Switching，Inverter Circuit，Interface Circuit

 And Driver Circuit Applications－Includeing two devices in US6（ultra super mini type with 6 leads）
－With built－in bias resistors
－Simplify circuit design
－Reduce a quantity of parts and manufacturing process
Equivalent Circuit and Bias Resister Values

R1： $47 \mathrm{k} \Omega$
R2： $47 \mathrm{k} \Omega$
（Q1，Q2 Common）

Q1 Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	Rating	Unit
Collector－base voltage	$\mathrm{V}_{\text {CBO }}$	-50	V
Collector－emitter voltage	$\mathrm{V}_{\text {CEO }}$	-50	V
Emitter－base voltage	$\mathrm{V}_{\text {EBO }}$	-10	V
Collector current	I_{C}	-100	mA

Q2 Maximum Ratings $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	Rating	Unit
Collector－base voltage	$\mathrm{V}_{\text {CBO }}$	50	V
Collector－emitter voltage	$\mathrm{V}_{\text {CEO }}$	50	V
Emitter－base voltage	$\mathrm{V}_{\text {EBO }}$	10	V
Collector current	I_{C}	100	mA

Q1, Q2 Common Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Rating	Unit
Collector power dissipation	PC^{*}	200	mW
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

* Total rating

Marking

Equivalent Circuit (Top View)

Q1 Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Collector cut-off current	$\mathrm{I}_{\text {CBO }}$	-	$\mathrm{V}_{\mathrm{CB}}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	-	-100	nA
	ICEO	-	$\mathrm{V}_{\mathrm{CE}}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	-	-500	
Emitter cut-off current	$\mathrm{I}_{\text {EBO }}$	-	$\mathrm{V}_{\mathrm{EB}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	-0.082	-	-0.15	mA
DC current gain	$\mathrm{h}_{\text {FE }}$	-	$\mathrm{V}_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	80	-	-	-
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE (sat) }}$	-	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-0.25 \mathrm{~mA}$	-	-0.1	-0.3	V
Input voltage (ON)	V_{1} (ON)	-	$\mathrm{V}_{\mathrm{CE}}=-0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	-1.5	-	-5.0	V
Input voltage (OFF)	V_{1} (OFF)	-	$\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{~mA}$	-1.0	-	-1.5	V
Transition frequency	f_{T}	-	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	-	200	-	MHz
Collector output capacitance	$\mathrm{C}_{\text {ob }}$	-	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	3	6	pF

Q2 Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Collector cut-off current	Icbo	-	$\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{IE}_{\mathrm{E}}=0$	-	-	100	nA
	Iceo	-	$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	-	500	
Emitter cut-off current	Iebo	-	$\mathrm{V}_{\mathrm{EB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	0.082	-	0.15	mA
DC current gain	$\mathrm{h}_{\text {FE }}$	-	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	80	-	-	-
Collector-emitter saturation voltage	V_{CE} (sat)	-	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~mA}$	-	0.1	0.3	V
Input voltage (ON)	$\mathrm{V}_{1}(\mathrm{ON})$	-	$\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	1.5	-	5.0	V
Input voltage (OFF)	V_{1} (OFF)	-	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$	1.0	-	1.5	V
Transition frequency	f_{T}	-	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=5 \mathrm{~mA}$	-	250	-	MHz
Collector output capacitance	$\mathrm{C}_{\text {ob }}$	-	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	3	6	pF

Q1, Q2 Common Electrical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Input resistor	R1	-	-	32.9	47	61.1	k Ω
Resistor ratio	R1/R2	-	-	0.9	1.0	1.1	-

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

Copyright (c) Each Manufacturing Company.
A II Datasheets cannot be modified without permission.

This datasheet has been download from :
www.A IIDataSheet.com

100\% Free DataSheet Search Site.
Free Download.

No Register.
Fast Search System. www.A IIDataSheet.com

