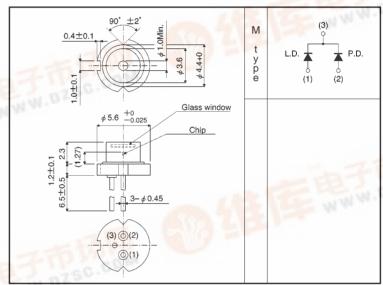
急出货

AlGaAs laser diodes RLD-78MAT1


The RLD-78MAT1 is the world's first mass-produced laser diodes that is manufactured by molecular beam epitaxy. The signal-to-noise ratio is stable in comparison to previous manufacturing techniques. This device is ideal for compact disc players in cars.

●Applications Compact disc players in cars Navigation system

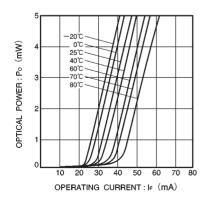
Features

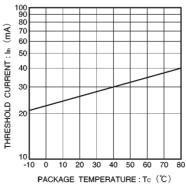
- Signal-to-noise ratio guaranteed over entire operating temperature range.
- 2) Reduced facet reflection.
- One-third dispersion compared with conventional laser diodes.
- 4) High-precision, compact package.
- 5) General purpose polarity type is available. (M type)

External dimensions (Units: mm)

■Absolute maximum ratings (Tc = 25°C)

Parameter		Symbol	Limits	Unit
Output		Ро	5	mW
Reverse	Laser	VR	2	٧
	PIN photodiode	VR (PIN)	30	٧
Operating temperature		Topr	-10~ + 80	°C
Storage temperature		Tstg	-40~ + 90	℃


Laser diodes RLD-78MAT1


●Electrical and optical characteristics (Tc = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Threshold current	Ith	_	35	60	mA	_	
Operating current	lop	_	45	70	mA	Po=3mW	
Operating voltage	Vop	_	1.9	2.3	٧	Po=3mW	
Differential efficiency	η	0.1	0.25	0.6	mW/mA	2mW I(3mW)—I(1mW)	
Monitor current	lm	0.1	0.2	0.6	mA	Po=3mW,V _{R(PIN)} =15V	
Parallel divergence angle	θ // *	8	11	15	deg		
Perpendicular divergence angle	<i>θ</i> ⊥*	20	37	45	deg	Po=3mW	
Parallel deviation angle	Δθ //	_	_	±2	deg		
Perpendicular deviation angle	Δ θ ⊥	_	_	±з	deg		
Emission point accuracy	ΔX ΔΥ ΔΖ	_	_	±80	μm	_	
Peak emission wavelength	λ	770	785	810	nm	Po=3mW	
Signal-to-noise ratio	S/N	60	_	_	dB	f=720kHz, Δf=10kHz	

^{*} θ // and θ \perp are defined as the angle within which the intensity is 50% of the peak value.

Electrical and optical characteristic curves

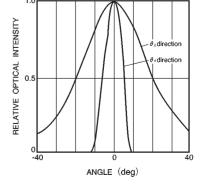


Fig. 2 Dependence of threshold current on temperature

Fig. 3 Far field pattern

Fig. 1 Optical output vs. operating current

Laser diodes RLD-78MAT1

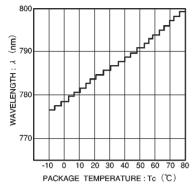


Fig. 4 Dependence of wavelength on temperature

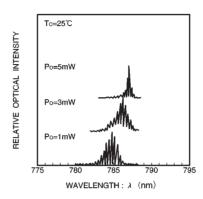


Fig. 5 Dependence of emission spectrum on optical output

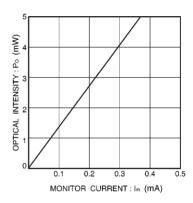


Fig. 6 Monitor current vs. optical output

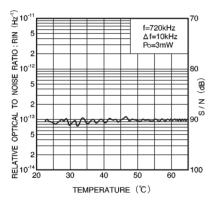


Fig. 7 Temperature dependence of noise

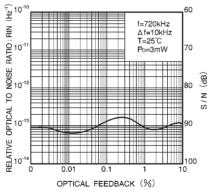


Fig. 8 Dependence of noise on optical feedback