

DUAL-BAND CDMA CELLULAR/GPS LOW NOISE AMPLIFIER/MIXER

Typical Applications

- CDMA Cellular/GPS Applications
- JCDMA/GPS Applications
- AMPS/GPS Applications

Product Description

The RF2890 is a high performance dual band CDMA Cellular and GPS LNA/mixer. An integrated optional LO prescaler allows VCO flexibility. The device is designed to exceed all sensitivity, intermodulation and single-tone requirements. The RF2890 is designed for three state gain control solutions (17.5dB of gain control) for cellular band IMD testing. The device offers a dedicated low current (15.5mA) GPS LNA/mixer with 32.5dB gain. An integrated TX LO buffer is also included. The design is flexible, in that the bias currents may be set using off-chip current reference resistors for the mixer and LNA blocks. Noise figure, IIP3, and other specifications are designed to be compatible with the TIA/EIA 98D standard for CDMA cellular communications. The device is packaged in a plastic, 4mmx4mm QFN.

Optimum Technology Matching® Applied

- CDMA Modem/Data Cards
- Commercial and Consumer Systems
- Portable Battery-Powered Equipment

Package Style: QFN, 24-Pin, 4x4

Features

- Optional Divide-by-Two LO Prescaler allows VCO Flexibility
- Three Gain State Cellular LNA
- High IIP3 (8.5dBm) Cellular Mixer
- Full ESD Protection on all Pins
- 15.5mA GPS LNA/Mixer Solution

Ordering Information

RF2890	Dual-Band CDMA Cellular/GPS Low Noise Amplifier/Mixer			
RF2890PCBA-410	Fully Assembled Evaluation	Board		
RF Micro Devices, Inc.		Tel (336) 664 1233		
7628 Thorndike Road		Fax (336) 664 0454		
Greensboro, NC 27409	, USA	http://www.rfmd.com		

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +5.0	V _{DC}
Input LO and RF Levels	+6	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Peremeter		Specification		Unit	Condition
Farameter	Min.	Тур.	Max.	Unit	Condition
Overall					T=25°C, V _{CC} =2.75V
RF Frequency Range		800 to 900		MHz	Cellular band
		1575.42		MHz	GPS band
IF Frequency Range	0.1	183.6	400	MHz	
Power Supply					
Supply Voltage	2.65	2.75	3.15	V	
Logic High	1.8			V	
Logic Low			0.4	V	
Power Down Current			10	μA	ENABLE=0
Cellular Band					Freq=869MHz to 894MHz
JCDMA Band	I				
LNA (High Gain)					LNA 50Ω match
Gain	13.0	14.5	16.0	dB	
Noise Figure		1.0	1.3	dB	
Input IP3	+9.0	+11.0		dBm	IIP3 can be increased further by decreasing the value of ISET1.
Current		7.0		mA	
Isolation		19		dB	
LNA (Mid Gain)					LNA 50Ω match
Gain	5.5	7.0	8.5	dB	
Noise Figure		2.5	2.8	dB	
Input IP3	+9.0	+12.0		dBm	
Current		4.0		mA	
LNA (Low Gain)					
Gain	-4.0	-3.0	-1.5	dB	
Noise Figure		3.0	4.0	dB	
Input IP3	+20.0	+23.0		dBm	
Current		0		mA	
Mixer - CDMA/JCDMA					LO IN=-4dBm See Notes 1, 2 and 3
Gain	10.0	11.5	13.0	dB	
Noise Figure		7.5	8.0	dB	
Input IP3	+6.5	+8.5		dBm	
Current		13.5		mA	
LO Frequency Range	600		2300	MHz	High and Low Side LO Injection.
		2105 2, 2155 2		M⊔⇒	See note 3 and 4.
IF Frequency Rango	0.1	1826	400	IVI⊓∠ M⊔≁	Typical IE frequencies:
	0.1	103.0	400	IVILIZ	111.85MHz, 183.6MHz
Cellular Mode (High Gain)					
Total Current		27.5	37.0	mA	LO/2 enabled, TX LO Buffer enabled

Devenuetor		Specificatio	n	11	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
GPS Band			1		Freq=1575.42MHz	
LNA (High Gain)					LNA 50Ω match	
Gain	15.0	16.5	18.0	dB		
Noise Figure		1.4	1.7	dB		
Input IP3	+3.5	+6.0		dBm		
Current		7.0		mA		
Isolation		20		dB		
Mixer					LO IN=-4dBm	
Cain	10.0	47 5	10.0		See note 1.	
Gain Noise Figure	16.0	17.5	19.0	dB dB		
	F F	7.0	7.5	dD m		
Current	-5.5	-3.0		ubiii mA	Mixor/LO Input Amps	
	1300	0.0	1450	MH ₇	Low Side LO Injection	
IF Frequency Range	125	183.6	275	MH7	Typical IE frequency: 183 6MHz	
GPS Mode	125	105.0	215			
Total Current		15.5	20.0	mA		
Control Lines						
Input Capacitance			1	pF	BAND SEL, VG1, VG2, ENABLE, DIV SEL, TX BUFF ENAB	
Local Oscillator Input						
Cellular - CDMA/FM/JCDMA						
Input Power	-10	-4	0	dBm		
GPS						
Input Power	-10	-4	0	dBm		
TX (Local Oscillator)						
Buffer						
Cellular - CDMA/FM/JCDMA						
Output Power	-7.0	-4.5	-2.0	dBm	Single-ended 50 Ω load	
Output Frequency	600		1078	MHz	See note 3. High and Low Side LO Injection.	
Current Consumption		2		mA		

NOTE 1. Mixer performance can be changed with external IF load/tuning.

NOTE 2. Specifications apply for conditions of LO Divider enabled or disabled.

NOTE 3. Mixer performance applies to both high and low side LO injection.

Evaluation Board Current Measurement

	BAND SEL	ENABLE	VG1	VG2	TX BUFF ENAB	DIV SEL	IDC (mA)
CDMA Cellular							ISET2=7.5kΩ
High Gain Mode, TX Buffer Off, /2 Off	0	1	0	0	0	1	23.5
Mid Gain Mode, TX Buffer Off, /2 Off	0	1	1	0	0	1	20.5
Low Gain Mode, TX Buffer Off, /2 Off	0	1	1	1	0	1	16.5
Alternate Low Gain Mode, TX Buffer Off, /2 Off	0	1	0	1	0	1	16.5
GPS							$ISET2=7.5k\Omega$
GPS Mode	1	1	Х	Х	Х	1	15.5

NOTES:

All IDC current numbers include bias circuitry current of 1.5mA to 2.0mA (dependent on mode).

TX Buffer On (=1): Add 2mA to total current.

DIV SEL On (=0): Add 2mA to total current.

"X" denotes setting does not impact current.

Cascaded Performance (Typical Values for V_{CC}=2.75V)

NOTE: All total current numbers include bias circuitry current of 1.5mA to 2.0mA (dependent on mode).

Parameter		CELL CDMA				
	HIGH GAIN	MID GAIN	LOW GAIN			
Cascaded:						
Gain (dB)	23.5	16.0	6.0			
Noise Figure (dB)	2.0	5.5	13.0			
Input IP3 (dBm)	-3.7	+3.4	+13.5			
Total Current (mA)	23.5	20.5	16.5			

NOTE: Assumes 2.5dB image filter insertion loss. The TX Buffer is off (TX BUFF ENAB=0). DIV SEL function is off (=1).

Parameter	GPS
Cascaded:	
Gain (dB)	32.5
Noise Figure (dB)	1.8
Input IP3 (dBm)	-18.0
Total Current (mA)	15.5

NOTE: Assumes 1.5dB image filter insertion loss.

Operation Mode Control Table

Mode	BAND SEL
Cellular CDMA	0
GPS	1

Gain Control Logic Table

Gain S	Setting		ain State	
VG1	VG2	Cellular LNA	GPS LNA	Comments
0	0	High Gain	High Gain	Cellular CDMA IMD Test 1 and 2
1	0	Mid Gain	High Gain	Cellular CDMA IMD Test 3 and 4
1	1	Low Gain	High Gain	Cellular CDMA IMD Test 5 and 6
0	1	Low Gain	High Gain	Cellular CDMA IMD Test 5 and 6

VCO Options and Divider Logic Table

Dual-Band Application Dual VCO Configuration 2 GHz CDMA VCO 1.4 GHz GPS VCO DIV SEL pin tied to BAND SEL

MODE	CONTROL PINS		ON-CHIP LO PRESCALER RESULT
	DIV SELECT	BAND SEL	Divide-by-2
CDMA Cellular	0	0	ON
GPS	1	1	OFF

Dual-Band Application

Dual VCO Configuration 1 GHz CDMA VCO 1.4 GHz GPS VCO DIV SEL pin tied to VCC

MODE	CONTROL PINS		ON-CHIP LO PRESCALER RESULT	
	DIV SELECT	BAND SEL	Divide-by-2	
CDMA Cellular	1	0	OFF	
GPS	1	1	OFF	

Pin	Function	Туре	Description	Interface Schematic
1	CELL LNA OUT	AO	Cellular LNA output. Simple external L-C components required for matching and VCC supply.	See pin 3.
2	CELL LNA EMITTER	AO	Cellular LNA emitter. A small inductor connects this pin to ground. Cellular LNA gain can be adjusted by the inductance.	See pin 3.
3	CELL LNA IN	AI	Cellular LNA input.	CELL LNA IN OUT
4	GPS LNA IN	AI	GPS LNA input. For best performance, simple external matching required.	
5	VG1	DI	Logic input. See Gain Control Logic table.	VG1 O-
6	GPS LNA OUT	AO	GPS LNA output. Simple external L-C components required for matching and VCC supply.	See pin 4.
7	GPS MIX IN	AI	GPS mixer RF single-end input. Externally matched to 50 Ω .	
8	VG2	DI	Logic input. See Gain Control Logic table.	VG2 O-
9	BAND SEL	DI	Logic input. High level selects GPS band; low level selects cel- lular band.	
10	VCC1	Р	VCC connection with internal RF bypass capacitor. External bypass capacitor between 1nF and 47nF recommended.	
11	LO IN	AI	LO single-end input. Matched to 50 Ω.	
12	VCC2	DI	VCC connection with internal RF Bypass capacitor. External bypass capacitor between 1 nF and 47 nF recommended.	
13	LO OUT	AO	LO output. Internal DC block.	
14	TX BUFF ENAB	DI	Logic input. High enables TX LO output buffer amplifiers.	

Pin	Function	Туре	Description	Interface Schematic
15	CDMA IF-	AO	CDMA IF output. Open collector.	See pin 16.
16	CDMA IF+	AO	CDMA IF output. Open collector.	CDMA IF+ CDMA IF- CDMA IF- CDMA IF- CDMA IF-
17	GPS IF-	AO	GPS IF output. Open collector.	See pin 18.
18	GPS IF+	AO	GPS IF output. Open collector.	GPS IF+ GPS IF-
19	ISET2	AO	Resistor to ground sets mixer currents in both bands. Higher resistance results in lower currents.	
20	ISET1	AO	Resistor to ground sets the LNA current in boost mode (both LNAs). Higher resistance results in lower current.	
21	CELL MIX IN	AI	Cellular mixer RF single-end input. Externally matched to 50Ω .	
22	NC		No connection.	
23	DIV SEL	DI	Logic input. Logic low enables LO divide-by-2 in cellular mode, DIV SEL must be set high in GPS mode. See VCO options table.	
24	ENABLE	DI	Logic input. Low level powers down the IC.	
Pkg Base	GND	Р	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias.	

Legend:

DI=Digital Input from Baseband Chip AI=Analog Input AO=Analog Output $P=V_{CC}$ or GND

Note 4: If system specifications allow the removal of the GPS RF SAW Filter, see diagram below for pin 6 and pin 7 connections.

IF Output Interface Network

Single-End IF Matching

L1, C1, C2, and R form a current combiner which performs a differential to single-ended conversion at the IF frequency and sets the output impedance. In most cases, the resonance frequency is independent of R and can be set according to the following equation:

$$f_{IF} = \frac{1}{2\pi \sqrt{\frac{L1}{2}(C_1 + 2C_2 + C_{EQ})}}$$

Where C_{EQ} is the equivalent stray capacitance and capacitance looking into pins 9 and 10. An average value to use for C_{EQ} is 2.5pF.

R can then be used to set the output impedance according to the following equation:

$$R = \left(\frac{1}{4 \cdot R_{OUT}} - \frac{1}{R_P}\right)^{-1}$$

where R_{OUT} is the desired output impedance and R_P is the parasitic equivalent parallel resistance of L1.

 C_2 should first be set to 0 and C1 should be chosen as high as possible (not greater than 39pF), while maintaining an R_P of L1 that allows for the desired R_{OUT} . If the self-resonant frequencies of the selected C1 produce unsatisfactory linearity performance, their values may be reduced and compensated for by including C2 capacitor with a value chosen to maintain the desired F_{IF} frequency.

L2 and C3 serve dual purposes. L2 serves as an output bias choke, and C3 serves as a series DC block.

In addition, L2 and C3 may be chosen to form an impedance matching network if the input impedance of the IF filter is not equal to R_{OUT}. Otherwise, L2 is chosen to be large (suggested 120nH) and C3 is chosen to be large (suggested 22nF) if a DC path to ground is present in the IF filter, or omitted if the filter is DC-blocked.

Differential IF Matching

L1 and C1 are chosen to resonate at the desired IF frequency. C1 can be omitted and the value of L1 increased and utilized solely as a choke to provide V_{CC} to the open-collector outputs, but it is strongly recommended that at least some small-valued C1 (a few pF) be retained for better mixer linearity performance. R is normally selected to match the input impedance of the IF filter. However, mixer performance can be modified by selecting an R value that is different from the IF filter input impedance, and inserting a conjugate matching network between the Resistive Output Network and the IF filter.

C2 serve dual purposes. C2 serves as a series DC block when a DC path to ground is present in the IF filter. In addition, C2 may be chosen to improve the combine performance of the mixer and IF filter. L2 should choose to resonate with the internal capacitance of the SAW filter. Usually, SAW filter has some capacitance. Otherwise, L2 could be eliminated.

A practical approach to obtain the differential matching is to tune the mixer to the correct load point for gain, IIP3, and NF using the single-end current combiner method. Second, use the component values found in the single-end approach as starting point for the differential matching. The two-shunt capacitors in the single-end could be converted in a parallel capacitor and the parallel inductor in the single-end need to be converted in two-choke inductor. Third, set the DC block capacitors (C2) in the differential-end matching to a high value (i.e., 100pF) and retune the resonate circuit (C1 & L1) and the resistor (R) for optimal performance. After optimal performance is achieved and if performance is not satisfactory, decrease the series capacitors until optimal performance is achieved.

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3µinch to 8µinch gold over 180µinch nickel.

PCB Land Pattern Recommendation

PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and tested for optimized assembly at RFMD; however, it may require some modifications to address company specific assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.

PCB Metal Land Pattern

Figure 1. PCB Metal Land Pattern (Top View)

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com