

Data Sheet

July 1999

File Number

1512.3

12A, 100V, 0.200 Ohm, Logic Level, N-Channel Power MOSFET

These are N-Channel enhancement mode silicon gate power field effect transistors specifically designed for use with logic level (5V) driving sources in applications such as programmable controllers, automotive switching and solenoid drivers. This performance is accomplished through a special gate oxide design which provides full rated conduction at gate biases in the 3V to 5V range, thereby facilitating true on-off power control directly from logic circuit supply voltages.

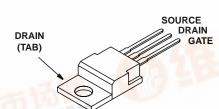
Formerly developmental type TA09526.

Ordering Information

PART NUMBER	PACKAGE	BRAND		
RFP12N10L	TO-220AB	F12N10L		

NOTE: When ordering, include the entire part number.

Features


- 12A, 100V
- $r_{DS(ON)} = 0.200\Omega$
- Design Optimized for 5V Gate Drives
- Can be Driven Directly from QMOS, NMOS, TTL Circuits
- Compatible with Automotive Drive Requirements
- · SOA is Power-Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards

Symbol

Packaging

JEDEC TO-220AB

RFP12N10L

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFP12N10L	UNITS
Drain to Source Voltage (Note 1)V _{DS}	100	V
Drain to Gate Voltage (R _{GS} = 1M Ω) (Note 1)	100	V
Continuous Drain Current	12	Α
Pulsed Drain Current (Note 3)	30	Α
Gate to Source VoltageV _{GS}	10	V
Maximum Power Dissipation	60	W
Above T _C = 25 ^o C, Derate Linearly	0.48	W/°C
Operating and Storage Temperature	-55 to 150	oC
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300 260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

$\textbf{Electrical Specifications} \hspace{0.5cm} \textbf{T}_{C} = 25^{o}\text{C, Unless Otherwise Specified}$

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250mA, V _{GS} = 0V		100	-	-	٧
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250$ mA (Figure 7)		1	-	2	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 65V, V _{DS} = 80V		-	-	1	μΑ
		V _{DS} = 65V, V _{DS} = 80V	T _C = 125 ^o C	-	-	50	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = 10V, V _{DS} = 0V		-	-	100	μΑ
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 12A, V _{GS} = 5V (Figures 5, 6)		-	-	0.2	Ω
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz (Figure 8)		-	-	900	pF
Output Capacitance	C _{OSS}			-	-	325	pF
Reverse-Transfer Capacitance	C _{RSS}			-	-	170	pF
Turn-On Delay Time	t _{d(ON)}	$I_D = 6A$, $V_{DD} = 50V$, $R_G = 6.25\Omega$, $V_{GS} = 5V$ (Figures 9, 10, 11)		-	15	50	ns
Rise Time	t _r			-	70	150	ns
Turn-Off Delay Time	t _{d(OFF)}			-	100	130	ns
Fall Time	t _f			-	80	150	ns
Thermal Resistance Junction to Case	$R_{ heta JC}$	RFP12N10L				2.083	oC/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 6A	-	-	1.4	V
Diode Reverse Recovery Time	t _{rr}	$I_{SD} = 4A$, $dI_{SD}/dt = 50A/\mu s$	-	150	-	ns

NOTES:

- 2. Pulsed: pulse duration = $80\mu s$ max, duty cycle = 2%.
- 3. Repetitive rating: pulse width limited by maximum junction temperature.

6 225

Typical Performance Curves Unless Otherwise Specified

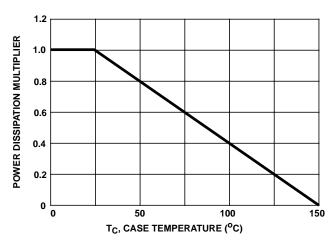


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

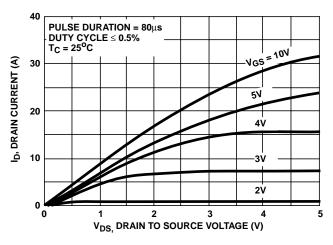


FIGURE 3. SATURATION CHARACTERISTICS

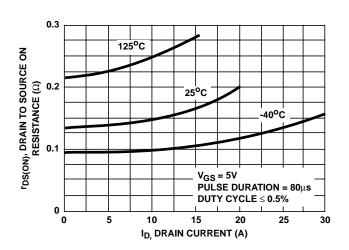


FIGURE 5. DRAIN TO SOURCE ON RESISTANCE vs DRAIN CURRENT

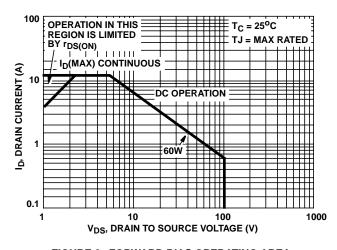


FIGURE 2. FORWARD BIAS OPERATING AREA

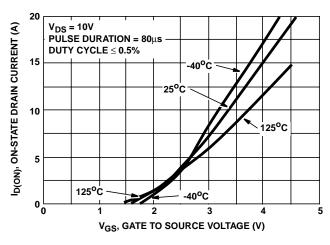


FIGURE 4. TRANSFER CHARACTERISTICS

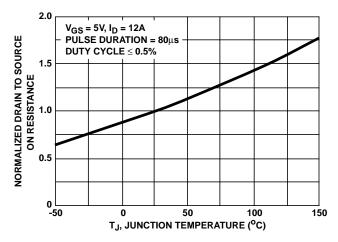
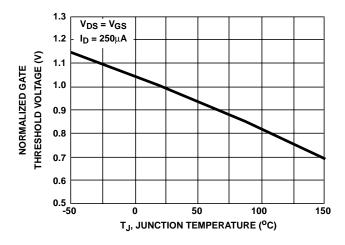



FIGURE 6. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

226

Typical Performance Curves Unless Otherwise Specified (Continued)

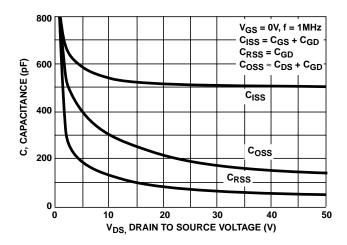
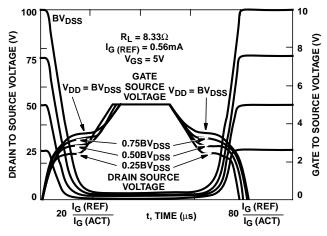



FIGURE 7. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 8. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Intersil Applications Notes AN7254 and AN7260

FIGURE 9. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

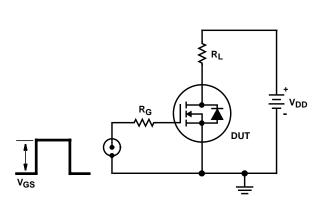


FIGURE 10. SWITCHING TIME TEST CIRCUIT

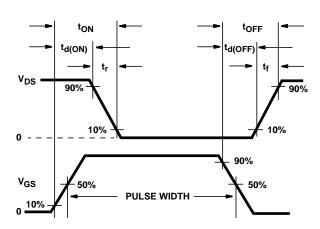


FIGURE 11. RESISTIVE SWITCHING WAVEFORMS

6 227

RFP12N10L

Test Circuits and Waveforms (Continued)

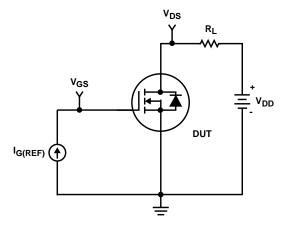


FIGURE 12. GATE CHARGE TEST CIRCUIT

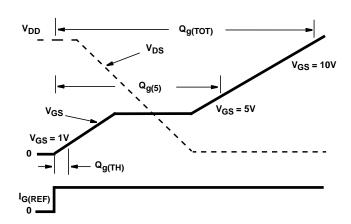


FIGURE 13. GATE CHARGE WAVEFORMS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE**

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (32) 2.724.2111 FEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029