- Ideal for 433.92 MHz Superhet Receiver LOs
- Nominal Insertion Phase Shift of 180° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RP1298 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 423.22 MHz. The RP1298 is designed for 433.92 MHz superhet receivers in remote-control and wireless security applications operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

Absolute Maximum Ratings

7 to o o tato maximum reamingo				
Rating	Value	Units		
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm		
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC		
Case Temperature	-40 to +85	°C		

RP1298

423.22 MHz SAW Resonator

Electrical Characteristics

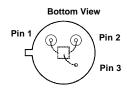
	Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency	Absolute Frequency	f _C	2, 3, 4, 5,	423.120		423.320	MHz
400 71	Tolerance from 423.220 MHz	Δf_{C}	2, 3, 4, 5,			±100	kHz
Insertion Loss		IL	2, 5, 6		5.2	8.0	dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		15,200	- th/	
	50 Ω Loaded Q	Q_L	5, 6, 7		6,900	CO1	
Temperature Stability	Turnover Temperature	T _O		24	39	54	°C
	Turnover Frequency	f _O	6, 7, 8		f _C +2.6		kHz
	Frequency Temp. Coefficient	FTC			0.037		ppm/°C ²
Frequency Aging	Absolute Value during First Year	f _A	6		≤ 10		ppm/yr
DC Insulation Resistant	ce between Any Two Pins	140	5	1.0			MΩ
RF Equivalent RLC	Motional Resistance	R _M	5, 7, 9		82	152	Ω
	Motional Inductance	L _M			475.283		μH
	Motional Capacitance	C _M			0.297547		fF
	Shunt Static Capacitance	Co	5, 6, 9	2.2	2.5	2.8	pF
Lid Symbolization (in ac	ddition to Lot and/or Date Codes)		•	RF	M P1298	70 VV	

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

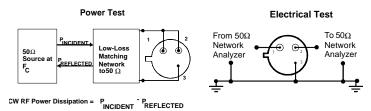
Notes:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR ≤ 1.2:1. Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is less than the resonator f_C.
- 3. One or more of the following United States patents apply: 4,454,488; 4,616,197.
- 4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25$ °C ± 5°C
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 7. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- 8. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$. Typically, oscillator T_O is 20° less than the specified resonator T_O .

This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance to be the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.


F. Monolithics, Inc. Phone: (972) 233-2903 Fax: (972) 387-9148 F-mail: info@rfm.com Page 1.0

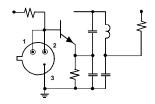
SAW Resonator


Electrical Connections

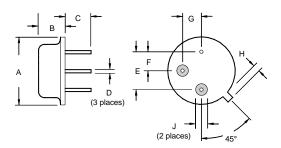
This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection	
1	Input or Output	
2	Output or Input	
3	Case Ground	


Typical Test Circuit

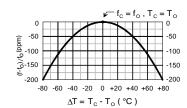


Typical Application Circuits

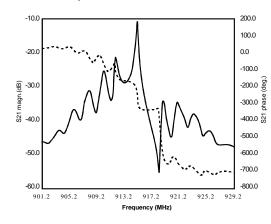

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. One-port resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.

Conventional Two-Port Design: Simulated One-Port Design:

Case Design


Equivalent LC Model

The following equivalent LC model is valid near resonance:


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millimeters		Inches	
Difficusions	Min Max		Min	Max
Α		9.40		0.370
В		3.18		0.125
С	2.50	3.50	0.098	0.138
D	0.46 Nominal		0.018 Nominal	
E	5.08 Nominal		0.200 Nominal	
F	2.54 Nominal		0.100 Nominal	
G	2.54 Nominal		0.100 Nominal	
Н		1.02		0.040
J	1.40		0.055	