Schottky Barrier Diode

These Schottky barrier diodes are designed for high speed switching applications, circuit protection, and voltage clamping. Extremely low forward voltage reduces conduction loss. Miniature surface mount package is excellent for hand held and portable applications where space is limited.

- Extremely Fast Switching Speed
- Extremely Low Forward Voltage 0.28 Volts (Typ) @ $I_F = 1$ mAdc
- Low Reverse Current

ON Semiconductor™

http://onsemi.com

40 V SCHOTTKY BARRIER DIODE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Reverse Voltage	V _{RM}	40	V
Reverse Voltage	V_{R}	30	Vdc
Electrostatic Discharge	E _{SD}	HBM Class: 1C MM Class: A	

THERMAL CHARACTERISTICS

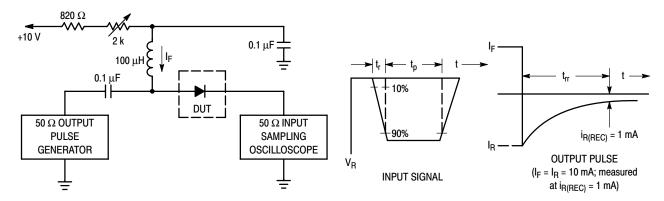
Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1.) T _A = 25°C Derate above 25°C	P _D	200	mW mW/°C
Thermal Resistance Junction to Ambient	R _{θJA}	635	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-5 Minimum Pad

SOD-323 **CASE 477**

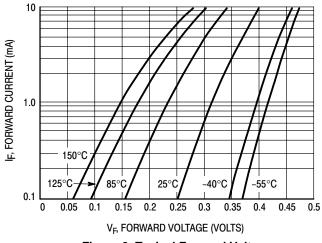
MARKING DIAGRAMS

5E = Specific Device Code = Date Code


ORDERING INFORMATION

Device	Package	Shipping
RB751V40T1	SOD-323	3000/Tape & Reel

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage $(I_R = 10 \mu A)$	V _{(BR)R}	30	_	_	Volts
Total Capacitance (V _R = 1.0 V, f = 1.0 MHz)	Ст	-	2.0	2.5	pF
Reverse Leakage (V _R = 30 V)	I _R	-	300	500	nAdc
Forward Voltage (I _F = 1.0 mAdc)	V _F	-	0.28	0.37	Vdc

Notes: 1. A 2.0 $k\Omega$ variable resistor adjusted for a Forward Current (I $_{\mbox{\scriptsize F}})$ of 10 mA.

- 2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 10 mA.
- 3. $t_p \gg t_{rr}$

Figure 1. Recovery Time Equivalent Test Circuit

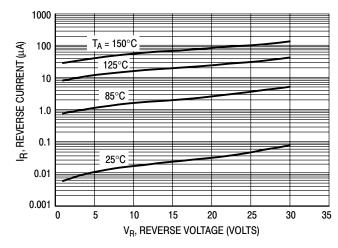
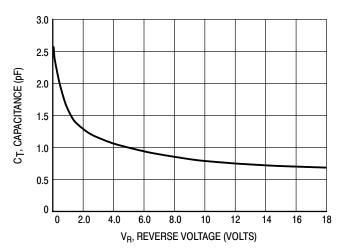
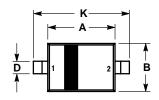
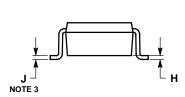
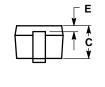


Figure 2. Typical Forward Voltage

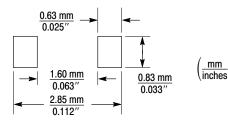
Figure 3. Reverse Current versus Reverse Voltage


Figure 4. Typical Capacitance

PACKAGE DIMENSIONS

SOD-323 PLASTIC PACKAGE CASE 477-02 ISSUE B



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	1.60	1.80	0.063	0.071	
В	1.15	1.35	0.045	0.053	
С	0.80	1.00	0.031	0.039	
D	0.25	0.40	0.010	0.016	
Е	0.15 REF		0.006 REF		
Н	0.00	0.10	0.000	0.004	
J	0.089	0.177	0.0035	0.0070	
K	2.30	2.70	0.091	0.106	

STYLE 1: PIN 1. CATHODE 2. ANODE

SOD–323Soldering Footprint

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll–Free from Mexico: Dial 01–800–288–2872 for Access – then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.