HIGH EFFICIENCY CLASS－G ADSL LINE DRIVER

FEATURES

－Low Total Power Consumption Increases ADSL Line Card Density（ 20 dBm on Line）
－ 600 mW w／Active Termination（Full Bias）
－ 530 mW w／Active Termination（Low Bias）
－Low MTPR of－74 dBc（All Bias Conditions）
－High Output Current of 500 mA（typ）
－Wide Supply Voltage Range of $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ $\left[\mathrm{V}_{\mathrm{CC}}(\mathrm{H})\right]$ and $\pm 3.3 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$［ $\left.\mathrm{V}_{\mathrm{CC}}(\mathrm{L})\right]$
－Wide Output Voltage Swing of 43 Vpp Into $100-\Omega$ Differential Load［ ${ }^{\text {CC（H）}}= \pm 12 \mathrm{~V}$ ］
－Multiple Bias Modes Allow Low Quiescent Power Consumption for Short Line Lengths
－160－mW／ch Full Bias Mode
－135－mW／ch Mid Bias Mode
－110－mW／ch Low Bias Mode
－75－mW／ch Terminate Only Mode
－13－mW／ch Shutdown Mode
－Low Noise for Increased Receiver Sensitivity
－ $3.3 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ Noninverting Current Noise
－ $9.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ Inverting Current Noise
－ $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Voltage Noise

APPLICATIONS

－Ideal for Active Termination Full Rate ADSL DMT applications（ $20-\mathrm{dBm}$ Line Power）

DESCRIPTION

The THS6132 is a Class－G current feedback differential line driver ideal for full rate ADSL DMT systems．Its extremely low power consumption of 600 mW or lower is ideal for ADSL systems that must achieve high densities in ADSL central office rack applications．The unique patent pending architecture of the THS6132 allows the quiescent current to be much lower than existing line drivers while still achieving very high linearity．In addition，the multiple bias settings of the amplifiers allow for even lower power consumption for line lengths where the full performance of the amplifier is not required．The output voltage swing has been vastly improved over first generation Glass－G amplifiers and allows the use of lower power supply voltages that help conserve power．For maximum flexibility，the THS6132 can be configured in classical Class－AB mode requiring only as few as one power supply．

Typical ADSL CO Line Driver Circuit Utilizing Active Impedance Supporting A 6．3 Crest Factor

Thesedevices havelimited built-inESD protection. Theleads shouldbe shorted together orthe device placedinconductive foam during storage or handling to prevent electrostatic damage.

ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE CODE	SYMBOL	TA	ORDER NUMBER	TRANSPORT MEDIA
THS6132VFP	TQFP-32 PowerPADTM	VFP-32	THS6132	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	THS6132VFP	Tube
					THS6132VFPR	Tape and reel
THS6132RGW	Leadless 25 -pin $5, \mathrm{~mm} \times$ 5, mm PowerPADTM	RGW-25	6132		THS6132RGWR	Tape and reel

PACKAGE DISSIPATION RATINGS

PACKAGE	$\mathbf{~} \mathbf{J A}$	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}^{\circ} \mathbf{C}$ POWER RATING(1)	$\mathbf{T}_{\mathbf{A}}=\mathbf{7 0}^{\circ} \mathbf{C}$ POWER RATING(1)	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}^{\circ} \mathbf{C}$ POWER RATING(1)
		$0.96^{\circ} \mathrm{C} / \mathrm{W}$	3.57 W	2.04 W
RGW-25	$31^{\circ} \mathrm{C} / \mathrm{W}$	$1.7^{\circ} \mathrm{C} / \mathrm{W}$	3.39 W	1.94 W

(1) Power rating is determined with a junction temperature of $130^{\circ} \mathrm{C}$. This is the point where distortion starts to substantially increase. Thermal management of the final PCB should strive to keep the junction temperature at or below $125^{\circ} \mathrm{C}$ for best performance.

ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

	THS6132
Supply voltage, $\mathrm{V}_{\mathrm{CC}(\mathrm{H})}$ and $\mathrm{V}_{\mathrm{CC}(\mathrm{L})}(2)$	$\pm 16.5 \mathrm{~V}$
Input voltage, V_{I}	$\pm \mathrm{V}_{\mathrm{CC}(\mathrm{L})}$
Output current, $\mathrm{I}_{\mathrm{O}}(3)$	900 mA
Differential input voltage, V_{IO}	$\pm 2 \mathrm{~V}$
Maximum junction temperature, $\mathrm{TJ}_{\mathrm{J}}($ see Dissipation Rating Table for more information $)$	$150^{\circ} \mathrm{C}$
Operating free-air temperature, T_{A}	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\mathrm{Stg}}$	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature, $1,6 \mathrm{~mm}(1 / 16-$ inch $)$ from case for 10 seconds	$300^{\circ} \mathrm{C}$
ESD ratings	HBM
	CDM
	MM

(1) Stressesbeyondthose listedunder "absolute maximum ratings" may cause permanentdamage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) $\mathrm{V}_{\mathrm{CC}(\mathrm{H})}$ mustalways be greater than or equal to $\mathrm{V}_{\mathrm{CC}(\mathrm{L})}$ forproperoperation. Class- AB modeoperation occurs when $\mathrm{V}_{\mathrm{CC}}(\mathrm{H})$ is equal to $\mathrm{VCC}(\mathrm{L})$ and is considered acceptable operation for the THS6132 even though it is not fully specified in this mode of operation.
(3) The THS6132 incorporates a PowerPAD on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipating plane for proper powerdissipation. Failure to do so may result in exceeding the maximum junction temperature that could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD thermally enhanced package.

THS6132
www.ti.com

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply voltage	$+\mathrm{V}_{\mathrm{CC}(\mathrm{H})}$ to $-\mathrm{V}_{\mathrm{CC}(\mathrm{H})}$	$\pm \mathrm{V}_{\mathrm{CC}(\mathrm{L})}$	± 15	± 16	V
	$+\mathrm{V}_{\mathrm{CC}(\mathrm{L})}$ to $-\mathrm{V}_{\mathrm{CC}(\mathrm{L})}$	± 3.3	± 5	$\pm \mathrm{V}_{\mathrm{CC}(\mathrm{H})}$	
Operating free-air temperature, T_{A}		-40		85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

overrecommended operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V} \mathrm{R}_{\mathrm{F}}=1.5 \mathrm{k} \Omega$, Gain $=+10$, Full Bias Mode, R_{L} = 50Ω (unless otherwise noted)

NOISE/DISTORTION PERFORMANCE									
PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Multitone power ratio			Gain $=+11,163 \mathrm{kHz}$ to 1.1 MHz DMT, +20 dBm Line Power, 1:1.1 transformer, active termination, synthesis factor $=4$			-74		dBc	
Receive band spill-over			Gain $=+11,25 \mathrm{kHz}$ to 138 kHz with MTPR signal applied			-95		dBc	
HD	Harmonic distortion (Differential Configuration, $f=1 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{O}}(\mathrm{PP})=2 \mathrm{~V}$, Gain $=+10$)		$2^{\text {nd }}$ harmonic	Differential load $=100 \Omega$		-84		dBc	
			Differential load $=25 \Omega$		-69				
			3 rd harmonic	Differential load $=100 \Omega$		-92		dBc	
			Differential load $=25 \Omega$		-73				
V_{n}	Input voltage noise			$\mathrm{f}=10 \mathrm{kHz}$			3.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
In	Input current noise	+ Input	$\mathrm{f}=10 \mathrm{kHz}$			3.3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	
		-Input				9.5			
Crosstalk			$f=1 \mathrm{MHz}$, $\mathrm{VO}(\mathrm{PP})=2 \mathrm{~V}$, $R_{L}=100 \Omega$, Gain $=+2$		-52			dBc	
OUTPUT CHARACTERISTICS									
V_{O}	Single-ended output voltage swing		$\mathrm{V}_{\mathrm{CC}(\mathrm{H})}= \pm 12 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	± 10.4	± 10.8		V	
			$\mathrm{R}_{\mathrm{L}}=30 \Omega$	± 9.9	± 10.4				
			$\mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	± 13.3	± 13.8		V	
			$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 13	± 13.6				
	Output voltage transition from $\mathrm{V}_{\mathrm{CC}}(\mathrm{L})$ to $\mathrm{V}_{\mathrm{CC}(\mathrm{H})}($ Point where $\operatorname{ICC}(\mathrm{L})=\operatorname{ICC}(\mathrm{H}))$			$\mathrm{R}_{\mathrm{L}}=50 \Omega$	$\mathrm{V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V}$		± 3.1		V
			$\mathrm{V}_{\mathrm{CC}(\mathrm{L})}= \pm 6 \mathrm{~V}$			± 3.9			
Io	Output current ${ }^{(1)}$		$\mathrm{R}_{\mathrm{L}}=10 \Omega$	$\mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 12 \mathrm{~V}$		± 500		mA	
				$\mathrm{V}_{\mathrm{CC}(\mathrm{H})}= \pm 15 \mathrm{~V}$	± 400	± 500			
I(SC)	Short-circuit current (1)		$\mathrm{R}_{\mathrm{L}}=1 \Omega$	$\mathrm{V}_{\mathrm{CC}(\mathrm{H})}= \pm 15 \mathrm{~V}$		± 750		mA	
	Output resistance		Open-loop			5		Ω	
	Outputresistance-terminate mode		$\mathrm{f}=1 \mathrm{MHz}$,$\mathrm{f}=1 \mathrm{MHz}$,	Gain = +10		0.35		Ω	
				Open-loop		5.5		k Ω	

(1) A heatsink is required to keep the junction temperature below absolute maximum rating when an output is heavily loaded or shorted. See Absolute Maximum Ratings section for more information.

ELECTRICAL CHARACTERISTICS (continued)
overrecommended operating free-airtemperature range, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V} \mathrm{R}_{\mathrm{F}}=1.5 \mathrm{k} \Omega$, Gain $=+10$, Full Bias Mode, R_{L} $=50 \Omega$ (unless otherwise noted)

POWER SUPPLY							
	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\mathrm{CC}}(\mathrm{x})$	Operatingrange	$\begin{array}{\|l} \hline \pm \mathrm{V}_{\mathrm{CC}(\mathrm{H})} \\ \hline \pm \mathrm{V}_{\mathrm{CC}(\mathrm{~L})} \\ \hline \end{array}$		$\pm \mathrm{V}_{\mathrm{CC}}(\mathrm{L})$	± 15	± 16.5	V
				± 3	± 5	$\pm \mathrm{V}_{\mathrm{CC}(\mathrm{H})}$	
ICC	Quiescent current (each driver) Full-bias mode (Bias-1 = 1, Bias-2 = 1, Bias-3 = X) (Icc trimmed with $\mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}$, $\left.\mathrm{V}_{\mathrm{CC}(\mathrm{~L})}= \pm 5 \mathrm{~V}\right)$	$\begin{aligned} & \begin{array}{l} \mathrm{VCC}(\mathrm{~L})= \pm 5 \mathrm{~V} ; \\ \left(\mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}\right) \end{array} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.7	6.4	7.5	mA
			$\mathrm{T}_{\mathrm{A}}=$ full range			8.1	
		$\begin{aligned} & \mathrm{VCC}(\mathrm{~L})= \pm 6 \mathrm{~V} ; \\ & (\mathrm{V} \mathrm{CC}(\mathrm{H})= \pm 15 \mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.7			mA
			$\mathrm{T}_{\mathrm{A}}=$ full range				
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 12 \mathrm{~V} ; \\ & \left(\mathrm{V}_{\mathrm{CC}}(\mathrm{~L})= \pm 5 \mathrm{~V}\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.1		mA
			$\mathrm{T}_{\mathrm{A}}=$ full range				
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V} ; \\ & \left(\mathrm{V}_{\mathrm{CC}}(\mathrm{~L})= \pm 5 \mathrm{~V}\right) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.9	3.25	3.75	mA
			$\mathrm{T}_{\mathrm{A}}=$ full range			4.25	
	Quiescent current (each driver) Variable bias modes,$V_{C C}(\mathrm{~L})= \pm 5 \mathrm{~V}$	Mid; Bias-1 = 1, Bias-2 = 0, Bias-3 = 1		5.0	5.6	6.8	mA
		Low; Bias-1 = 1, Bias-2 = 0, Bias-3 =0		4.25	4.8	6.0	
		Terminate; Bias-1 = 0, Bias-2 = 1, Bias-3 = X (1)		3.2	3.8	4.5	
		Shutdown; Bias-1 = 0, Bias-2 = 0, Bias-3 = X ${ }^{(1)}$			1	1.3	
	Quiescent current (each driver) Variable bias modes,$\mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}$	Mid; Bias-1 = 1, Bias-2 = 0, Bias-3 = 1		2.4	2.7	3.0	mA
		Low ; Bias-1 = 1, Bias-2 = 0, Bias-3 = 0		1.9	2.15	2.4	
		Terminate; Bias-1 = 0, Bias-2 = 1, Bias-3 = X ${ }^{(1)}$		1.1	1.3	1.5	
		Shutdown ; Bias-1 = 0, Bias-2 = 0, Bias-3 = $\mathrm{X}^{(1)}$			0.1	0.5	
PSRR	Power supply rejection ratio $\left(\Delta \mathrm{V}_{\mathrm{CC}}(\mathrm{x})= \pm 1 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-70	-82		dB
			$\mathrm{T}_{\mathrm{A}}=$ full range	-68			
		$\mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-70	-82		
			$\mathrm{T}_{A}=$ full range	-68			

(1) X is used to denote a logic state of either 1 or 0 .

ELECTRICAL CHARACTERISTICS (continued)

overrecommended operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{C}(\mathrm{H})= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V} \mathrm{R}_{\mathrm{F}}=1.5 \mathrm{k} \Omega$, Gain $=+10$, Full Bias Mode, R_{L} $=50 \Omega$ (unless otherwise noted)

DYNAMIC PERFORMANCE					
PARAMETER	TEST CONDITIONS		MIN TYP	MAX	UNIT
BW Single-endedsmall-signalbandwidth $(-3 \mathrm{~dB}), \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{Vrms}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	Gain $=+1, \mathrm{RF}=750 \Omega$	80		MHz
		Gain $=+2, \mathrm{RF}=620 \Omega$	70		
		Gain $=+5, \mathrm{RF}=500 \Omega$	60		
		Gain $=+10, \mathrm{RF}=1 \mathrm{k} \Omega$	20		
	$\mathrm{R}_{\mathrm{L}}=25 \Omega$	Gain $=+1, \mathrm{RF}=750 \Omega$	60		MHz
		Gain $=+2, \mathrm{RF}=620 \Omega$	55		
		Gain $=+5, \mathrm{RF}=500 \Omega$	50		
		Gain $=+10, \mathrm{RF}=1 \mathrm{k} \Omega$	17		
SR Single-endedslew-rate(1)	$\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V} \mathrm{PP}$,	Gain =+10	300		$\mathrm{V} / \mathrm{\mu s}$

(1) Slew-rate is defined from the 25% to the 75% output levels

DC PERFORMANCE							
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Vos	Input offset voltage	$\mathrm{V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V}, \pm 6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	15	mV
			$\mathrm{T}_{\mathrm{A}}=$ full range			20	
	Differential offset voltage		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	6	
			$\mathrm{T}_{\mathrm{A}}=$ full range	8			
	Offset drift		$\mathrm{T}_{\mathrm{A}}=$ full range		40		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
${ }^{\prime} \mathrm{IB}$	-Input bias current	$\mathrm{VCC}(\mathrm{L})= \pm 5 \mathrm{~V}, \pm 6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	15	$\mu \mathrm{A}$
	-Inputbias current		$\mathrm{T}_{\mathrm{A}}=$ full range			20	
	+ Input bias current		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	15	
			$\mathrm{T}_{\mathrm{A}}=$ full range	20			
Z_{OL}	Openlooptransimpedance	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		2			M Ω

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}(\mathrm{H})= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V} \mathrm{R}_{\mathrm{F}}=1.5 \mathrm{k} \Omega$, Gain $=+10$, Full Bias Mode, R_{L} $=50 \Omega$ (unless otherwise noted)

INPUT CHARACTERISTICS					
PARAMETER	TEST CONDITIONS		MIN TYP	MAX	UNIT
Input common-mode voltage range(1)	$\mathrm{V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\pm 2.7 \pm 3.0$		V
		$\mathrm{T}_{\mathrm{A}}=$ full range	± 2.6		
	$\mathrm{V}_{\mathrm{CC}}(\mathrm{L})= \pm 6 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 4.0		
REF pin input voltage range	$\mathrm{V}_{\text {CC-(L) }}= \pm 5 \mathrm{~V}$		± 2.5		V
	$\mathrm{V}_{\mathrm{CC}}(\mathrm{L})= \pm 6 \mathrm{~V}$		± 3.5		
Common-mode rejection ratio	$\mathrm{V}_{\mathrm{CC}}(\mathrm{L})= \pm 5 \mathrm{~V}, \pm 6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$60 \quad 67$		dB
		$\mathrm{T}_{\mathrm{A}}=$ full range	57		
Input resistance	+ Input		800		$\mathrm{k} \Omega$
	- Input		45		Ω
$\mathrm{C}_{1} \quad$ Differential Input capacitance			1.2		pF

(1) To conserve as much power as possible, the inputstage of the $T H S 6132$ is powered from the $V_{C C}(L)$ supplies and is limited by the $V_{C C}(L)$ supply voltage. For Class-AB operation, connect the $\mathrm{V}_{\mathrm{CC}}(\mathrm{L})$ supplies to $\mathrm{V}_{\mathrm{CC}}(\mathrm{H})$.

LOGIC CONTROL CHARACTERISTICS

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	Bias pin voltage for logic 1	Relative to DGND pin voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Bias pin voltage for logic 0	Relative to DGND pin voltage			0.8	V
IIH	Bias pin current for logic 1	$\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}, \quad \mathrm{DGND}=0 \mathrm{~V}$		-0.1	-0.2	$\mu \mathrm{A}$
IIL	Bias pin current for logic 0	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \quad \mathrm{DGND}=0 \mathrm{~V}$		-0.1	-0.2	$\mu \mathrm{A}$
	Transition time-logic 0 to logic 1(1)			0.1		$\mu \mathrm{S}$
	Transition time-logic 1 to logic 0(1)			0.2		$\mu \mathrm{s}$
	DGND useable range		$-\mathrm{V}_{\mathrm{CC}}(\mathrm{H})$		$+\mathrm{V}_{\mathrm{CC}(\mathrm{H})}-5$	V

(1) Transition time is defined as the time from when the logic signal is applied to the time when the supply current has reached half its final value.

LOGIC TABLE				
BIAS-1	BIAS-2	BIAS-3	FUNCTION	DESCRIPTION
1	1	$\mathrm{X}(1)$	Full bias mode	Amplifiers ON with lowest distortion possible
1	0	1	Mid bias mode	Amplifiers ON with power savings with a reduction in distortion performance
1	0	0	Low bias mode	Amplifiers ON with enhanced power savings and a reduction of distortion performance
0	1	$\mathrm{X}(1)$	Terminate mode	Lowestpower state with + Vin pins internally connect to REF pin and outputhas low impedance
0	0	$\mathrm{X}(1)$	Shutdownmode	Amplifiers OFF and output has high impedance

(1) X is used to denote a logic state of either 1 or 0 .

NOTE: The default state for all logic pins is a logic one (1).

Figure 1. ± 12 V Active Termination ADSL CO Line Driver Circuit (Synthesis Factor $=4 ;$ CF = 5.6)

PIN ASSIGNMENTS

THS6132
Leadless 5X5 PowerPAD
(RGW) PACKAGE
(TOP VIEW)

TYPICAL CHARACTERISTICS
Table of Graphs

		FIGURE
Outputvoltage headroom	vs Output current	2
Common-mode rejection ratio	vs Frequency	3
Crosstalk	vs Frequency	4
Quiescent current	vs Temperature	5,6
Large signal bandwidth	vs Frequency	7-10
Noise	vs Frequency	11
Overdrive recovery		12
Power supply rejection ratio	vs Frequency	13
Small signal frequency response		14, 15, 16
Small signal bandwidth	vs Frequency	17-28
Slew rate	vs Output voltage	29
Closed-loopoutputimpedance	vs Frequency	30, 31
Shutdown response		32
Common-mode rejection ratio	vs Common-mode input voltage	33
Input bias current	vs Temperature	34
Input offset voltage	vs Temperature	35
Current draw distribution	vs Output voltage	36, 37
Output voltage	vs Temperature	38
Differential distortion	vs Frequency	39-52
Differential distortion	vs Differential output voltage	53-63
Single ended distortion	vs Frequency	64, 65

Figure 2

Figure 3

Figure 4

THS6132

Figure 5

Figure 8
NOISE
vs

Figure 11

QUIESCENT CURRENT
TEMPERATURE

Figure 6
LARGE SIGNAL BANDWIDTH
vS
FREQUENCY

Figure 9

Figure 12

LARGE SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 7
LARGE SIGNAL BANDWIDTH
FREQUENCY

Figure 10
POWER SUPPLY REJECTION RATIO VS
FREQUENCY

Figure 13

SMALL SIGNAL FREQUENCY RESPONSE

Figure 14

SMALL SIGNAL BANDWIDTH
VS
FREQUENCY

Figure 17
SMALL SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 20

SMALL SIGNAL FREQUENCY RESPONSE

Figure 15
SMALL SIGNAL BANDWIDTH
VS
FREQUENCY

Figure 18
SMALL SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 21

Figure 16
SMALL SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 19
SMALL SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 22

Figure 23
SMALL SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 26

Figure 29

SMALL SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 24
SMALL SIGNAL BANDWIDTH
vs
FREQUENCY

Figure 27

CLOSED LOOP OUTPUT IMPEDANCE
 vs
 FREQUENCY

Figure 30

SMALL SIGNAL BANDWIDTH

Figure 25

SMALL SIGNAL BANDWIDTH vs
FREQUENCY

Figure 28

Figure 31

Figure 32

Figure 35

Figure 38

Figure 33

Figure 36
DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 39

INPUT BIAS CURRENT

Figure 34

CURRENT DRAW DISTRIBUTION
VS
OUTPUT VOLTAGE

Figure 37
DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 40

THS6132

DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 41

Figure 44

Figure 47

DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 42
DIFFERENTIAL DISTORTION
FREQUENCY

Figure 45
DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 48

DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 43
DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 46

Figure 49

Figure 50

Figure 53

Figure 56

DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 51

Figure 54

Figure 57

DIFFERENTIAL DISTORTION
vs
FREQUENCY

Figure 52
DIFFERENTIAL DISTORTION
vs
DIFFERENTIAL OUTPUT VOLTAGE

Figure 55
DIFFERENTIAL DISTORTION VS

Figure 58

Figure 62

Figure 60
DIFFERENTIAL DISTORTION
vs
DIFFERENTIAL OUTPUT VOLTAGE

Figure 63

Figure 65

RGW (S-PQFP-N20)
PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads, (QFN) package configuration.
D. The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane.
E. Falls within JEDEC M0-220.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
E. Falls within JEDEC MS-026

PACKAGING INFORMATION

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THS6132RGWR | ACTIVE | QFN | RGW | 20 | 3000 | TBD | CU NIPDAU | Level-2-220C-1 YEAR |
| THS6132VFP | ACTIVE | HLQFP | VFP | 32 | 250 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |
| THS6132VFPR | ACTIVE | HLQFP | VFP | 32 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

VFP (S-PQFP-G32)
PowerPAD ${ }^{\text {TM }}$ PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http: //www.ti.com>.
E. Falls within JEDEC MS-026
F. PowerPad is a trademark of Texas Instruments Incorporated.

PowerPAD is a trademark of Texas Instruments.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
B. This drawing is subject to change without notice.
C. Quad Flat pack, No-leads (QFN) package configuration

D The package thermal pad must be soldered to the board for thermal and mechanical performance..
See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
E. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Copyright © Each Manufacturing Company.
All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.
Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

