Typical Applications

－UHF Digital and Analog Receivers
 －Digital Communication Systems
 －Spread－Spectrum Communication Systems
 －Commercial and Consumer Systems
 －Portable Battery－Powered Equipment －General Purpose Frequency Conversion

Product Description

The RF2495 is a front－end receiver IC chip developed for the handset／portable battery－powered equipment mar－ kets．The chip contains an RF 15 dB attenuator，an LNA and a passive mixer．By using a state－of－the－art Silicon Bi－CMOS process，the LNA has high dynamic range under low DC operating conditions and the passive mixer requires no DC bias at all．Packaged in the industry－stan－ dard MSOP－10 package，the device is well－suited for lim－ ited board space applications．

Optimum Technology Matching ${ }^{\circledR}$ Applied

Functional Block Diagram

Package Style：MSOP－10

Features

－Single Supply 3V Operation
－ 1.9 dB LNA NF
－0dBm Input IP3

－Small MSOP－10 Package

－Low Current Drain（11mA maximum）
－Very Low Cost

\section*{Ordering Information
 | RF2495 | 900 MHz 3V Low Current LNA／Mixer |
| :--- | :--- |
| RF2495 PCBA | Fully Assembled Evaluation Board |}

RF2495

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +3.6	$\mathrm{~V}_{\mathrm{DC}}$
Input RF Level	+10	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s)

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall RF/LO Frequency Range		$\begin{gathered} 850 \text { to } 940 \\ 800 \text { to } 1000 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ Specifications Usable range
LNA Gain Input IP3 Noise Figure Input VSWR Output VSWR	$\begin{gathered} 15.5 \\ 1.0 \\ -2.5 \\ +11.0 \end{gathered}$	$\begin{gathered} 17.0 \\ 4.0 \\ +1.0 \\ +12.5 \\ 1.9 \\ 13.5 \end{gathered}$	$\begin{gathered} 2.2 \\ 1.67: 1 \\ 1.67: 1 \end{gathered}$	dB dB dBm dBm dB dB	High gain state Low gain state High gain state, RF IN $=-25 \mathrm{dBm}$ Low gain state, RF $\mathrm{IN}=-15 \mathrm{dBm}$ High gain state Low gain state
Mixer Conversion Gain Input IP3 LO Input Level	$\begin{gathered} -6.5 \\ -6.0 \\ +7.5 \\ +10.0 \\ -2 \\ \hline \end{gathered}$	$\begin{gathered} -5.5 \\ -5.5 \\ +11.0 \\ +13.0 \\ 4.0 \\ \hline \end{gathered}$		dB dB dBm dBm dBm	With $\mathrm{LO}=+2 \mathrm{dBm}$ With $\mathrm{LO}=+4 \mathrm{dBm}$ With $\mathrm{LO}=+2 \mathrm{dBm}$ With $\mathrm{LO}=+4 \mathrm{dBm}$
Attenuation ATTN Enable ATTN Disable	$\mathrm{V}_{\mathrm{CC}}-0.3$	$\begin{gathered} >1.6 \\ 0 \end{gathered}$	0.3	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	Low gain state High gain state
Power Down Chip Enable Chip Disable	$\mathrm{V}_{\mathrm{CC}}-0.3$	$\begin{gathered} >1.6 \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	Voltage applied to PD pin Voltage applied to PD pin
Power Supply Voltage Current Consumption		$\begin{gathered} 3.0 \\ 2.7 \text { to } 3.3 \\ 10 \\ <1 \\ \hline \end{gathered}$	$\begin{aligned} & 12 \\ & 3.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{uA} \\ \hline \end{gathered}$	Specifications Operating limits Chip enabled Chip disabled

Pin	Function	Description	Interface Schematic
1	VCC1	Supply voltage for the LNA, bias circuits, and control logic. External RF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
2	LNA_IN	RF Input pin. This pin is internally matched for optimum noise figure from a 50Ω source. This pin is internally DC-biased and, if connected to a device with DC present, should be blocked with a capacitor suitable for the frequency of operation.	
3	GND2	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
4	GND1	Ground connection for the LNA circuits. For best performance, keep traces physically short and connect immediately to ground plane.	See pin 2.
5	ATTN	Attenuation pin. A logic high reduces LNA gain by 15 dB .	
6	LNA OUT	LNA Output pin. This pin requires a connection to V_{CC} through an inductor.	$-r^{\text {olnaout }}$
7	SOURCE	Connection to source of MOSFET transistor used as mixer. Drain and source are symmetric.	source o-Hochate
8	DRAIN	Connection to drain of MOSFET transistor used as mixer.	See pin 7.
9	GATE	Connection to gate of MOSFET transistor used as mixer. Internally DC-biased. Use DC-blocking capacitor.	See pin 7.
10	$P D$	Power control. A logic "low" turns the part off. A logic "high" (>1.6V) turns the part on.	
	ESD	This diode structure is used to provide electrostatic discharge protection to 3 kV using the Human body model. The following pins are protected: 1, 3, 5, 9, 10.	

Evaluation Board Schematic

 (Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout Board Size 1.108" x 1.281"

Board Thickness 0.031", Board Material FR-4

RF2495

LNA: Noise Figure versus Frequency Over Temperature

Mixer: Conversion Gain versus Frequency, OIP3 versus Frequency Over Temperature

LNA: IIP3 versus Frequency and P1dB versus Frequency Over Temperature ($V_{c c}=2.78 \mathrm{~V}$)

Mixer: Conversion Gain versus LO Power,

Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

