1 ; TCON[3] 0088–008B EX1 ; IEL[2] PX1 ; IPA1[2:0] 4

Timer 1 interrupt TF1 ; TCON[7] 008C–008F ET1 ; IEL[3] PT1 ; IPA1[6:4] 5

Timer 2 interrupt

TF2 ; T2CON[7]

or

T2EX [P1.7]1

or

EXF2 ; T2CON[6]

0090–0093 ET2 ; IEL[4] PT2 ; IPA2[2:0] 6

(CAN) Rx buffer full CANINTFLG[2] 0094–0097 EBUFF ; IEL[5] PBUFF ; IPA2[6:4] 7

Serial port 0 Rx RI_0 ; S0CON[0] 00A0–00A3 ERI0 ; IEH[0] PRI0 ; IPA4[2:0] 10

Serial port 0 Tx TI_0 ; S0CON[1] 00A4–00A7 ETI0 ; IEH[1] PTI0 ; IPA4[6:4] 11

SPI Interrupt SPFG ; SPICS[3] 00AC–00AF ESPI ; IEH[3] PSPI ; IPA5[6:4] 13

(CAN) Frame Error CANINTFLG[4] 00B0–00B3 ECER ; IEH[4] PCER ; IPA6[2:0] 14

(CAN) Message Error CANINTFLG[3] 00B4–00B7 EMER ; IEH[5] PMER ; IPA6[6:4] 15

(CAN) Tx message complete CANINTFLG[1] 00B8–00BB EMTI ; IEH[6] PMTI ; IPA7[2:0] 16

(CAN) Rx message complete CANINTFLG[0] 00BC–00BF EMRI ; IEH[7] PMRI ; IPA7[6:4] 17

NOTE:
1. When Timer 2 is used as a baud rate generator, pin T2EX [P1.7] acts as an additional External interrupt.

Table 17.  Software Interrupt Vectors
DESCRIPTION REQUEST BIT VECTOR ADDRESS ENABLE BIT INTERRUPT PRIORITY

Software interrupt 7 SWR7 ; SWR[6] 0118–011B SWE7 ; SWE[6] fixed at 7 (highest priority)

Software interrupt 6 SWR6 ; SWR[5] 0114–0117 SWE6 ; SWE[5] fixed at 6

Software interrupt 5 SWR5 ; SWR[4] 0110–0113 SWE5 ; SWE[4] fixed at 5

Software interrupt 4 SWR4 ; SWR[3] 010C–010F SWE4 ; SWE[3] fixed at 4

Software interrupt 3 SWR3 ; SWR[2] 0108–010B SWE3 ; SWE[2] fixed at 3

Software interrupt 2 SWR2 ; SWR[1] 0104–0107 SWE2 ; SWE[1] fixed at 2

Software interrupt 1 SWR1 ; SWR[0] 0100–0103 SWE1 ; SWE[0] fixed at 1 (lowest priority)

ABSOLUTE MAXIMUM RATINGS

Table 18.  Absolute Maximum Ratings
PARAMETER RATING UNIT

Operating temperature under bias –55 to +125 °C
Storage temperature range –65 to +150 °C
Voltage on EA/ ; VPP pin to VSS 0 to +13.0 V

Voltage on any other pin to VSS –0.5 to VDD+0.5V V

Maximum IOL per I/O pin 15 mA

Power dissipation (based on package heat transfer limitations, not device power consumption) 1.5 W



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 27

DC ELECTRICAL CHARACTERISTICS

Table 19.  DC Electrical Characteristics
VDD = 4.5V to 5.5V unless otherwise specified;

Tambient = 0 to +70°C for commercial, –40°C to +85°C for industrial, unless otherwise specified.

SYMBOL PARAMETER TEST CONDITIONS LIMITS UNIT

MIN TYP MAX

Supply Currents
IDD Supply current, operating mode 32 MHz 54 80 mA

IID Supply current, Idle mode 32 MHz 25 30 mA

IPD Power–Down mode current 5 100 µA

IPDI Power–Down mode current (–40°C to +85°C) 150 µA

Inputs
VRAM RAM keep–alive voltage RAM keep–alive voltage 1.5 V

VIL Input Low voltage –0.5 0.22VDD V

VIH Input High voltage, except XTAL1, RST/ At 5.0V 2.2 V

VIH1 Input High voltage to XTAL1, RST/ At 5.0V 0.7VDD V

VOL Output Low voltage all ports, ALE, PSEN/3 IOL = 3.2mA, VDD = 5.0V 0.5 V

VOH1 Output High voltage all ports, ALE, PSEN/1 IOH = –100mA, 
VDD = 4.5V 2.4 V

VOH2 Output High voltage, ports P0–3, ALE, PSEN/2 IOH = 3.2mA, VDD = 4.5V 2.4 V

CIO Input/Output pin capacitance 15 pF

IIL Logical 0 Input current, P0–36 VIN = 0.45V –25 –75 µA

ILI Input Leakage current, P0–35 VIN = VIL or VIH ±10 µA

ITL Logical 1–to–0 Transition current –– all ports4 At 5.5V –650 µA

CAN RxD
VIL Input Low voltage –0.5 0.22VDD V

VIH Input High voltage VDD = 5.0V 2.2 V

CI Input pin capacitance 15 pF

IIL Logical 0 Input current VIN = 0.45V –25 –75 µA

ILI Input Leakage current VIN = VIL or VIH ±10 µA

CAN TxD
VOL Output Low voltage IOL = 3.2mA, VDD = 5.0V 0.5 V

VOH Output High voltage IOH = –100mA, 
VDD = 4.5V 2.4 V

CO Output capacitance 15 pF

ITL Logical 1–to–0 Transition current VDD = 5.5V –650 µA

NOTES:
1. Ports in Quasi–Bidirectional mode with weak pull–up (applies to ALE, PSEN/ only during Reset operations).
2. Ports in Push–Pull mode, both pull–up and pull–down are assumed to be of the same strength
3. In all output modes
4. Port pins source a transition current when used in Quasi–Bidirectional mode and externally driven from 1 to 0. This current is highest when

VIN is approximately 2V.
5. Measured with port in high–impedance output mode.
6. Measured with port in Quasi–Bidirectional output mode.
7. Load capacitance for all outputs=80pF.
8. Under steady state (non–transient) conditions, IOL must be externally limited as follows:

Maximum IOL per port pin: 15mA (*NOTE: This is 85°C specification for VDD = 5V.)
Maximum IOL per 8–bit port: 26mA
Maximum total IOL for all outputs: 71mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed
test conditions.

9. See Figures 29, 30, 32, and 33 for IDD test conditions, and Figure 31 for ICC vs. Frequency.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 28

AC ELECTRICAL CHARACTERISTICS

Table 20.  AC Electrical Characteristics
VDD = 4.5V to 5.5V; Tamb = 0 to +70°C for commercial, –40°C to +85°C for industrial.
SYMBOL Figure PARAMETER VARIABLE CLOCK UNIT

MIN MAX

External Clock

fC Oscillator frequency 0 32 MHz

tC 22 Clock period and CPU timing cycle 1/fC ns

tCHCX 22 Clock high time tC * 0.5 ns

tCLCX 22 Clock low time tC * 0.4 ns

tCLCH 22 Clock rise time 5 ns

tCHCL 22 Clock fall time 5 ns

Address Cycle

tCRAR 21 Delay from clock rising edge to ALE rising edge 10 46 ns

tLHLL 16 ALE pulse width (programmable) (V1 * tC) – 6 ns

tAVLL 16 Address valid to ALE de–asserted (set–up) (V1 * tC) – 12 ns

tLLAX 16 Address hold after ALE de–asserted (tC/2) – 10 ns

Code Read Cycle

tPLPH 16 PSEN/ pulse width (V2 * tC) – 10 ns

tLLPL 16 ALE de–asserted to PSEN/ asserted (tC/2) – 7 ns

tAVIVA 16 Address valid to instruction valid, ALE cycle (access time) (V3 * tC) – 36 ns

tAVIVB 17 Address valid to instruction valid, non–ALE cycle (access time) (V4 * tC) – 29 ns

tPLIV 16 PSEN/ asserted to instruction valid (enable time) (V2 * tC) – 29 ns

tPXIX 16 Instruction hold after PSEN/ de–asserted 0 ns

tPXIZ 16 Bus 3–State after PSEN/ de–asserted (disable time) tC – 8 ns

tIXUA 16 Hold time of unlatched part of address after instruction latched 0 ns

Data Read Cycle

tRLRH 18 RD/ pulse width (V7 * tC) – 10 ns

tLLRL 18 ALE de–asserted to RD/ asserted (tC/2) – 7 ns

tAVDVA 18 Address valid to data input valid, ALE cycle (access time) (V6 * tC) – 36 ns

tAVDVB 19 Address valid to data input valid, non–ALE cycle (access time) (V5 * tC) – 29 ns

tRLDV 18 RD/ low to valid data in, enable time (V7 * tC) – 29 ns

tRHDX 18 Data hold time after RD/ de–asserted 0 ns

tRHDZ 18 Bus 3–State after RD/ de–asserted (disable time) tC – 8 ns

tDXUA 18 Hold time of unlatched part of address after data latched 0 ns

Data Write Cycle

tWLWH 20 WR/ pulse width (V8 * tC) – 10 ns

tLLWL 20 ALE falling edge to WR/ asserted (V12 * tC) – 10 ns

tQVWX 20 Data valid before WR/ asserted (data setup time) (V13 * tC) – 22 ns

tWHQX 20 Data hold time after WR/ de–asserted (Note 6) (V11 * tC) – 5 ns

tAVWL 20 Address valid to WR/ asserted (address setup time) (Note 5) (V9 * tC) – 22 ns

tUAWH 20 Hold time of unlatched part of address after WR/ is de–asserted (V11 * tC) – 7 ns

WAIT Input

tWTH 21 WAIT stable after bus strobe (RD/, WR/, or PSEN/) asserted (V10 * tC) – 30 ns

tWTL 21 WAIT hold after bus strobe (RD/, WR/, or PSEN/) assertion (V10 * tC) – 5 ns

NOTES:

1. Load capacitance for all outputs = 80pF.

2. Variables V1 through V13 reflect programmable bus timing, which is
programmed via the Bus Timing registers (BTRH and BTRL).
Refer to the XA User Guide for details of the bus timing settings.

V1) This variable represents the programmed width of the ALE pulse
as determined by the ALEW bit in the BTRL register. 
V1 = 0.5 if the ALEW bit = 0, and 1.5 if the ALEW bit = 1.

V2) This variable represents the programmed width of the PSEN/ pulse
as determined by the CR1 and CR0 bits or the CRA1, CRA0, and
ALEW bits in the BTRL register.

– For a bus cycle with no  ALE, V2 = 1 if CR1/0 = 00, 2 if CR1/0
= 01, 3 if CR1/0 = 10, and 4 if CR1/0 = 11. Note that during
burst mode code fetches, PSEN/ does not exhibit transitions at

the boundaries of bus cycles. V2 still applies for the purpose of
determining peripheral timing requirements.

– For a bus cycle with  an ALE, V2 = the total bus cycle duration
(2 if CRA1/0 = 00, 3 if CRA1/0 = 01, 4 if CRA1/0 = 10, 
and 5 if CRA1/0 = 11) minus the number of clocks used by
ALE (V1 + 0.5). 
Example: If CRA1/0 = 10 and ALEW = 1, the V2 = 4 – (1.5 +
0.5) = 2.

V3) This variable represents the programmed length of an entire code
read cycle with  ALE. This time is determined by the CRA1 and
CRA0 bits in the BTRL register. V3 = the total bus cycle duration (2
if CRA1/0 = 00, 3 if CRA1/0 = 01, 4 if CRA1/0 = 10, 
and 5 if CRA1/0 = 11).



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 29

V4) This variable represents the programmed length of an entire code
read cycle with no  ALE. This time is determined by the CR1 and
CR0 bits in the BTRL register. V4 = 1 if CR1/0 = 00, 2 if CR1/0 =
01, 3 if CR1/0 = 10, and 4 if CR1/0 = 11.

V5) This variable represents the programmed length of an entire data
read cycle with no  ALE. this time is determined by the DR1 and
DR0 bits in the BTRH register. V5 = 1 if DR1/0 = 00, 2 if DR1/0 =
01, 3 if DR1/0 = 10, and 4 if DR1/0 = 11.

V6) This variable represents the programmed length of an entire data
read cycle with  ALE. The time is determined by the DRA1 and
DRA0 bits in the BTRH register. V6 = the total bus cycle duration
(2 if DRA1/0 = 00, 3 if DRA1/0 = 01, 4 if DRA1/0 = 10, 
and 5 if DRA1/0 = 11).

V7) This variable represents the programmed width of the RD/ pulse
as determined by the DR1 and DR0 bits or the DRA1, DRA0 in the
BTRH register, and the ALEW bit in the BTRL register.

– For a bus cycle with no  ALE, V7 = 1 if DR1/0 = 00, 2 if DR1/0
= 01, 3 if DR1/0 = 10, and 4 if DR1/0 = 11.

– For a bus cycle with  an ALE, V7 = the total bus cycle duration
(2 if DRA1/0 = 00, 3 if DRA1/0 = 01, 4 if DRA1/0 = 10, 
and 5 if DRA1/0 = 11) minus the number of clocks used by
ALE (V1 + 0.5). 
Example: If DRA1/0 = 00 and ALEW = 0, then V7 = 2 – (0.5 +
0.5) = 1.

V8) This variable represents the programmed width of the WRL/ and/or
WRH/ pulse as determined by the WM1 bit in the BTRL register.
V8 1 if WM1 = 0, and 2 if WM1 = 1.

V9) This variable represents the programmed address setup time for a
write as determined by the data write cycle duration (defined by
DW1 and DW0 or the DWA1 and DWA0 bits in the BTRH register),
the WM0 bit in the BTRL register, and the value of V8.

– For a bus cycle with  an ALE, V9 = the total bus write cycle
duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01, 4 if DWA1/0 =
10, and 
5 if DWA1/0 = 11) minus the number of clocks used by the
WRL/ and/or WRH/ pulse (V8), minus the number of clocks
used by data hold time (0 if WM0 = 0 and 1 if WM0 = 1). 
Example: If DWA1/0 = 10, WM0 = 1, and WM1 = 1, then V9 =
4 – 1 – 2 = 1.

– For a bus cycle with no  ALE, V9 = the total bus cycle duration
(2 if DW1/0 = 00, 3 if DW1/0 = 01, 4 if DW1/0 = 10, and 5 if
DW1/0 = 11) minus the number of clocks used by the WRL/
and/or WRH/ pulse (V8), minus the number of clocks used by
data hold time (0 if WM0 = 0 and 1 if WM0 = 1).

Example: If DW1/0 = 11, WM0 = 1, and WM1 = 0, then V9 = 5
– 1 – 1 = 3.

V10) This variable represents the length of a bus strobe for calculation
of WAIT setup and hold times. The strobe may be RD/ (for data
read cycles), WRL/ and/or WRH/ (for data write cycles), or PSEN/
(for code read cycles), depending on the type of bus cycle being
widened by WAIT. V10 = V2 for WAIT associated with a code read
cycle using PSEN/. V10 = V8 for a data write cycle using WRL/

and/or WRH/.  V10 = V7–1 for a data read cycle using RD/. This
means that a single clock data read cycle cannot be stretched
using WAIT. 
If WAIT is used to vary the duration of data read cycles, the RD/
strobe width must be set to be at least two clocks in duration. 
Also see Note 4.

V11) This variable represents the programmed write hold time as
determined by the WM0 bit in the BTRL register. 
V11 = 0 if the WM0 bit = 0, and 1 if the WM0 bit = 1.

V12) This variable represents the programmed period between the end
of the ALE pulse and the beginning of the WRL/ and/or WRH/
pulse as determined by the data write cycle duration (defined by
the DWA1 and DWA0 bits in the BTRH register), the WM0 bit in
the BTRL register, and the values of V1 and V8. V12 = the total
bus cycle duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01, 4 if
DWA1/0 = 10, and 5 if DWA1/0 = 11) minus the number of clocks
used by the WRL/ and/or WRH/ pulse (V8), minus the number of
clocks used by data hold time (0 if WM0 = 0 and 1 if WM0 = 1),
minus the width of the ALE pulse (V1).
Example: If DWA1/0 = 11, WM0 = 1, WM1 = 0, and ALEW = 1,
then V12 = 5 – 1 – 1 – 1.5 = 1.5.

V13) This variable represents the programmed data setup time for a
write as determined by the data write cycle duration (defined by
DW1 and DW0 or the DWA1 and DWA0 bits in the BTRH register),
the WM0 bit in the BTRL register, and the values of V1 and V8.

– For a bus cycle with  an ALE, V13 = the total bus cycle
duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01, 4 if DWA1/0 =
10, and 5 if DWA1/0 = 11) minus the number of clocks used by
the WRL/ and/or WRH/ pulse (V8), minus the number of clocks
used by data hold time (0 if WM0 = 0 and 1 if WM0 = 1), minus
the number of clocks used by ALE (V1 + 0.5).

Example: If DWA1/0 = 11, WM0 = 1, WM1 = 1, and ALEW = 0,
then V13 = 5 – 1 – 2 – 1 = 1.

– For a bus cycle with no  ALE, V13 = the total bus cycle duration
(2 if DW1/0 = 00, 3 if DW1/0 = 01, 4 if DW1/0 = 10, and 5 if
DW1/0 = 11) minus the number of clocks used by the WRL/
and/or WRH/ pulse (V8), minus the number of clocks used by
data hold time (0 if WM0 = 0 and 1 if WM0 = 1).

Example: If DW1/0 = 01, WM0 = 1, and WM1 = 0, then V13 =
3 – 1 – 1 = 1.

3. Not all combinations of bus timing configuration values result in valid bus
cycles. Refer to the XA User Guide section on the External Bus for details.

4. When code is being fetched for execution on the External bus, a
burst–mode fetch is used that does not have PSEN/ edges in every fetch
cycle. Thus, if WAIT is used to delay code fetch cycles, a change in the
low–order address lines must be detected to locate the beginning of a
cycle. This would be A3 A1 while using an External 16 bit bus.

5. This parameter is provided for peripherals that have the data clocked in on
the falling edge of the WR/ strobe. This is not usually the case, and in
most applications this parameter is not used.

6. Please note that the XA–C3 requires that extended data bus hold time
(WM0 = 1) to be used with External bus write cycles.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 30

tPXIZ

ALE

PSEN

MULTIPLEXED
 ADDRESS AND DATA

UNMULTIPLEXED
ADDRESS

A1–A3

tAVLL

tPXIX

tLLAX

INSTR IN *

tLHLL

tPLPH

tPLAZ

tLLPL

tAVIVA

SU00946

tPLIV

A4–A19

tIXUA

* D0–D15

Figure 21.  External PROGRAM Memory Read Cycle (ALE Cycle)

ALE

PSEN

MULTIPLEXED
 ADDRESS AND DATA

UNMULTIPLEXED
ADDRESS

A1–A3

INSTR IN *

SU01345

A4–A19

tAVIVB

* D0–D15

A1–A3

Figure 22.  External PROGRAM Memory Read Cycle (Non-ALE Cycle)



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 31

ALE

MULTIPLEXED
ADDRESS
AND DATA

UNMULTIPLEXED
ADDRESS

RD

DATA IN *A4–A19

A1–A3

tLLRL tRLRH

tLLAX
tAVLL

tRHDX

tRHDZ

tAVDVA

tRLDV

SU01346

tDXUA

* D0–D15

Figure 23.  External DATA Memory Read Cycle (ALE Cycle)

tUAWH

tLLAX

ALE

MULTIPLEXED
ADDRESS
AND DATA

UNMULTIPLEXED
ADDRESS

WRL or WRH

A4–A19 DATA OUT *

A1–A3

tLLWL tWLWH

tAVLL

tAVWL

tQVWX
tWHQX

SU01347* D0–D15

Figure 24.  External DATA Memory Write Cycle



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 32

XTAL1

ADDRESS BUS

WAIT

SU00709A
tWTL

ALE

BUS STROBE
(WRL, WRH,

RD, OR PSEN)
tWTH

tCRAR

(The dashed line shows the strobe without WAIT.)

Figure 25.  WAIT Signal Timing

VDD–0.5

0.45V
0.7VDD

0.2VDD–0.1

tCHCL

tC

tCLCHtCLCX

tCHCX

SU00842

Figure 26.  External Clock Drive

VDD–0.5

0.45V

0.2VDD+0.9

0.2VDD–0.1

NOTE:
AC inputs during testing are driven at VDD –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.
Timing measurements are made at the 50% point of transitions.

SU00703A

Figure 27.  AC Testing Input/Output

VLOAD

VLOAD+0.1V

VLOAD–0.1V

VOH–0.1V

VOL+0.1V

NOTE:

TIMING
REFERENCE

POINTS

For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs,
and begins to float when a 100mV change from the loaded VOH/VOL level occurs. IOH/IOL ≥ ±20mA.

SU00011

Figure 28.  Float Waveform



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 33

VDD

EA

RST

XTAL1

XTAL2

VSS

VDD

(NC)

CLOCK SIGNAL

SU00591B

Figure 29.  I DD Test Condition, Active Mode

Note: All other pins are disconnected

VDD

EA

RST

XTAL1

XTAL2

VSS

VDD

(NC)

CLOCK SIGNAL

SU00590B

VDD

Figure 30.  I DD Test Condition, Idle Mode

Note: All other pins are disconnected

SU01334

Figure 31.  I DD vs. Frequency at V DD = 5.0V

VDD–0.5

0.45V
0.7VDD

0.2VDD–0.1

tCHCL

tCL

tCLCHtCLCX

tCHCX

SU00608A

Figure 32.  Clock Signal Waveform for I DD Tests in Active and Idle Modes

Note: tCLCH = tCHCL = 5 ns



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 34

VDD

EA

RST

XTAL1

XTAL2

VSS

(NC)

SU00585A

VDD

VDD

Figure 33.  I DD Test Condition, Power-Down Mode

Note: All other pins are disconnected. VDD=2V to 5.5V

EPROM CHARACTERISTICS
The XA–C37 is programmed by using a modified Improved
Quick–Pulse Programming  algorithm. This algorithm is essentially
the same as that used by the later 80C51 family EPROM parts.
However, different pins are used for many programming functions.

Detailed EPROM programming information may be obtained from
the internet at www.philipsmcu.com/ftp.html.

The XA–C3 contains three signature bytes that can be read and
used by an EPROM programming system to identify the device. The

signature bytes identify the device as an XA–Gx manufactured by
Philips.

Security Bits
With none of the security bits programmed the code in the
PROGRAM memory can be verified. When only security bit 1 (see
Table 21) is programmed, MOVC instructions executed from
External PROGRAM memory are disabled from fetching code bytes
from the internal memory. All further programming of the EPROM is
disabled. When, in addition to the above, security bits 1 and 2 are
programmed, verify mode is disabled. When all three security bits
are programmed, all of the conditions above apply and all External
PROGRAM memory execution is disabled. (See Table 21).

Table 21.  PROGRAM Security Bits

PROGRAM LOCK BITS

SB1 SB2 SB3 PROTECTION DESCRIPTION

1 U U U No PROGRAM Security features enabled.

2 P U U MOVC instructions executed from External PROGRAM memory are disabled from fetching code
bytes from internal memory and further programming of the EPROM is disabled.

3 P P U Same as 2, also verify is disabled.

4 P P P Same as 3, External execution is disabled. Internal DATA RAM is not accessible.

NOTES:
1. P – programmed. U – unprogrammed.
2. Any other combination of the security bits is not defined.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 35

XA-C3 OVERVIEW

Introduction
The XA-C3 is a member of the Philips XA (eXtended Architecture)
family of high performance 16–bit single–chip microcontrollers.
Combined in the XA-C3 are an array of standard microcontroller
peripherals, a powerful CAN 2.0A/B controller, and a unique CAN
”Message Management” engine which provides integrated hardware
support for most CAN Transport Layer (CTL) protocols.

Integrated into the XA-C3 microcontroller is the CAN Controller Core
from the award–winning1 Philips SJA1000 CAN (2.0A/B) Data Link
Layer (CDLL ) device. Since 1986, CAN Users have developed
high–level CAN Transport Layers. The XA-C3 implements many
such CTL concepts in hardware, including automatic assembly of
multi–frame Fragmented messages. In fact, the XA-C3 is the first
chip with hardware CTL support. The CAN module embedded in the
XA-C3 provides far greater CAN functionality and power than any
existing CAN product, including the SJA 1000 itself.

CTL protocols such as Device Net, CANopen and OSEK deliver
long Messages distributed over many CAN Frames (see Figure 34).

1CAN in Automation 1997

This method is called Fragmented (or, in European terminology,
Segmented) messaging. The individual frames, forming a complete
CTL message, are interleaved on the CAN bus together with frames
belonging to other (unrelated) CTL/CAN messages. The XA-C3
transparently re–assembles up to 32 concurrent, interleaved CTL
Messages in hardware as directed by a new, powerful ID Screener
technology with 32 Screeners and 32 DMA channels. An on–chip,
512–byte, CTL/CAN Message Buffer RAM provides single–chip
storage for Receive and Transmit. This Buffer RAM is easily
extended (off–chip) to accommodate up to 32 messages of 256
bytes each.

The XA-C3 provides these powerful CAN 2.0A/B and CTL features
while maintaining pin and function compatibility  with the present
XA-G3; the new CAN Rx/Tx pins have been assigned to XA-G3
no–connects. Thus, today’s XA-G3 based products can incorporate
CTL/CAN in new designs. XA-G3 software is preserved while
XA-C3 features immediately upgrade present XA-G3 board layouts
to CTL/CAN. Additionally, the FullCAN (CAN) features of the XA-C3
can be used independently of CTL.

8–Byte

8–Byte

8–Byte

8–Byte

8–Byte

8–Byte

8–Byte

8–Byte

8–Byte

CTL Message–A

CTL Message–B

CTL Message–C

CTL Message–D

8–Byte

8–Byte

CAN

Data Frame

CAN bus

SU01335

Figure 34.  Interleaved CAN Data Frames

Definition of Terms

Standard and Extended CAN Frames
See Figure 35.

Acceptance Filtering
The process a CAN device implements (usually) in hardware to
determine if a CAN frame should be accepted or ignored and, if
accepted, to store that frame in a pre–assigned Message Object.

Message Object
A Receive RAM Buffer of pre–specified size (up to 256 bytes for
CTL messages) and associated with a particular Acceptance Filter
or, a Transmit RAM Buffer which the User preloads with all
necessary data to transmit a complete CAN Data Frame.

CAN Arbitration ID
An 11–bit (Standard CAN 2.0A Frame) or 29–bit (Extended CAN
2.0B Frame) identifier field placed in the CAN Frame Header. This
ID field is used to arbitrate Frame access to the CAN bus. Also used
in Acceptance Filtering  for CAN Frame reception and Transmit
Pre–Arbitration.

Screener ID
A 30–bit field extracted from the incoming message which is then
used in acceptance filtering . The screener ID includes the CAN

Arbitration ID  and the IDE bit, and can include up to 2 Data Bytes.
These 30 extracted bits are the information qualified by Acceptance
Filtering .

Match ID
A 30–bit field pre–specified by the User to which the incoming
Screener I D is compared. Individual Match Id s for each of the 32
objects are programmed by the User into designated memory
mapped registers.

Mask
A 29–bit field pre–specified by the User which can override (Mask) a
Match ID  comparison at any particular bit (or, combination of bits) in
an Acceptance Filter . Individual Masks, one for each Message
Object , are programmed by the User in designated MMRs.
Individual Mask  patterns assure that single Receive Objects can
Screen for multiple acknowledged CTL/CAN Frames and thus
minimize the number of Receive Objects that must be dedicated to
such lower priority Frames. This ability to Mask  individual Message
Objects  is an important new CTL feature.

CTL
CAN Transport Layer. A generic term for any high–level protocol,
which extends the capabilities of CAN while employing the CAN
physical layer, CAN frame format and, adheres to the CAN



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 36

specification. Among other things, CAN Transport Layers permit
transmission of Messages which exceed the 8 byte Data limit
inherent to CAN Frames.

Fragmented Message
A lengthy message (in excess of 8 bytes) divided into data packets
and transmitted using a sequence of individual CAN Frames. The
specific ways that sequences of CAN Frames construct these
lengthy messages is defined within the context of a specific CAN
Transport Layer. The XA-C3 automatically re–assembles these
packets into the original, lengthy message in hardware and reports

(via interrupt) when the completed message is available as an
associated Receive  Message Object .

Message Buffer
A block of locations in XA Data memory where incoming (received)
messages are stored or where outgoing (transmit) messages are
staged.

MMR
Memory Mapped Register. An on–chip command/control/status
register whose address is mapped into XA Data memory space and
is accessed as Data memory by the XA processor.

Bus

Idle

SOF

1–bit

CAN.ID

11–bits

RTR

1–bit

IDE

1–bit

r0

1–bit

DLC

4–bit

CRC

15–bits

ACK
DEL
1–bit

Bus

Idle

SOF

1–bit

Base.ID

11– MSBs

SRR

1–bit

IDE

1–bit

r0

1–bit

DLC

4–bit

Extended.ID

18–LSBs

RTR

1–bit

r1

1–bit

EOF

7–bits

IFS

3–bits

Bus Idle

Standard

Extended

CRC
DEL
1–bit

ACK

1–bit

CRC

15–bits

ACK
DEL
1–bit

CRC
DEL
1–bit

ACK

1–bit

RTR … R emote T ransmit R equest

SRR … S ubstitute R emote R equest

IDE … ID Extension
r1, r0 … “ reserved” bits

DLC … D ata L ength C ode (0, 1, …, 8)

IFS … Inter F rame S pace

SU01336

Data Field
(0, 1, ..., 8 Bytes)
0, 8, ..., 64-bits

Data Field
(0, 1, ..., 8 Bytes)
0, 8, ..., 64-bits

Figure 35.  CAN Frame Formats

CTL/CAN Functionality of the XA-C3

Message Objects / Message Management
� The XA-C3 allows the User to define up to 32 separate CTL/CAN

Message Objects.

� Any of these 32 objects can be designated as either a Receive or
Transmit objects.

� Any/all of the (up to 32) Receive Objects may be enabled to
hardware assemble multi frame “Fragmented” messages. For
Receive Objects so enabled, CTL/CAN hardware interrupts the
XA-C3 only at the completion of a multi–frame message which is
assembled in a contiguous fashion and stored in the Receive
message buffer associated with that object. At any given time,
XA-C3 may actively assemble (up to) 32 interleaved CTL
messages.

� Receive objects may also be used as circular CAN Frame buffers,
to store up to 28 CAN frames of 8 data bytes each, between CPU
interrupts.

� Receive Objects, not enabled to hardware–assemble messages,
treat CAN2.0A/B Frames as complete (single–frame) messages
and are thus backward compatible with today’s FullCAN Message
Objects that store single CAN frames.

� XA-C3 supports most CTL/CAN protocols, i.e., Device.Net,
CANopen and OSEK.

� Generally, hardware “Message–Management” on XA-C3 reduces
the CTL instruction bandwidth of today’s CTL message
processing from 80% to as low as 10%.

Acceptance Filtering
The XA-C3 provides extensive ID Screening/Filtering for 32
Message Objects. Each object has a full 30 bits of filter Match over
the CTL/CAN ID Fields as–well–as 29 bits of Mask … per object.
That is, any combination of (up to) 30 bits in the ID Fields may be
Masked out (“don’t care”) and/or Matched on an object–by–object
basis.

Message Storage
Each of the 32 Message Objects has its own designated message
buffer space within the Data memory space addressed by the XA
processor. The size of each message buffer is independently User
specified up to a max of 256 bytes/object. CTL messages that
exceed the 256 byte/object limit can be accommodated with simple
software intervention.

The XA-C3 includes a 512 byte, on–board Message Buffer RAM
where some (or all) of the 32 (Rx/Tx) message buffers may reside.
Message Buffer RAM can be mapped anywhere in the 16 MByte
Data memory space addressed by the XA and can be extended
off–chip to a maximum of 8 KBytes. This off–chip expansion ability
can accommodate up to thirty–two, 256–byte message buffers.

Transmit Pre–Arbitration
Two (2) options are available to pre–arbitrate among pending
(currently enabled) transmit objects. A default option selects and
transmits the object of highest–priority CAN arbitration ID (the same
criteria that arbitrates access to CAN bus itself). Transmit object
number serves as a secondary tie–breaker for queued transmit



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 37

objects having the same ID. An alternate option bases transmit
pre–arbitration exclusively on transmit object number, i.e.,
independent of arbitration ID.

Remote Frame Handling
The XA-C3 supports Remote CAN Frames.

MEMORY MAPS

Data Memory Space
1K byte of internal data memory (Scratch Pad) populates the very
bottom of data memory space, in Segment 0 by definition. The
Memory Mapped Registers and the on–chip XRAM can also be
mapped into Segment 0 (as shown in Figure 36), or into any other
segment.

4K Bytes

MMR Base Address

XRAM Base Address

000000h

00FFFFh

Off–Chip

On–Chip Data Memory

(Scratch Pad)

0003FFh

Off–Chip

512 Bytes

Off–Chip

MMR Space

XRAM

Data Memory Segment 0

SU01337

Figure 36.  MMRs and XRAM mapped into Segment 00h.

Code Memory Space
32K Bytes of Internal Code Memory populate addresses  000000h –
007FFFh of code memory space. As shown in Figure 37, code

memory can be extended off–chip, if desired, starting at address
008000h. The code memory address space extends to 0FFFFFh.

000000h

0FFFFFh

Off–Chip

Internal Code Memory

007FFFh

Code Memory

008000h

SU01338

Figure 37.  External Code Memory starts at 008000h.

CAN CORE BLOCK (CCB)

CAN Bus Timing

CAN System Clock
The CCB has a programmable internal system clock, whose period
is denoted by tSCL. The CAN System Clock is derived from the XA
Oscillator Clock based on the following expression:
� tSCL =2 ∗ tCLK ∗ (32 ∗ BRP.5 + 16 ∗ BRP.4 + 8 ∗ BRP.3 + 4 ∗

BRP.2 + 2 ∗ BRP.1 + BRP.0 + 1)

where tCLK is the period of the XA Oscillator Clock, and BRP.5 –
BRP.0 are bits in the MMR CAN Bus Timing Register (CANBTR).
The length of a bit period in a CAN Frame is expressed in terms of
number of CAN System Clocks.

Samples Per Bit
The number of samples per bit is determined by the value of the
SAM bit in CANBTR.
� SAM = 0 The bus is sampled once per bit (as shown below)

� SAM = 1 The bus is sampled three times per bit (as shown
below)



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 38

Location of Sample Point
The location of the sample point within a bit period is determined
according to the following:

one bit period

tSYNC–

SEG

tSEG1 tSEG2

Sample point

SU01339

� tSYNCSEG = tSCL

� tSEG1 = tSCL ∗ (8 ∗ tSEG1.3 + 4 ∗ tSEG1.2 + 2 ∗ tSEG1.1 +
tSEG1.0 + 1)

� tSEG2 = tSCL ∗ (4 ∗ tSEG2.2 + 2 ∗ tSEG2.1 + tSEG2.0 + 1)

where tSEG1.3 – tSEG1.0 and tSEG2.2 – tSEG2.0 are bits in
CANBTR.

Synchronization Jump Width
To compensate for phase shifts between clock oscillators of different
bus controllers, any bus controller must re–synchronize on any
relevant signal edge of the current transmission. The
Synchronization Jump Width defines the maximum number of CAN
System Clock cycles that a bit period may be shortened or
lengthened by one re–synchronization, and is given by the following
expression:
� tSJW = tSCL ∗ (2 ∗ SJW.1 + SJW.0 + 1)

where SJW.1 and SJW.0 are bits in CANBTR.

CANBTR: CAN Bus Timing Register
� Address: MMR base + 272h

� Access: Read, Write during reset mode only. Word access only.

� Reset value: 0000h

CANBTR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAM TSEG2.2 TSEG2.1 TSEG2.0 TSEG1.3 TSEG1.2 TSEG1.1 TSEG1.0 SJW.1 SJW.0 BRP.5 BRP.4 BRP.3 BRP.2 BRP.1 BRP.0

CAN Command and Status Registers

Two Modes in CAN Core Operation
The CCB has two different modes of operation: Reset mode, and
Operation mode. On hardware reset, the CAN core is in Reset
mode, and the RR bit of CANCMR (CAN Command Register) will
be set. The User application would usually set up registers, etc.,
then put the CCB into Operation mode by clearing the RR bit.

While in Operation mode, the following conditions will cause the RR
bit to be set, putting the CCB back into Reset mode:
� Tx Buffer Underflow (TBUF)

� Bus Off

� Hardware reset

� Test mode (Refer to XA-C3 User Guide, Sections 2.2.2.1 and
2.7.1.2)

CANCMR: CAN Command Register
� Address: MMR base + 270h

� Access: Read/Write, no R/M/W, Byte or Word Access. Hardware
can set bit 0.

� Reset value: 01h

CANCMR
7 6 5 4 3 2 1 0

RXP ST LO Reserved SLPEN OC1 Reserved RR

RXP Rx Polarity, writable during reset mode only. 
0 = non–inverted, 1 = inverted.

ST Self test, disable TxACK

LO Listen only

Reserved Reserved bit.

SLPEN CTL will go back to idle if no interrupt is
generated.

OC1 Output control for Tx pad. 0 = Push–Pull, 
1 = Open Drain

Reserved Reserved bit

RR Reset Request.

CANSTR: CAN Status Register
� Address: MMR base + 271h

� Access: Read only, no write, no R/M/W. Byte access OK.
Hardware can set or clear bits 7 – 2.

� Reset value: 00h

CANSTR
7 6 5 4 3 2 1 0

BS EP EW TS RS SLPOK – –

BS Bus status
EP Error passive
EW Error warning
TS Transmit status

RS Receive status
SLPOK CAN status: no CAN bus activity and no

pending core interrupts



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 39

CAN/CTL MESSAGE HANDLER

Message Objects
The XA-C3 supports 32 independent Message Objects, each of
which can be either a transmit or a receive object. A receive object
can be associated either with a unique CAN ID, or with a set of CAN
IDs which share certain ID bit fields.

Each Message Object has access to its own block of data memory
space, which is known as the object’s message buffer. Both the size
and base address of an object’s message buffer is programmable.
However, all message buffers must reside in the same 64Kbyte
segment of data memory, as the contents of a single register
(MBXSR…Message Buffer and XRAM Segment Register) are used
to form the most significant byte of all 24–bit message buffer
addresses.

Each Message Object is associated with a set of eight MMRs
dedicated to that object. Some of these registers function differently
for Tx than they do for Rx objects. The names of the eight MMRs
are

1. MnMIDH – Message n Match ID High

2. MnMIDL – Message n Match ID Low

3. MnMSKH – Message n Mask High

4. MnMSKL – Message n Mask Low

5. MnCTL – Message n Control

6. MnBLR – Message n Buffer Location Register

7. MnBSZ – Message n Buffer Size

8. MnFCR – Message n Fragment Count Register

where n ranges from 0 to 31. In general, setting up a Message
Object involves configuring some or all of its eight MMRs.
Additionally, there are several MMRs whose bits control global
parameters that apply to all objects. Table 22 summarizes the eight
Message Object MMRs and their functions for receive and transmit
objects. Details can be found in the sections that follow.

Table 22.  Message Object Register Functions for Tx and Rx
Message Object Register

 (n = 0 – 31)
Rx Function Tx Function Address

Offset

MnMIDH Match ID* [28:13] CAN ID [28:13] n0h

MnMIDL Match ID* [12:0][IDE][–][–] CAN ID [12:0][IDE][–][–] n2h

MnMSKH Mask [28:13] DLC n4h

MnMSKL Mask [12:0][–][–][–] Not used n6h

MnCTL Control Control n8h

MnBLR Buffer base address [a15:a0] Buffer base address [a15:a0] nAh

MnBSZ Buffer size Buffer size nCh

MnFCR Fragmentation count** Not used nEh

* After reception, the actual incoming Screener ID (without regard to Mask bits) will be stored by hardware in MnMIDH and MnMIDL for the
benefit of the User application.

** Typically written to only by hardware. Exceptions are  the CANopen and OSEK protocols in which the User application must also initialize
this register.

Receive Message Objects and the Receive
Process
During reception, the XA-C3 will store the incoming message in a
temporary (13–byte) buffer. Once it is determined that a complete,
error–free CAN frame has been successfully received, the XA-C3
will initiate the acceptance filtering (“Mask and Match”) process. If
acceptance filtering produces a Match with an enabled receive
object’s Match ID, the message is stored by the DMA engine in that
object’s message buffer.

Acceptance Filtering
The XA-C3 will sequentially compare the 30–bit Screener ID
extracted from the incoming frame to the corresponding Match ID
values specified in the MnMIDH and MnMIDL registers for all
currently enabled receive objects. Any of the bits which are Masked
will be excluded from this comparison. Masking is accomplished on
an object–by–object basis by writing a logic ‘1’ in the desired bit
position(s) in the appropriate MnMSKH or MnMSKL register.
Any screener ID bits which are not intended to participate in
acceptance filtering for a particular object must be Masked by the
User (e.g., ID bits 0 & 1 for a Standard CAN frame, and possibly one
or both data bytes).
If the acceptance filter determines that there is a Match between the
incoming frame and any enabled receive object, the contents of the

frame will be stored, via DMA, into the designated message buffer
space associated with that object. If there is a Match to more than
one Message Object, the frame will be considered to have matched
the one with the lowest object number.
To summarize, Acceptance Filtering proceeds as follows:
� The “Screener ID” field is extracted from the incoming CAN

Frame. The Screener ID field is assembled differently for
Standard and Extended CAN Frames.

� The assembled Screener ID field is compared to the Match ID
fields of all enabled receive Message Objects.

� Any bits which an object has Masked (by having ‘1’ bits in its
Mask field) are not included in the comparison. That is, if there is
a ‘1’ in some bit position of an object’s Mask field, the
corresponding bit in the object’s Match ID field becomes a don’t
care (i.e., always yields a Match with the Screener ID).

� If filtering in this manner produces a Match, the frame will be
stored via the DMA engine in that object’s message buffer. If there
is a Match with more than one object, the frame will be considered
to have matched the one with the lowest object number.

Screener ID Field for Standard CAN Frame
The following table shows how the Screener ID field is assembled
from the incoming bits of a Standard CAN Frame, and how it is
compared to the Match ID and Mask fields of Object n.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 40

OBJECT N MATCH ID FIELD (MNMIDH AND MNMIDL)
Mid28 – Mid18 Mid17 – Mid10 Mid9 – Mid2 Mid1 Mid0 MIDE

OBJECT N MASK FIELD (MNMSKH AND MNMSKL)
Msk28 – Msk18 Msk17 – Msk10 Msk9 – Msk2 Msk1 Msk0

SCREENER ID FIELD (ASSEMBLED FROM INCOMING BIT–STREAM)
CAN ID.28 – CAN ID.18 Data Byte 1 [7:0] Data Byte 2 [7: 0] x x IDE

NOTE:
1. For a Standard CAN Frame Message Object, only 27 bits plus IDE (11 bits of CAN ID + 2x8 bits + IDE ) from the incoming message are

routed to the acceptance filter. The User is therefore required to set the Msk1 and Msk0 bits in the Mask field for that object (i.e., “don’t
care”). The IDE bit is not Maskable.

In many applications based on Standard CAN frames, either Data
Byte 1, Data Byte 2, or both do not participate in Acceptance
Filtering. Therefore, the User is required to Mask out the unused
Data Byte(s).

Screener ID Field for Extended CAN Frame
The following table shows how the Screener ID field is assembled
from the incoming bits of an Extended CAN Frame, and how it is
compared to the Match ID and Mask fields of Object n. Note:   The
IDE bit is not Maskable.

OBJECT N MATCH ID FIELD (MNMIDH AND MNMIDL)
Mid28 – Mid18 Mid17 – Mid10 Mid9 – Mid2 Mid1 Mid0 MIDE

OBJECT N MASK FIELD (MNMSKH AND MNMSKL)
Msk28 – Msk18 Msk17 – Msk10 Msk9 – Msk2 Msk1 Msk0

SCREENER ID FIELD (ASSEMBLED FROM INCOMING BIT–STREAM)
CAN ID.28 – CAN ID.0 IDE

MnMIDH: Message n Match ID High Word
� Address: MMR base + n0h

� Access: Read, write. Word access only.

� Reset value: xxxxh

MNMIDH
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mid28 Mid27 Mid26 Mid25 Mid24 Mid23 Mid22 Mid21 Mid20 Mid19 Mid18 Mid17 Mid16 Mid15 Mid14 Mid13

MnMIDL: Message n Match ID Low Word
� Address: MMR base + n2h

� Access: Read, write. Word access only.

� Reset value: xxxxxxxxxxxxxx00b (unused bits are always read as
‘0’)

MNMIDL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mid12 Mid11 Mid10 Mid9 Mid8 Mid7 Mid6 Mid5 Mid4 Mid3 Mid2 Mid1 Mid0 MIDE – –

MnMSKH: Message n Mask High Word
� Address: MMR base + n4h

� Access: Read, write. Word access only.

� Reset value: xxxxh

MNMSKH
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk28 Msk27 Msk26 Msk25 Msk24 Msk23 Msk22 Msk21 Msk20 Msk19 Msk18 Msk17 Msk16 Msk15 Msk14 Msk13

NOTE:
1. Note: For transmit objects, the frame information is programmed in this register.

MnMSKL: Message n Mask Low Word
� Address: MMR base + n6h

� Access: Read, write. Word access only.

� Reset value: xxxxxxxxxxxxx000b (unused bits are always read as
‘0’)



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 41

MNMSKL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk12 Msk11 Msk10 Msk9 Msk8 Msk7 Msk6 Msk5 Msk4 Msk3 Msk2 Msk1 Msk0 – – –

MnCTL: Message n Control Register
� Address: MMR base + n8h

� Access: Read, write. Byte or word access.

� Reset value: 00000xxxb (unused bits are always read as ‘0’)

MNCTL
7 6 5 4 3 2 1 0

– – – OBJ_EN INT_EN Tx/Rx FRAG RTR_EN

OBJ_EN Object Enable. Enables the Message Object for
receive or transmit. 0 = disabled, 1 = enabled.

INT_EN Message–Complete Interrupt Enable. Specifies
whether or not a Tx or Rx Message–Complete
for this object will cause the object’s
Message–Complete Interrupt to be generated. 0
= disabled, 1 = enabled.

Tx/Rx Transmit or Receive. Specifies whether this is a
transmit or receive Message Object. 0 =
transmit object, 1 = receive object.

FRAG Fragmented Message Enable. Only relevant for
receive Message Objects. Enables automatic
assembly of Fragmented Rx messages. If
disabled, messages received by this object are
assumed to be single–frame, or will be
assembled by User software. 0 = disabled, 1 =
enabled. Note:  Masking of the CAN Identifier
field by User software, for the purpose of
Message Object grouping, is disallowed for
objects using hardware Fragmentation
assembly. However, Masking of unused bit
positions in the “screener”, such is mandatory in
all cases.

RTR_EN Enable Request To Transmit. 0 =  the object is
not enabled for RTR handling, 1 = the object is
enabled for RTR handling. See section entitled
RTR Handling, page 46.

Message Storage
When an incoming message frame has passed acceptance filtering,
it will be automatically stored in data memory via DMA. Each
message will be stored in its corresponding buffer area. On setup,
the User is responsible for assigning a unique buffer location for
each Message Object. This is specified in the object’s MnBLR
register. The User is also required to set up the size of each buffer in
the MnBSZ register.

The XA-C3 provides a total of 512 bytes of on–chip message buffer
RAM (XRAM) which may contain part or all of the CAN/CTL
(transmit & receive) message buffer space. See Section entitled
On-Chip Message Buffer RAM (XRAM)  on page 55 for details.

Note: The following discussion concerning message buffer registers
applies to transmit message retrieval as well as receive message
storage.
MBXSR (applies to all objects)
� Address: MMR base + 291h

� Access: Read, write, byte or word

� Reset value: FFh

MBXSR
7 6 5 4 3 2 1 0

a23 – a16 of all message buffer (and XRAM) base addresses

All 32 message buffers must reside within the same 64K memory
page. This page is specified by the contents of the MBXSR
(Message Buffer and XRAM Segment Register) register. Also, the
512 byte on–chip message buffer RAM (XRAM) is always positioned
within that same 64K page pointed to by MBXSR.

Note: The XA-C3 brings out only 20 address lines to package pins.
It can, therefore, only address 1MByte of off–chip data memory (a
maximum of sixteen 64K segments). As a result, for the XA-C3, the

four most significant bits of the MBSXR register must be set to
‘0000’ if External RAM is to be used for any portion of the message
buffer space.
MnBSZ: Message n Buffer Size Register
� Address: MMR base + nCh

� Access: Read–modify–write, byte or word access.

� Reset value: 00000xxxb

MNBSZ
7 6 5 4 3 2 1 0

– – – – – BSZ.2 BSZ.1 BSZ.0

The size of an object’s message buffer is specified with the 3–bit
field MnBSZ[2:0] as shown in Table 23.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 42

Table 23.  Allowable Message Buffer Sizes
BSZ.2 BSZ.1 BSZ.0 Buffer Size

0 0 0 2 Bytes

0 0 1 4 Bytes

0 1 0 8 Bytes

0 1 1 16 Bytes

1 0 0 32 Bytes

1 0 1 64 Bytes

1 1 0 128 Bytes

1 1 1 256 Bytes

The User should bear in mind that only data bytes and (for Rx only)
a single byte of frame or byte–count information is stored in the
message buffer. Space does not need to be allocated for headers,
Fragmentation information, etc. See the Rx memory buffer images
below.
MnBLR: Message n Buffer Location Register
� Address: MMR base + nAh

� Access: Read, write. Word access only.

� Reset Value: xxxxh

MNBLR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a15 – a0 of object n message buffer base address

The Buffer Location Register holds the least significant 16 bits of the
object’s message buffer base address. The upper 8 bits of the
24–bit address, for all Message Objects, are specified by the
contents of MBSR. Thus, the message buffers for all Message
Objects must reside within the same 64Kbyte segment.

For any message buffer which is to be mapped into the on–chip
message buffer RAM (XRAM), MnBLR bits [15:9] must match
XRAMBASE bits [15:9].

Important constraints:
� 256–byte buffers must be located at a 256–byte boundary

(MnBLR[7:0] = 00000000b)

� 128–byte buffers must be located at a 128–byte boundary
(MnBLR[6:0] = 0000000b)

� 2–byte buffers must be located at a 2–byte boundary (MnBLR[0] =
0)

Note: Message buffer logical address spaces must always adhere to
the above constraints. However, there are at least two cases in
which the User must initialize the MnBLR register such that it does
not point to the actual base location of the logical buffer space when
reception begins. For details, please see sections entitled
Fragmented Messages in OSEK on page 44 and Fragmented
Messages in CANopen on page 44.

Message Assembly
The DMA will transfer the accepted message from the pre–buffer to
the message buffer area one word at a time, starting from the
address pointed to by [MBXSR][MnBLR]. Every time DMA transfers
a byte or word, it has to request the bus. Once granted, it will write
data from the 13 byte receive pre–buffer to memory. The DMA will
keep requesting the bus, writing message data sequentially to the

memory until the whole frame is transferred. When DMA has
successfully transferred data from an incoming CAN message to
memory, the contents of the receive buffer will depend on whether
the message was non–Fragmented (single frame) or Fragmented.
Non–Fragmented Message Assembly
Since Masking is permitted on the 11– or 29–bit CAN Identifier for
Message Objects with FRAG = 0, the complete CAN ID for the
incoming message is written into the MnMIDH and MnMIDL
registers when the DMA has completed. This will permit the User
application to see the exact CAN identifier which resulted in the
match.

As a result of the above mechanism, the contents of MnMIDH and
MnMIDL can change every time an incoming frame is accepted.
Since the incoming frame has to pass the Match before it can be
accepted, only the bits that are Masked out will change. Therefore,
the criteria for Match and Mask will not change as a result of an
accepted incoming frame  (see Figure 38).

Frame Info Direction of increasing
ddData byte 1 address

Data byte 2
Data byte 3
Data byte 4

Data byte 5
Data byte 6
Data byte 7
Data byte 8

Figure 38.  Memory Image for Non–Fragmented Messages



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 43

The Frame Info byte contains the following bits:

FRAME INFO
7 6 5 4 3 2 1 0

IDE RTR SEM1 SEM0 DLC.3 DLC.2 DLC.1 DLC.0

The actual incoming Screener ID which caused the Match can be
retrieved from the MnMIDH and MnMIDL registers as shown in
Figure 39.

MNMIDH
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21 ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

MNMIDL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3 ID.2 ID.1 ID.0 IDE – –

Figure 39.  Retrieving the Screener ID for an Extended CAN Frame

Fragmented Message Assembly
Masking of the 11/29 bit CAN Identifier field by User software (but
only the actual bits of the Identifier itself!) is disallowed for any
Message Object which employs auto–Fragmentation assembly. The
identifier which resulted in the Match is, therefore, known
unambiguously and is not included in the receive buffer. If the
software needs access to this information, it can retrieve it from the
appropriate MnMIDH and MnMIDL registers.

As subsequent frames of a Fragmented message are received, the
new data bytes are appended to the end of the previously received
packets. This process continues until a complete multi–frame
message has been received and stored.

If an object is enabled with FRAG = 1, under protocols DeviceNet,
CANopen, and OSEK (Prtcl1 Prtcl0 ≠ 00), the first CAN frame data
byte is used to encode Fragmentation information only. That byte
will not be stored in the buffer area. The storage will start with the
second data byte (Data Byte 2) and proceed to the end of the frame.
See Figure 40.

Byte count Direction of increasing
addressData Byte 2 address

Data Byte 3

…
Data Byte DLC

Data Byte 2 (next)

Data Byte 3 (next)

…

Figure 40.  Memory Image for Fragmented CTL Messages
(FRAG = 1 and Prtcl1 Prtcl0 ≠ 00)

If an object is enabled with FRAG = 1, with CAN as the system
protocol (Prtcl1 Prtcl0 = 00), then CAN frames are stored
sequentially in that object’s message buffer using the format shown
in . Also, if [Prtcl1 Prtcl0] = 00, Rx Buffer Full is defined as “less than
9 bytes remaining” after storage of a complete CAN frame. When
the DMA pointer wraps around, it will be reset to offset ‘1’ in the
buffer, not offset ‘0’, and there will be no Byte Count written.

FrameInfo Direction of increasing
addressData Byte 1 address

Data Byte 2

…
Data Byte DLC

FrameInfo (next)

Data Byte 1 (next)

Data Byte 2 (next)
… …Direction of increasing

dd
Direction of increasing

dd
Figure 41.  Memory Image for CAN Frame Buffering (FRAG = 1

and Prtcl1 Prtcl0 = 00)

During buffer access, the DMA will generate addresses
automatically starting from the base location of the buffer. If the DMA
has reached the top of the buffer, but the message has not been
completely transferred to memory yet, the DMA will wrap around by
generating addresses starting from the bottom of the buffer again.
Some time before this happens, a warning interrupt will be
generated so that the User application can take the necessary
action to prevent data loss.

The top location of the buffer is determined by the size of the buffer
as specified in MnBSZ.

The XA-C3 automatically receives, checks and reassembles up to
32 Fragmented messages automatically. When the FRAG bit is set
on a particular message, the message handler hardware will use the
Fragmentation information contained in Data Byte 1 of each frame.

To enable automatic Fragmented message handling for a certain
Message Object, the User is responsible for setting the FRAG bit in
the object’s MnCTL register.

The message handler will keep track of the current address location
and the number of bytes of each CTL message as it is being
assembled in the designated message buffer location. After an “End
of Message” is decoded, the message handler will finish moving the
complete message and the byte count into the message buffer via



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 44

DMA, and then interrupt the CPU that a complete message has
been received.

Since Data Byte 1 of each frame contains the Fragmentation
information, it will never be stored in the CTL message buffer, thus
each frame will have up to seven bytes of data stored. After the
entire message is received, the message buffer will contain all of the
actual informational data bytes received (exclusive of Fragmentation
information bytes) plus the Byte Count at location 00 which will
contain the total number of informational data bytes stored.
Fragmentation Error
By looking at the Fragmentation information, the message handler
can determine the first frame , the middle frames, the end frame of
the message, and each sequence number. In the case of CANopen,
there is no sequence number but rather a one bit field that toggles
each frame. If a Fragmentation error occurs, the message handler
will reset the byte count, address pointer, and generate an interrupt
to the CPU. At this point the CTL message buffer is determined to
be invalid.

Fragmentation checking is disabled for all objects when CAN is the
system protocol (Prtcl[1:0] = 00).

Fragmentation error occurs only one way:
1. When the message handler receives a frame where the

sequence number is NOT one greater than that of the previous
frame. Or in the case of CANopen, the toggle bit has not toggled.

Fragmented Messages in OSEK
There are several important items that must be kept in mind with
regard to hardware assembly of Fragmented OSEK messages. For
a complete discussion, please see the XA-C3 User Manual. These
items are summarized below:
� The OSEK FirstFrame cannot be treated as part of the

Fragmented message, but must be handled as a completely
separate, single–frame, non–Fragmented message. However, the
FirstFrame may contain the first several bytes of User–data.

� For the object receiving the forthcoming message Fragments, the
MnFCR register must be initialized by the User to point at an
address other than the buffer base location. This can be byte
offset ‘1’ or some other, more strategically chosen location. Since
there will be no FirstFrame received for this object, there will be
no write of 00h to the buffer base location, by DMA, at the
beginning of the message.

� The Fragment Count Register (MnFCR) of the object receiving the
message Fragments must be initialized by the User before
enabling the object for receive. The initial value written to MnFCR
must be identical to the SequenceNumber of the first
ConsecutiveFrame that arrives (typically 0h).

� There is no “Last Frame” encoding for OSEK. Therefore, there will
be neither an Rx Message Complete Status Flag, nor an interrupt,
nor a Byte Count write associated with Rx Message Complete, at
the conclusion of a Fragmented message. However, by carefully
choosing the initial value for the MnBLR register, the User can
arrange to get an Rx Buffer Full interrupt, and the associated Rx
Buffer Full Byte Count write, instead.

Fragmented Messages in CANopen
In a CANopen system, the software will need to write to the object‘s
Fragment Count Register (MnFCR) to initialize the toggle bit prior to
receiving the first frame of any new message which requires
hardware Fragmentation assembly. This bit will have to be initialized
to the same state that will be received in the 1st packet (typically 0).
This bit will need to be initialized each time a new channel is
established, even if none of the other parameters change (e.g.,
Match, Mask, buffer location, buffer size, etc.).

Since the hardware cannot detect a message start, there can be no
semaphore write to the bottom of the buffer space at the start of a
new Fragmented message (for a discussion of the semaphore, see
the section entitled Using the Semaphore Bits, SEM1 and SEM0 on
page 46. This location must still be left free for the hardware to write
the byte count into at the end of the message. This means that for
CANopen Fragmented  messages (only Fragmented) the software
must initialize the address pointer to location ‘1’ of the
designated receive buffer, not location ‘0’ as it does in
DeviceNet. It also implies, of course, that the software loses the
ability to check the semaphore to determine if message
reconstruction is currently in progress.

Essentially, the hardware will treat the first frame of a multi–frame
CANopen message exactly the same as intermediate frames.
Auto–Acknowledge in CANopen
A Fragmented (Segmented) CANopen message may need to be
acknowledged on a frame by frame basis. The XA-C3 provides
hardware support for this process, with no CPU intervention. Of
course the User may elect not to auto–acknowledge, or to
implement the acknowledge function in software.

Suppose Message Object n ( n = 0…31) is enabled for receive, with
the FRAG bit set. If the high level protocol is CANopen, as selected
in the GCTL register, then the following steps must be taken to
ensure that CANopen frames are automatically acknowledged:
� Set the AUTO_ACK bit in GCTL.

� Set up a transmit object sequential to the CANopen receive
object, i.e., the object number set to be n+1. Set the FRAG bit for
this object.

� It is important NOT to set the OBJ_EN bit for the transmit
message.

With the above setup, the XA-C3 will automatically generate a
transmit frame upon successful reception of a CANopen frame. The
User must setup the screener ID for the Tx frame in the  Mn+1MIDH
and Mn+1MIDL registers, the RTR bit in Mn+1CNTL[0], and the DLC
in Mn+1MSKH[3:0]. The User must also store the proper
“Acknowledge Byte”, as defined by the protocol specification, in byte
offset 0 of the Tx object’s message buffer. Bit position [4] is a don’t
care, because the XA-C3 will automatically insert the toggle bit value
from the incoming frame into the toggle bit position of the outgoing
auto–acknowledge frame. The format for storing the Acknowledge
Byte is shown below in  Table 24 (subject to change without notice
by the CiA).



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 45

Table 24.  Format for storing the CANopen Acknowledge byte
7 6 5 4 3 2 1 0

Byte offset 0 scs t = d.c. X X X X

Byte offset 1
Byte offset 2

Byte offset 3
Byte offset 4 Not used in the protocol

Byte offset 5
Byte offset 6

Byte offset 7

MnFCR: Message n Fragmentation Count Register
� Address: MMR base + nEh

� Access: Read, write. Byte or word access.

� Reset Value: 00xxxxxxb (unused bits are always read as ‘0’)

MNFCR
7 6 5 4 3 2 1 0

– – count

An object’s Fragmentation Count Register need not be configured
by the User in DeviceNet systems. However, in CANopen and
OSEK systems, the User must initialize this register.
GCTL: Global Control Byte (applies to all objects)

� Address: MMR base + 27Eh

� Access: Read, write, R/M/W, byte or word

� Reset Value: 00h

GCTL
7 6 5 4 3 2 1 0

– – – – Auto_Ack Pre_Arb Prtcl1 Prtcl0

Auto_Ack Enables automatic acknowledge for CANopen.
0 = disable, 1 = enable.

Pre_Arb Establishes the transmit pre–arbitration
scheme. 0 = Pre–arbitration based on CAN ID,
object number is secondary tie–breaker. 1 =
Pre–arbitration based on object number only.

[Prtcl1 Prtcl0] Indicates CTL protocol of the system (if any).

00 = CAN
01 = DeviceNet
10 = CANopen
11 = OSEK

Transmit Message Objects and the Transmit
Process
In order to transmit a message, the XA application program needs to
first assemble the complete message and store it in the message
buffer area for that Message Object (the address of the message
buffer would have been previously programmed into the object’s
MnBLR register). The header (CAN ID and Frame Information) must
be written to the object’s MnMIDH, MnMIDL, and MnMSKH registers
as appropriate.

When the above is done, the Application is ready to transmit the
message. To initiate a transmission, the object enable bit (OBJ_EN)
must be set (except when transmitting an Auto–Acknowledge frame
in CANopen). This will allow this ready–to–transmit message to
participate in the pre–arbitration process.

If more than one message is ready to be transmitted. A so–called
pre–arbitration process will be performed to determine which
Message Object will be selected for transmission. There are two
pre–arbitration policies which the User can choose between by
setting or clearing the Pre_Arb bit in the GCTL register.

After a Tx Message Complete, the Tx Pre–Arbitration process is
“reset”, and begins again. Also, if the winning Message Object
subsequently loses arbitration on the CAN bus, the Tx
Pre–Arbitration process gets reset and begins again.

If there is only one transmit message whose OBJ_EN bit is set, it
will be selected regardless of the pre–arbitration policy.

Pre–Arbitration Based on Priority (default mode)
This mode is selected by writing ‘0’ to the Pre_Arb bit in GCTL[2].

The filter state machine goes through all transmit Message Objects
for which the OBJ_EN bit is set. The message with the highest
priority as defined by the CAN arbitration ID field  will be selected
for transmission. If more than one pending transmit message share
the same CAN identifier, then secondary priority will be based on
XA-C3 Message Object numbers, with the lowest numbered object
winning access.

The winning message will then be output onto the CAN bus where it
will compete for access with other transmitting nodes.

Pre–Arbitration Based on Object Number
As an alternative, the User may select to base pre–arbitration on
Message Object number alone. This mode is selected by writing ‘1’
to the Pre_Arb bit in GCTL[2].

The pre–arbitration state machine will go through the Message
Objects sequentially, starting with object number 0, and select the
first encountered transmit Message Object, with OBJ_EN set to ‘1’,
for transmission. In other words, the order in which the messages
objects are examined in the pre–arbitration process is by increasing
object number n, where n = 0…31. Each time pre–arbitration begins,
the enabled message with the lowest object number will be selected



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 46

for transmission, regardless of the priority level represented by its
CAN identifier.

Message Retrieval
Once a Message Object is selected for transmission, the DMA will
begin retrieving the data from the message buffer area in memory
and transferring the data to the CAN core block for transmission.

The same DMA engine and address pointer logic is used for
message retrieval of transmit messages as for message storage of
receive messages. Message buffer location and size information is
specified in the same way. Please refer to the section entitled
Message Storage on page 41  for a complete description.

When a message is retrieved, it will be written to the CCB
sequentially. During this process, the DMA will keep requesting the
bus, reading from memory and writing to the CCB.

To prepare a message for transmission, the User application is
required to put the message in the appropriate object’s message
buffer area in the format shown below:

Data Byte 0 Direction of increasing
addressData Byte 1 address

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

Please observe that the CAN identifier field and frame info must not
be included in the transmit buffer. The transmit logic retrieves this
information from the appropriate MnMIDH, MnMIDL, and MnMSKH
registers. The format for storing the frame information in the
MnMSKH register is shown in Figure 42.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x DLC.3 DLS.2 DLC.1 DLC.0

Figure 42.  Format for Storing the Tx Frame Info in MnMSKH

Transmission of Fragmented Messages
The XA-C3 does not handle the transmission of Fragmented
messages in hardware. It is the User’s responsibility to write each
frame of a Fragmented message to the transmit buffer, enable the
object for transmission, and wait for a completion before writing the
next frame to the message buffer. The User application must
therefore transmit multiple frames one by one until the whole
message is transmitted.
However, by using multiple Tx objects whose object numbers
increase sequentially, and whose CAN IDs have been configured
identically, several frames of a Fragmented message can be
queued–up and enabled, and will be transmitted in order.

RTR Handling
This section describes how to receive or transmit Remote Transmit
Request (RTR) frames.

Receiving an RTR Frame
1. The software must setup an Rx object with the RTR bit in

MnCTL[0] set to ‘1’.

2. An RTR frame is received when the CAN ID Matches that of the
enabled receive object whose RTR bit set to ‘1’.

3. If interrupt is enabled for that Message Object, an interrupt will
be generated upon the RTR message reception.

4. The software would usually have a transmit object available with
the same ID. Upon receiving an RTR frame, the software should
update the data for the corresponding transmit object and send it
out.

Transmitting an RTR Frame
1. The software must setup a Tx object with the RTR bit in

MnCTL[0] set to ‘1’.

2. The software sets the object enable bit (OBJ_EN) which will
enable the object to participate in pre–arbitration.

3. After the object wins pre–arbitration, an RTR frame will be sent
out with a ‘1’ in the RTR bit position.

4. At the end of a successful RTR transmission, the OBJ_EN bit will
be cleared. An interrupt could be generated  if it is enabled.

5. It is possible for an incoming message, with CAN ID Matching
that of the transmitting RTR object, to arrive while the
transmitting RTR object is in pre–arbitration, or even during
transmission. In this case, the OBJ_EN bit of the transmitting
RTR object will be cleared to ‘0’, but no interrupt will be
generated.

Data integrity issues
The data stored in the message buffer area can be accessed both
by the CPU and by the DMA engine. Measures have been taken to
ensure that the application does not read data from an object as it is
being updated by the DMA. This is especially important if receive
interrupts have been disabled or have not been responded to before
a new message could have arrived. The general principle is,
� When DMA is accessing the buffer, the CPU should NOT attempt

to read from and write to the buffer.

� When CPU is accessing the buffer, the DMA is still allowed to
access the buffer. When this happens the CPU should be able to
detect and abandon the data read.

Using the Semaphore Bits, SEM1 and SEM0
A three–state semaphore is used to signal whether a given buffer is:
1. Ready for CPU to read

2. Being accessed by DMA (therefore not ready for CPU read)

3. Being read by CPU

The semaphore is encoded by two semaphore bits, SEM1 and
SEM0, which are in bit positions [5] and [4] of the Frame Info byte,
the first byte of the receive buffer.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 47

At the start of a non–Fragmented message, prior to writing any data
bytes, the DMA will begin by writing 01h into the first byte of the
buffer (byte 0). Once the complete frame has been stored, the DMA
will write the frame information into byte 0, with bits [5] and [4]
always set to ‘1’.

When the application wants to read from the object’s buffer, it can
read byte 0 to determine if the DMA is currently updating the buffer.
If byte 0 contains 01h, then the buffer is currently being updated.
The application should not continue to read from the buffer.

When the application starts to read from the buffer, it should set the
semaphore to 10b. After reading is finished, the application should
check the semaphore again. If it is still 10b, everything is OK.

If, however, the semaphore becomes 01b or 11b after the CPU
access is finished, it means that either the buffer is currently being
accessed by DMA or has been accessed by DMA during the time
the CPU was performing reads. In either case, the CPU should wait
until the semaphore bits become 11b again, and reread.

Use of the semaphore bits is not mandatory. However, their use may
help to maintain data consistency.

There are no dedicated semaphore bits for use with Fragmented
messages. In the case of a Fragmented message (in DeviceNet
only), the DMA will write a 00h in byte 0 of the object’s buffer. After

the completion of a CTL message, the byte count (1 to 255) will be
written to byte 0.

Avoiding Data Corruption for Transmit Message Objects
To avoid data corruption when transmitting messages, there are
three possible approaches:
1. If the Message Complete interrupt is enabled for the transmit

message, the User application would write to the transmit buffer
after seeing the interrupt. Once the interrupt flag is set, it is
known for sure that the pending message has already been
transmitted.

2. Wait until OBJ_EN clears before writing to the buffer. This can be
done by polling the OBJ_EN bit.

3. Clear OBJ_EN, while the object is still in pre–arbitration.

In the first two cases, the pending message will be transmitted
completely before the next message gets sent. For the third case,
the message will not be transmitted. Instead, a message with new
content will enter pre–arbitration.
There is an additional mechanism that prevents corruption of a
message that is being transmitted. If a transmission is ongoing for a
Message Object, the XA-C3 hardware will prevent the User from
clearing the OBJ_EN bit in the object’s MnCTL register.

OSEK, DEVICENET, AND CANOPEN FRAMES OF INTEREST
OSEK ConsecutiveFrame

Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – DLC User Data

1 0 0 1 0 SN

DeviceNet I/O Message
Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – DLC User Data

1 Fragment Type Fragment Count

Fragment Type = 00
� Fragment Count = 0 ... This is the First Fragment

� Fragment Count = 3F ... This is both the First and Last Fragment

Fragment Type = 01 ... Middle Fragment
Fragment Type = 10 ... Last Fragment

CANopen Download Domain Segment Request
Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – DLC User Data

1 ccs (User specified) t n (User specified) c

c = 0 ... not last segment c = 1 ... last segment

CANopen Auto–Acknowledge Tx Response to Download Domain Segment
Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – 8 reserved

1 scs (User specified) t not used, always 0000

CAN/CTL RELATED INTERRUPTS
The CAN/CTL module will generate five different Event interrupts to
the XA core:
� Rx Message Complete

� Tx Message Complete

� Rx Buffer Full

� Message Error

� Frame Error

Rx and Tx Message Complete Interrupts
In the following discussion (and elsewhere in the document) the
term “message” applies to a complete transfer of information. For
single–frame messages, the “message complete” condition occurs
at the end of the frame. For multi–frame (Fragmented) messages,
message complete occurs after the last frame is received and
stored. Since the hardware doesn’t recognize or handle
Fragmentation for transmit messages, the Tx message complete



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 48

condition will always  be generated at the end of each successfully
transmitted frame.

There is a control bit associated with each Message Object
indicating whether a message complete condition should generate
an interrupt, or just set a “message complete status flag” (for polling)
without generating an interrupt. This is the INT_EN bit in the object’s
MnCTL register, MnCTL[3].

There are two 16–bit MMRs, MCPLH and MCPLL, which contain the
message complete status flags for all 32 objects. When a message
complete (Tx or Rx) condition is detected for a particular Message
Object, the corresponding bit in the MCPLH or MCPLL register will
be set. This will occur regardless of whether the INT_EN bit is set
for that object (in MnCTL[3]), or whether message complete status
flags have already been set for any other objects.

In addition to these 32 message complete status flags, there is a Tx
Message Complete Interrupt Flag and an Rx Message Complete
Interrupt Flag (CANINTFLG[1] and CANINTFLG[0] respectively),
which will generate the actual Event interrupt requests to the XA
core. When an end of message occurs, at the same moment that
the message complete status flag is set, the appropriate Tx or Rx
Message Complete Interrupt flip–flop will also be set provided that
INT_EN = 1 for the object, and the interrupt is not already set and
pending.

The message complete interrupt flags should always be cleared
using the 2–step process outlined below:
1. Message Complete Status Flags for all interrupt enabled objects

of that type (Tx or Rx) should first be cleared by writing ‘1’ to
their bit positions.

2. The Message Complete Interrupt Flag itself can now be cleared
by writing ‘1’ to its bit position.

Warning: Message Complete Interrupt Flags may be cleared before
all Message Complete Status Flags for interrupt enabled objects of
that type (Rx or Tx) are removed. However, the interrupt flag will not
be reset to ‘1’ by hardware, unless a new message complete
condition occurs for some other interrupt enabled object. Therefore,
it is strongly recommended that Message Complete Interrupt Flags
be cleared only after removing all Message Complete Status Flags
for interrupt enabled objects of the same type, and at the end of the
interrupt service routine.

The newest addition is the Message Complete Info Register (MCIR).
MCIR[4:0] will encode the lowest object number of all objects whose
INT_EN bits are set AND who currently have a message complete
condition (objects whose message complete status flags are set). A
‘1’ in bit 5 means that one or more objects whose INT_EN bits are
set have a message complete condition. A ‘0’ in bit 5 means that no
objects whose INT_EN bits are set have a message complete
condition. Bits 6 and 7 are unused.

Rx Buffer Full Interrupt
As successive frames of a Fragmented message are transferred by
DMA into an object’s message buffer, it is possible to reach the end
of the designated buffer space before the complete message has
been received. When this occurs, it is necessary for the processor to
intervene in order that the remainder of the message be stored
without any loss of data.

If the system protocol is DeviceNet, CANopen, or OSEK, then a
message buffer is considered full when the number of bytes
remaining in the buffer space, at the end of a complete frame, is less
than seven.

If the system protocol is CAN, i.e., [Prtcl1 Prtcl0] = 00, then Rx
Buffer Full is defined as “less than 9 bytes remaining” after storage
of a complete CAN frame. When the DMA pointer wraps around, it
will be reset to offset ‘1’ in the buffer,  not offset ‘0’, and there will be
no Byte Count written.

This condition could occur if the application has underestimated the
message size, or deliberately established a small buffer to conserve
memory. The condition will always occur with messages containing
more than 255 data bytes (excluding Fragmentation information
bytes), since the maximum message buffer size is 256 bytes.

The following discussion only applies to frames which are not the
last frame of a message (which also, necessarily, excludes
non–Fragmented, single–frame messages). After DMA of the last
data byte of the frame is completed, a check will be performed to
determine if the current byte count is less than 7 bytes from the end
of the assigned message buffer. If it is, then there is the potential for
the next frame to overrun the buffer. We will consider this
“less–than–seven–bytes–remaining” situation to be a buffer–full
condition. When this condition is detected, the following will occur:
� The current  byte count will be written into buffer location ‘0’

except in CAN systems. If [Prtcl1 Prtcl0] = 00, no byte count will
be written.

� The address pointer will be initialized to location ‘1’

� The Rx Buffer Full interrupt will be generated

As subsequent frames are received, the data bytes will be stored,
beginning at location ‘1’. The semaphore byte will not  be written to
again, since message assembly is still in progress. Once the
end–of–message is finally received, the DMP will respond as usual,
writing the byte–count to location ‘0’ and setting the Rx Message
Complete Interrupt Flag. Note that the byte count will now reflect
the number of bytes received since the buffer wrapped around,
not  the total number of bytes in the message . Software will have
to calculate the difference.

The software has two choices as to how to respond to this Rx Buffer
Full interrupt:
1. Read the contents of the buffer, thereby freeing up space in the

buffer for any remaining frames.

2. Reposition the buffer by modifying the address pointer. Note: The
least significant bit of the address pointer will already be set to
‘1’, and must remain so. The bottom location must be reserved
for the byte–count which will be written at the end of the
message.

If option 1 is selected, the software will retrieve the current byte
count from the bottom of the buffer. It will then retrieve the
designated number of data bytes from the buffer. Subsequent data
received will be loaded into the buffer, beginning at location ‘1’.
When the end–of–message occurs, the byte–count stored in
location ‘0’ will indicate how many new bytes have been received
which must now be retrieved.

For option 2, subsequent bytes will actually be written into a different
buffer space, elsewhere in memory. The processor can wait until the
entire message is received before retrieving any data. At that time,
the ‘0’ location of the 1st buffer will indicate how many bytes are
stored there, and likewise for the second buffer (or third or so on).
Note that option 2 is far more efficient and can be implemented with
very few instructions.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 49

Message Error Interrupt
There are two possible sources of a Message Error Interrupt: Tx
Buffer Underflow, and Fragmentation Error. When either of these
conditions occur for any Message Object, the Message Error
Interrupt Flag (CANINTFLG[3]) will be set. In addition, the Message
Error Info Register (MEIR) will be updated to reflect the number of
the object which suffered the message error, and the specific type of
message error encountered (Tx Buffer Underflow or Fragmentation
Error).

The MERIF interrupt flag is cleared by writing ‘1’ to the flag’s
position in CANINTFLG[3].

Tx Buffer Underflow
This condition occurs when the transmit engine is “starved” due to
the inability of the DMA to gain access to the bus. This interrupt
condition is predominantly for system debugging. It should never
occur during normal operation unless there is a serious flaw in the
system (e.g., a peripheral which asserts the WAIT signal for an
extended period).

Fragmentation Error
Fragmentation Error is an out–of–sequence Fragment count. For
each successive frame of a Fragmented message, the new
Fragment count must equal the previous count plus one. For
DeviceNet, the Fragment count field is 6 bits wide, for OSEK it is 4
bits wide, and for CANopen it is merely a single, toggling bit.

If a new start–of–message indicator is received for an object, while
the XA-C3 is already in the process of assembling a message for
that object, the pointers for that object will be automatically reset and
assembly will re–commence at the bottom of that object’s message
buffer. The previous, in–progress message will be overwritten, and
no interrupt or error flag of any kind will be generated.

Frame Error Interrupt
There are six conditions generated from within the CAN core, any of
which may cause the Frame Error Interrupt Flag (the FERIF bit in
CANINTFLG[4]) to be set:
� Bus Error

� Pre–Buffer Overflow

� Arbitration Lost

� Error Warning

� Error Passive

� Bus Off

� Each condition has a corresponding status flag in the Frame Error
Status Register (FESTR), which will be set when that condition
occurs. Each condition also has a corresponding enable bit in the
Frame Error Enable Register (FEENR). If a particular condition’s
enable bit is set, then when hardware sets that condition’s status
flag, the Frame Error Interrupt Flag will also be set. The Frame
Error Interrupt Flag is cleared using a 2–step process:

1. The six individual Frame Error Status Flags in the FESTR
register must first be cleared. Details on clearing these flags will
be found in the following sections.

2. The FERIF bit can then be cleared by writing ‘1’ to the flag’s bit
position in CANINTFLG[4].

Bus Error
When a Bus Error occurs, the BERR status flag in FESTR[3] will be
set, generating a Frame Error interrupt, if enabled. The BERR status
flag is cleared by executing a read of the Error Code Capture
Register (ECCR).

The type and location of the error within the bit stream will be
encoded and stored in the Error Code Capture register for the
benefit of the User application. The ECCR register must be read by
the CPU in order to be reactivated for capturing the next error code,
as well as to clear the BERR status flag. Error codes in the ECCR
register are interpreted as shown in Table 25. A read of the ECCR
register should be executed before the Bus Error interrupt is
enabled.
Table 25.  Error Codes for the Error Code Capture

Register (ECCR)
ECCR[7:6] Interpretation

00 Bit Error

01 Form Error

10 Stuff Error

11 Other Error

ECCR[5] Interpretation

0 Tx Error, error occurred during
transmission

1 Rx Error, error occurred during
reception

ECCR[4:0] Interpretation

00011 Start of Frame

00010 ID28 … ID21

00110 ID20 … ID18

00100 SRR Bit

00101 IDE Bit

00111 ID17 … ID13

01111 ID12 … ID5

01110 ID4 … ID0

01100 RTR Bit

01101 Reserved Bit 1

01001 Reserved Bit 0

01011 Data Length Code

01010 Data Field

01000 CRC Sequence

11000 CRC Delimiter

11001 Acknowledge slot

11011 Acknowledge Delimiter

11010 End Of Frame

10010 Intermission (go buy popcorn)

10001 Active Error Flag

10110 Passive Error Flag

10011 Tolerate DOM bits

10111 Error Delimiter

11100 Overload Flag

Pre–Buffer Overflow
The XA-C3 stores one complete frame (which can be up to 13
bytes) in a receive “pre–buffer” while the previous frame is being
processed. Even under extreme conditions, this should provide
ample time for the previous frame to be written to memory by DMA.
If for some reason the DMA is unable to gain access to the bus for a
long period of time, the pre–buffer could overflow. In this event, the
XA-C3 will stop accepting the new message. That is, once the five
pre–buffer bytes are full, subsequent incoming bits will be ignored.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 50

If the Receive Pre–Buffer overflows, the PBO status flag in
FESTR[5] will be set, generating a Frame Error interrupt, if enabled.
The PBO status flag is cleared by writing ‘1’ to the flag’s bit position.

Since this error will be generated before any acceptance filtering has
been performed, there will be no Message Object number
associated with the error (hence its inclusion under the category of
frame error). Note that the new message being ignored may be
intended for some other device on the CAN bus. This error should
never occur unless there is a serious system–design problem (e.g.,
an off–chip device grabs the bus and fails to de–assert “WAIT” for
an extended period).

Arbitration Lost
During transmission, arbitration on the CAN bus can be lost to a
competing device with a higher priority CAN Identifier. In this case,
the ARBLST status flag in FESTR[4] will be set, generating a Frame
Error interrupt if enabled. The ARBLST status flag is cleared by
executing a read of the Arbitration Lost Capture Register.

The bit position in the CAN Identifier at which arbitration was lost will
be encoded and stored in the Arbitration Lost Capture Register
(ALCR) for the benefit of the User application. The ALCR must be
read by the CPU in order to be reactivated for capturing the next
arbitration lost code, as well as to clear the ARBLST status flag. The
bit position in the CAN ID is encoded and stored in the 5–bit field
ALCR[4:0]. ALCR[7:5] are reserved, and are always read as zeros.
The 5–bit number latched into ALCR is interpreted according to
Table 26.
Table 26.  Arbitration Lost Codes

ALCR[4:0] Interpretation
0 Arbitration lost in ID28

1 Arbitration lost in ID27

2 Arbitration lost in ID26

... ...

10 Arbitration lost in ID18

11 Arbitration lost in SRR bit

12 Arbitration lost in IDE bit

13 Arbitration lost in ID17 (Extended Frame only)

... ...

30 Arbitration lost in ID0 (Extended Frame only)

31 Arbitration lost in RTR bit (Extended Frame only)

Error Warning
The EW bit in CANSTR[5] reports the error status of the core, with
regard to the Error Warning Limit defined by the User. If EW is ‘0’,
then both the Tx and Rx Error Counters contain values less than
that stored in the Error Warning Limit Register. If either counter
reaches or exceeds the value stored in the EWLR register, then the
EW bit will be set to ‘1’. Subsequently if both counters decrement
below the value stored in the EWLR register, the EW bit will be
cleared to ‘0’.

The ERRW status flag in FESTR[1] will be set each time the EW bit
in CANSTR[5] changes state, generating a Frame Error interrupt, if
enabled. That is, both the 0–to–1 and the 1–to–0 transitions of the
EW bit will cause the ERRW status flag to be set. The ERRW status
flag is cleared by writing ‘1’ to the flag’s bit position.

Error Passive
The EP bit in CANSTR[6] reflects the Error Passive status of the
core. If either the Tx or Rx Error Counter equals or exceeds the
predefined value 128d, the EP bit will be set to ‘1’. Subsequently, if

both counters decrement below 128d, the EP bit will be cleared to
‘0’.

Both 0–to–1 and 1–to–0 transitions of the EP bit will cause the
ERRP status flag to be set, generating a Frame Error interrupt if
enabled. The ERRP status flag is cleared by writing ‘1’ to the flag’s
bit position in FESTR[0].

Bus Off
The BS (Bus Status) bit in CANSTR[7] reflects the Bus–On and
Bus–Off status of the core. BS = 0 means the CAN core is currently
involved in bus activity (Bus–On), while BS = 1 means it is not
(Bus–Off).

When the Transmit Error Counter exceeds the predefined value
255d, the BS bit is set to ‘1’ (Bus–Off). In addition, the RR bit is set
to ‘1’ (putting the CAN Core into Reset mode), and the BOFF status
flag is set, generating a Frame Error interrupt if enabled. The
Transmit Error Counter is preset to 127d, and the Receive Error
Counter is cleared to 00h. The CAN Core will remain in this state
until it is returned to Normal mode by clearing the RR bit.

Once the RR bit is cleared, the Tx Error Counter will decrement
once for each occurrence of the Bus–Free signal (11 consecutive
recessive bits). After 128 occurrences of Bus–Free, the BS bit is
cleared (Bus–On). Again, the BOFF status flag is set (generating
another Frame Error interrupt if enabled). At this point, both the Tx
and Rx Error counters will contain the value 00h. At any time during
the Bus–Off condition (BS = 1), the CPU can determine the progress
of the Bus–Off recovery by reading the contents of the Tx Error
Counter.

During Bus–Off, a return to Bus–On can be expedited under
software control. If BS = 1, writing a value between 0 and 254 to the
Tx Error Counter and then clearing the RR bit will cause the BS bit
to be cleared after only 1 occurrence of the Bus–Free signal. As in
the case above, on the 1–to–0 transition of the BS bit, the BOFF
status flag will be set, generating another Frame Error interrupt if
enabled.

The CPU can also initiate a Bus–Off condition, if the CAN Core is
first put into Reset mode by setting RR = 1. Next, the value 255 is
written to the Tx Error Counter, and the RR bit is cleared. With the
core back in Normal mode, the Tx Error Counter contents are
interpreted, and the Bus–Off condition proceeds as described
above, exactly as if it had been caused by bus errors.

Note that the Tx Error Counter can only be written to when the CAN
Core is in Reset mode, and that both 0–to–1 and 1–to–0 transitions
of the BS bit will cause the BOFF status flag to be set, generating
Frame Error interrupts if enabled.

CAN Interrupt Registers

CANINTFLG (CAN Interrupt Flag Register)
� Address: MMR base + 228h

� Access: Read/Clear, byte or word

� Reset Value: 00h

CANINTFLG
7 6 5 4 3 2 1 0
– – – FERIF MERIF RBFIF TMCIF RMCIF

FERIF Frame Error Interrupt Flag (this bit is
Read–Only, and must be cleared in FESTR)



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 51

MERIF Message Error Interrupt Flag (cleared by writing
‘1’)

RBFIF Rx Buffer Full Interrupt Flag (cleared by writing
‘1’)

TMCIF Transmit Message Complete Interrupt Flag
(should be cleared using the 2–step process
described in the section entitled Rx and Tx
Message Complete Interrupts on page 47).

RMCIF Receive Message Complete Interrupt Flag
(should be cleared using the 2–step process
described in the section entitled Rx and Tx
Message Complete Interrupts on page 47

FESTR (Frame Error Status Register)
� Address: MMR base + 22Ch

� Access: Read, byte or word

� Reset Value: 00h

FESTR
7 6 5 4 3 2 1 0

– – PBO ARBLST BERR BOFF ERRW ERRP

PBO Frame Error sub–type is Pre–Buffer Overflow
(cleared by writing ‘1’)

ARBLST Frame Error sub–type is Arbitration Lost
(cleared by reading the ALCR register)

BERR Frame Error sub–type is Bus Error (cleared by
reading the ECCR register)

BOFF Frame Error sub–type is Bus Off (cleared by
writing ‘1’)

ERRW Frame Error sub–type is Error Warning (cleared
by writing ‘1’)

ERRP Frame Error sub–type is Error Passive (cleared
by writing ‘1’)

FEENR (Frame Error Enable Register)
� Address: MMR base + 22Eh

� Access: Read,  byte or word

� Reset Value: 00h

FEENR
7 6 5 4 3 2 1 0

– – PBOE ARBLSTE BERRE BOFFE ERRWE ERRPE

PBOE Pre–Buffer Overflow Enable (0 = disabled, 1 =
enabled)

ARBLSTE Arbitration Lost Enable (0 = disabled, 1 =
enabled)

BERRE Bus Error Enable (0 = disabled, 1 = enabled)

BOFFE Bus Off Enable (0 = disabled, 1 = enabled)

ERRWE Error Warning Enable (0 = disabled, 1 =
enabled)

ERRPE Error Passive Enable (0 = disabled, 1 =
enabled)

MCIR (Message Complete Info Register)
� Address: MMR base + 229h

� Access: Read, byte or word

� Reset Value: 00h

MCIR
7 6 5 4 3 2 1 0

– – 1 or More Object Number

1orMore 0 = No objects whose INT_EN bits are set
currently have a message complete condition. 1
= One or more objects whose INT_EN bits are
set currently have a message complete
condition.

Object Number These 5 bits encode the lowest object number
(0 – 31) of all objects whose INT_EN bits are
set AND who currently have a message
complete condition. If there are no such objects
(1orMore = 0), these bits will be 00000b.

MEIR (Message Error Info Register)
� Address: MMR base + 22Ah

� Access: Read,  byte or word

� Reset Value: 00h

MEIR
7 6 5 4 3 2 1 0

TBU FRAG RBF Object Number

[TBU FRAG RBF] 001 = Most recent is Rx Buffer Full interrupt.

010 = Most recent is Fragmentation Error
interrupt.

100 = Most recent is Tx Buffer Underflow
interrupt.

Object Number These 5 bits encode the object number (0 – 31)
of the Message Object experiencing the most
recent Message Error (Tx Buffer Underflow,
Fragmentation Error, or Rx Buffer Full)
condition. If more than one object are
encountering Message Errors, only the most
recent object number will be available.

MCPLH (Message Complete Status Flags High)
� Address: MMR base + 226h

� Access: Read/Clear, byte or word

� Reset Value: 0000h



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 52

MCPLH
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Obj31 Obj30 Obj29 Obj28 Obj27 Obj26 Obj25 Obj24 Obj23 Obj22 Obj21 Obj20 Obj19 Obj18 Obj17 Obj16

MCPLL (Message Complete Status Flags Low)
� Address: MMR base + 224h

� Access: Read/Clear, byte or word

� Reset Value: 0000h

MCPLL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Obj15 Obj14 Obj13 Obj12 Obj11 Obj10 Obj9 Obj8 Obj7 Obj6 Obj5 Obj4 Obj3 Obj2 Obj1 Obj0

TxERC (Tx Error Counter)
� Address: MMR base + 274h

� Access: Read, write, R/M/W, byte or word

� Reset Value: 00h

TXERC
7 6 5 4 3 2 1 0

TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0

The Tx Error Counter can only be written to when the CAN Core is
in Reset mode. Hardware will preset the register to 128 when a
Bus–Off condition occurs. See the section entitled Bus Off on page
50 for details.

RxERC (Rx Error Counter)
� Address: MMR base + 275h

� Access: Read, write, R/M/W, byte or word

� Reset Value: 00h

RXERC
7 6 5 4 3 2 1 0

RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

The Rx Error Counter can only be written to when the CAN Core is
in Reset mode. When a Bus–Off condition occurs, this register is
cleared to 00h.

EWLR (Error Warning Limit Register)
� Address: MMR base + 276h

� Access: Read, write, R/M/W, byte or word

� Reset Value: 96h

EWLR
7 6 5 4 3 2 1 0

EWL7 EWL6 EWL5 EWL4 EWL3 EWL2 EWL1 EWL0

ECCR (Error Code Capture Register)
� Address: MMR base + 278h

� Access: Read, write, R/M/W, byte or word

� Reset Value: 00h

ECCR
7 6 5 4 3 2 1 0

EC1 EC0 State

The Error Code Capture Register contains detailed information
about the most recent Bus Error. See Table 25 for details. The
register must be read in order to be re–enabled for capturing the
next error code, as well as to clear the BERR status flag. This
register should be read before enabling the Bus Error interrupt.

ALCR (Arbitration Lost Capture Register)
� Address: MMR base + 27Ah

� Access: Read, write, R/M/W, byte or word

� Reset Value: 00h

ALCR
7 6 5 4 3 2 1 0
– – – Bit Number

The ALCR latches the bit number in the CAN Identifier where the
most recent Arbitration Lost occurred. See Table 26 for details. The
register must be read in order to be reenabled for capturing the next
arbitration lost code, as well as to clear the ARBLST status flag.

This register should be read before enabling the Arbitration Lost
interrupt.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 53

CAN Interrupt SFRs
As with all XA Event interrupts, the five CAN interrupts can be
independently enabled, disabled, and prioritized using the interrupt

control SFRs in the XA Core (see IEH, IEL, and IPA0 – IPA7 in Table
26 on page 50 and see Table 16 on page 26). Bit positions are given
below in .

Table 27.  SFR Interrupt Enable/Priority Bit Positions
NOTE: ALSO SEE TABLE 25 ON PAGE 49

SFR
Name

SFR
Address

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IEH 427 EMRI EMTI EMER ECER ESPI unused ETI0 ERI0

IEL 426 EA unused EBUFF ET2 ET1 EX1 ET0 EX0

IPA0 4A0 – PT0 – PX0

IPA1 4A1 – PT1 – PX1

IPA2 4A2 – PBUFF – PT2

IPA4 4A4 – PTI0 – PRI0

IPA5 4A5 – PSPI – unused

IPA6 4A6 – PMER – PCER

IPA7 4A7 – PMRI – PMTI

EMRI Rx Message Complete interrupt
enable.

EMTI Tx Message Complete interrupt
enable.

EMER Message Error interrupt enable.

ECER Frame Error interrupt enable.

ESPI SPI Port Interrupt enable.

ETI0, ERI0 XA-C3 Serial Port 0 interrupt
enable bits.

EBUFF Rx Buffer Full interrupt enable.

EA, ET2, ET1, EX1, ET0, EX0 XA-C3 Enable All, Timer, and
External interrupt enable bits.

PX0, PT0, PX1, PT1, PT2 XA-C3 External and Timer
interrupt priority fields.

PBUFF Rx Buffer Full interrupt priority
field.

PRI0, PTI0 XA-C3 Serial Port 0 interrupt
priority fields.

PSPI SPI Port interrupt priority field.

PMRI Rx Message Complete interrupt
priority field.

PMTI Tx Message Complete interrupt
priority field.

PMER Message Error interrupt priority
field.

PCER Frame Error interrupt priority field.

POWER–DOWN AND IDLE MODE

Background: XA Power–Down and Idle modes
Power–Down mode on the XA means that the main oscillator is
clamped–off and there is no chip activity of any kind. Idd in this mode
is on the order of a few tens of microamps. Wake–up from
power–down is accomplished via a system reset or a transition on
the External Interrupt 0 or 1 pins. The wake–up period is 10,000
oscillator clocks (enough for several CAN frames to be transmitted).

Idle mode on the XA means that the clocks are running but are
gated–off to the processor core. Most peripherals are active, but
some may be put to sleep along with the core. Wake–up from Idle

mode is instantaneous, and is initiated via any interrupt. Idd in Idle
mode is in the range of 25–30 mA @ 32 MHz if the CAN/CTL
module is deactivated, perhaps 54–80 mA @ 32 MHz if the CAN is
left active. Note that putting the XA core, by itself, into Idle mode
reduces power consumption by approximately 30 mA @ 32MHz.

XA-C3 Idle Mode
The default condition for the CTL/CAN module will be to stay awake
in Idle mode, so that the core can “sleep” while CAN
transmissions/receptions are in progress. Any interrupt (e.g.,
Message Complete) will wake up the core. An option will be
provided to include the CAN/CTL module in Idle mode. This option
will be selected in software by writing to the SLPEN bit in MMR
CANCMR[3]. If the CAN does  go to sleep in Idle mode, then any
transition on the CAN RxD input pin will be asynchronously latched
and will immediately re–enable the clocks to the CAN/CTL module
so that it can begin receiving the incoming frame. There will not  be
any interrupt generated, however, and the processor core will
remain in idle mode. The CPU will only come out of Idle mode once
a complete message is received and stored and a
Message–Complete interrupt is generated (unless, of course, some
other system interrupt wakes it up prior to that). The CCB will
generate a “ccb_idle_n” signal which will be routed to all of the other
CAN/CTL blocks (including the CMI) at the top level.

XA-C3 Power–Down Mode
If a transition of the CAN RxD input occurs when the XA-C3 is in
Power–Down mode, the CPU will enter Idle mode (after a 9892
clock delay), and the CCB and Message Handler circuits will be
activated to receive and process the incoming frame. When either of
these blocks generates an interrupt (or some other enabled interrupt
occurs), only then will the CPU come out of Idle mode and begin
executing code. Code execution will resume either in the interrupt
service routine, if its priority is higher than current code, or with the
next instruction following the Power–Down instruction. At this time
the termination of the Power–Down mode is actually complete.

CAN Sleep Enable
Certain conditions must be met before the CAN/CTL module can be
safely put to sleep (Idle or Power–Down). Essentially, there must be
no CAN activity in progress and no interrupts pending. The CCB
must generate a “sleepok” signal (SLPOK=CANSTR[2]) which
indicates that these conditions are met. This signal must be used to
enable the  “ccb_idle_n” signal. In addition, the “sleepok” signal



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 54

must be readable by the processor as an MMR. If the processor is
about to put the part into power–down mode, it must read this bit
first to determine if it is safe to do so. There is no need for the
processor to read this bit prior to entering idle mode. The core is free
to go into idle mode whenever it chooses. The CAN/CTL module will
follow if and when it is ready. All of the logic required to implement
everything discussed in this section will be in the CCB.

MEMORY INTERFACE UNIT

General Description
The XA-C3 memory interface (MIF) unit provides interfaces to
generic memory devices such as SRAM, flash, and EPROM. The
timing of memory cycles, including different strobe widths, is
programmable by software.

MIF arbitrates between memory accesses from the XA core and
from the DMA unit associated with the CAN/CTL function. It also
provides access to the on–chip Memory Mapped Registers (MMRs)
and the on–chip message buffer RAM (XRAM).

Summary of features
� Supports generic memory including SRAM, flash, and EPROM.

� Programmable timing.

� Supports wait states.

� Static 16-bit bus sizing.

� Arbitrates between CPU and DMA access.

� Relocatable Memory Mapped Register (MMR) access for
CAN/CTL related configuration and data.

Memory Mapped Registers (MMRs)
The XA-C3 has several hundred bytes of memory mapped
control/status registers (MMRs). These registers are mapped to the
main data memory space. A 4KByte space is reserved from the data
memory space for memory mapped registers (MMRs).

The base address of the MMR space is programmed by software. It
can be placed anywhere within the entire 16 MByte data memory
space supported by the XA architecture, other than at the very
bottom of memory (address 000000h) where it would conflict with
the on–chip DATA RAM (Scratch Pad). The 4K MMR space will
always start at a 4K boundary.

The base address of the MMR space is determined by the contents
of Special Function Registers MRBL and MRBH, as shown in Table
6 on page 11. Any address asserted by the XA whose twelve most
significant bits match the concatenation MRBH[7:0] MRBL[7:4] will
be automatically routed to the on–chip MMR bus.

The reset values for MRBH and MRBL are 0Fh and F0h
respectively. Therefore, after a reset the MMR space is mapped to
the uppermost 4K bytes of Data Segment 0Fh, but access to MMRs
is disabled. The first 512 Bytes (offset 000h – 1FFh) of MMR Space
are the Message Object Registers (eight per Message Object) for
objects n = 0 – 31, as shown in Figure

MMR

Space

4K bytes

Segment xy in Data

Memory Space (DS = xy)

MRBL[7:4]0000MRBH[7:0] 00h

a23 a16 a15 a0a7a8

xyFFFFh

xy0000h SU01340

Figure 43.  Formation of the MMR Base Address



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 55

Offset 000h

MMR Space

Offset FFFh

Offset 1FFh

512 Bytes Object Registers

SU01341

Figure 44.  Detail of MMR space showing block of Message Object Registers

Special Function Register MRBH
� Address: SFR 497h

� Reset Value: 0Fh

MRBH
7 6 5 4 3 2 1 0

a23 – a16 of MMR Base Address

Special Function Register MRBL
� Address: SFR 496h

� Reset Value: F0h

MRBL
7 6 5 4 3 2 1 0

a15 – a12 of MMR Base Address – – – MRBE

MRBE MRBE is the global enable bit for MMRs. On
reset, MRBE is cleared to 0.

0 = MMRs disabled

1 =  MMRs enabled

On–Chip Message Buffer RAM (XRAM)
The XA-C3 has a 512–byte on–chip message buffer RAM (XRAM)
which may contain part or all of the CAN/CTL (transmit & receive
objects) message buffers. This block of memory can be accessed
as regular data memory. The logic address of the XRAM is
programmed by software, and must start at a 512–Byte boundary.

The base address of the XRAM is determined by the contents of
Memory Mapped Registers MBXSR and XRAMB as shown in  and .
Any address asserted by the XA core (or the DMA) whose fifteen
most significant bits match the concatenation

MBXSR[7:0]XRAMB[7:1] will be automatically routed to the XRAM.
On reset, the XRAM is disabled. Note: The XRAM should not be
confused with the 1K Byte “scratch–pad” DATA RAM which is also
provided on–chip.

Since the uppermost 8 bits of all message buffer addresses are
formed by the contents of the MBXSR register, the XRAM and all 32
message buffers must reside in the same 64K byte data memory
segment. Since the XA-C3 only provides address lines A1 – A19 for
accessing External memory, all External memory addresses must
be within the lowest 1M byte of address space. Therefore, if there is
External memory in the system into which any of the 32 message
buffers will be mapped, then all 32 message buffers and the XRAM
must also be mapped entirely into that same 64K byte segment,
which must be below the 1M byte address limit.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 56

XRAMB[7:1] 0MBXSR[7:0] 00h

XRAM

512 Bytes

Segment xy in Data

Memory Space

MnBLRMBXSR[7:0]

a23 a16 a15 a0a7a8

Object n

Buffer size
Object n Message Buffer a23 a16 a15 a0

xyFFFFh

xy0000h SU01342

Figure 45.  Formation of the XRAM base address, with object n message buffer mapped to off–chip data memory.

XRAMB[7:1] 0MBXSR[7:0] 00h

XRAM

XRAM

512 Bytes

Segment xy in Data

Memory Space

a23 a16 a15 a0a7a8

MnBLRMBXSR[7:0]

Object n

Buffer size
Object n Message Buffer a23 a16 a15 a0

xyFFFFh

xy0000h SU01343

Figure 46.  Object n Message Buffer mapped into the on–chip XRAM.

MBXSR (Message Buffer and XRAM Segment Register)
� Address: MMR Base + 291h

� Access: Read, write.

� Reset value: FFh

MBXSR
7 6 5 4 3 2 1 0

a23 – a16 of XRAM (and all message buffers) Base Address

XRAMB (XRAM Base Address)
� Address: MMR Base + 290h

� Access: Read, write

� Reset value: FEh



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 57

XRAMB
7 6 5 4 3 2 1 0

a15 – a9 of XRAM Base Address XRE

XRE XRAM Enable bit, resets to ‘0’.
0 = XRAM disabled
1 = XRAM enabled

MIF Control and Configuration Registers

MIFCNTL (SFR)
� Address: SFR 495h

MIFCNTL
7 6 5 4 3 2 1 0

– – – WAITD BUSD – – –

WAITD Wait Disable
0 = Wail enabled
1 = Wait disabled

BUSD External Access Disable
0 = enable
1 = disable

MIFBTRL (Memory Interface Bus Timing Register Low, MMR)
� Address: MMR base + 292h

� Access: Read, write, byte or word

� Reset value: EFh

MIFBTRL
7 6 5 4 3 2 1 0

WM1 WM0 ALEW – CR1 CR0 CRA1 CRA0

MIFBTRH (Memory Interface Bus Timing Register High, MMR)
� Address: MMR base + 294h

� Access: Read, write, byte or word

� Reset value: FFh

MIFBTRH
7 6 5 4 3 2 1 0

DW1 DW0 DWA1 DWA0 DR1 DR0 DRA1 DRA0

Note: The two MMRs MIFBTRL and MIFBTRH are not to be
confused with the two SFRs BTRL and BTRH, which control the
operation of the BIU, not the MIF. In order for the MIF to function
properly, the contents of BTRL and BTRH have to be set at a fixed
configuration on reset, by User application software, similar to the
treatment for the XA-SCC MIF.

Bus Arbitration
Bus arbitration is done on an “alternate” policy. After a DMA bus
access, the CPU will get the bus if requested. After a CPU bus

access, the DMA will get the bus if requested. A burst access from
the CPU cannot be interrupted by a DMA bus access.

SPI Port
The on–chip SPI Port uses the following Memory Mapped Registers:

SPICFG (MMR)
� Address: MMR base + 260h

� Access: Read, write, byte or word

� Reset value: 00h

SPICFG
7 6 5 4 3 2 1 0

SPCP Rsvd Rsvd Rsvd SPC3 SPC2 SPC1 SPC0

SPCP SPICLK Polarity
0 = inverted SPICLK
1 = normal SPICLK

Rsvd Reserved bits, only write zeros.

SPC3 – SPC0 SPICLK timing

SPICLK = (CClk) / 4 (SPICFG[3:0] + 1)

SPIDATA (MMR)
� Address: MMR base + 262h

� Access: Read, write, byte or word

� Reset value: 00h

SPIDATA
7 6 5 4 3 2 1 0

Data

SPICS (MMR)
� Address: MMR base + 263h

� Access: Read, write, byte or word

� Reset value: 00h



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 58

SPICFG
7 6 5 4 3 2 1 0

SPSTT SPB2 SPB1 SPB0 SPFG Rsvd Rsvd SPIDL

SPSTT SPI Start
0 = Cycle finished, cleared by hardware and on
reset
1 = Start

SPB2 – SPB0 Number of SPI bits transceived = SPICFG[6:4]
+ 1

Rsvd Reserved bits, write only zeros

SPIDL SPI TxD idle state
0 = idle low
1 = idle high



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 59

LQFP44: plastic low profile quad flat package; 44 leads; body 10 x 10 x 1.4 mm SOT389-1



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 60

PLCC44: plastic leaded chip carrier; 44 leads SOT187-2



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 61

Definitions
Short-form specification —  The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition —  Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information —  Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support —  These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes —  Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone  800-234-7381

  Copyright Philips Electronics North America Corporation 2000
All rights reserved. Printed in U.S.A.

Date of release: 01-00

Document order number: 9397 750 06805

������

�����
	����
�


Data sheet
status

Objective 
specification

Preliminary 
specification

Product 
specification

Product
status

Development

Qualification

Production

Definition [1]

This data sheet contains the design target or goal specifications for product development.
Specification may change in any manner without notice.

This data sheet contains preliminary data, and supplementary data will be published at a later date.
Philips Semiconductors reserves the right to make changes at any time without notice in order to
improve design and supply the best possible product.

This data sheet contains final specifications. Philips Semiconductors reserves the right to make
changes at any time without notice in order to improve design and supply the best possible product.

Data sheet status

[1] Please consult the most recently issued datasheet before initiating or completing a design.


