RPM870-H7

Photo Link Module

IrDA wireless communication transceiver IC (supports Ver. 1.2 Low Power)

RPM870-H7

The RPM870-H7 is an Module that supports IrDA Ver. 1.2 (Low Power), and is ideal for wireless communications. An infrared LED, a pin-photo diode, and a receiver frequency formation LSI are all contained in a very small single package. It is also equipped with low power consumption and power down functions making this IC perfect for mobile sets.

Features

- 1) Supports IrDA Ver. 1.2. (Low Power)
- 2) Low power consumption while standing by for receiving (75µA Typ.).
- 3) A power-down function is perfect for battery applications.
- 4) Supports a board power supply voltage range from 2.6V to 3.6V.
- 5) Only 1 external capacitor required.

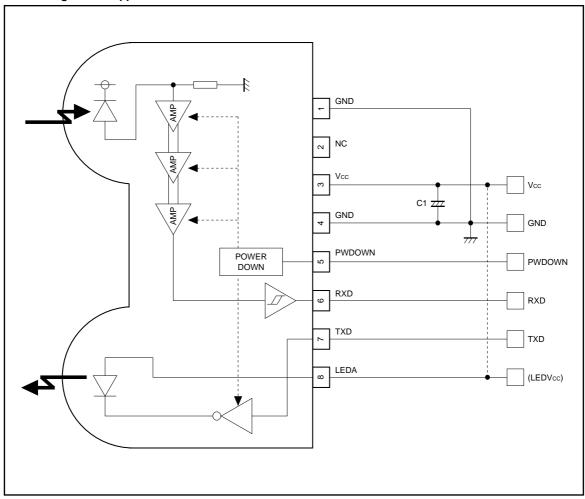
Applications

Mobile phones, PDAs, and others

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	7.0	V
Input voltage	Vin	-0.3~Vcc+0.3	V
Operating temperature	Topr	-20~+85	°C
Storage temperature	Tstg	-30~+100	°C
LED peak current	Ifp	120 *1	mA
Power dissipation	Pd	100	mW

^{*1} LED peak current : <90µsec, on duty < 20%


●Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Cupply voltage	Vcc	2.6	3.0	3.6	V	
Supply voltage	VLEDA	2.6	3.0	5.5	V	

●Block diagram and application circuit

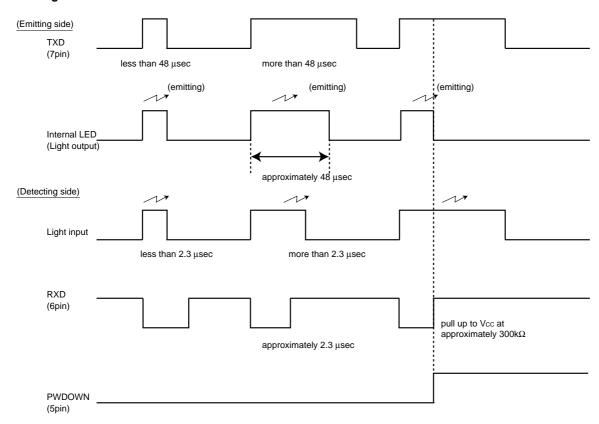
Recommended values

Part symbol Recommended value		Notice			
C1	1μF, tantalum Ex.) TCFGA1A105M8R (ROHM)	Bigger capacitance is recommended with much noise from power supply			

●Terminal description

Pin No	Terminal	Circuit	Function
1, 4	GND		GND
2	NC		This terminal must be left open.
3	Vcc		Vcc For preventing from ripple noise. connect a capacitor between Vcc (3pin) and GND (4pin).
5	PWDOWN	₩	Power-down control terminal H: POWERDOWN L: OPERATION CMOS logic level input When input is L, it will stop the receiving circuit, Pin-PD current and transmitting LED operation.
6	RXD	Vcc	Receiving data output terminal CMOS logic level input When PWDOWN (5pin) = H, the RXD output will be pulled up to Vcc at approximately $300k\Omega$.
7	TXD	Vcc	Transmitting data input terminal H: LED Drive (PWDOWN = L) CMOS logic level output Holding TXD = "H"status, LED will be turn off approximately 48µsec.
8	LEDA	LED	LED ANODE terminal Other power source can be used difference between LEDVcc and Vcc.

● Electrical characteristics (Unless otherwise noted, Vcc=3V, VLEDVcc=3V, Ta = 25°C)

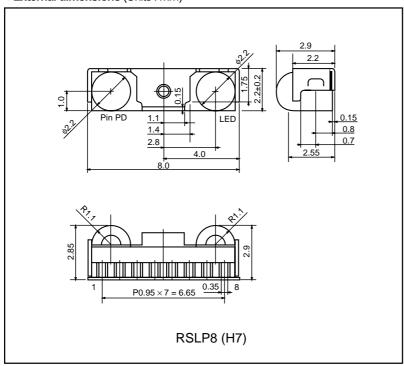

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Consumption Current 1	Icc1	-	75	99	μΑ	Stand-by for receiving, no input light.
Consumption Current 2	Icc2	_	0.01	0.2	μА	PWDOWN = Vcc [V] , no input light.
Transmission rate		2.4	_	115.2	kbps	
PWDOWN INPUT High Voltage	VPDH	Vcc-0.5	_	_	V	
PWDOWN INPUT Low Voltage	VPDL	_	_	0.5	V	
PWDOWN INPUT High Current	IPDH	-1.0	0	1.0	μΑ	PWDOWN = Vcc [V]
PWDOWN INPUT Low Current	IPDL	-1.0	0	1.0	μΑ	PWDOWN = 0 [V]
<transmitter></transmitter>						
TXD INPUT High Voltage	VTXH	Vcc-0.5	-	_	V	
TXD INPUT Low Voltage	VTXL	_	_	0.5	V	
TXD INPUT High Current	ITXH	7.5	15	30	μΑ	TXD = Vcc [V]
TXD INPUT Low Current	ITXL	-1.0	0	1.0	μΑ	TXD = 0 [V]
LED ANODE Current	ILEDA	_	30.5	_	mA	
<receiver></receiver>						
RXD OUTPUT High Voltage	VRXH	Vcc-0.5	-	_	V	IRXH = -50μA
RXD OUTPUT Low Voltage	VRXL	_	_	0.5	V	IRXL = 200μA
RXD OUTPUT Rise Time	tRR	_	40	_	nsec	C _L = 15pF
RXD OUTPUT Fall Time	tFR	_	20	_	nsec	C _L = 15pF
RXD OUTPUT Pulse Width	twRXD	1.5	2.3	3.6	μsec	C _L = 15pF, 2.4~115.2Kbps
Receiver Latency Time	tRT	-	100	300	μsec	

● Optical characteristics (Unless otherwise noted, Vcc=3V, VLEDVcc=3V, Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Peak wave length	λP	850	870	900	nm	
Intensity 1	IE1	4.0	10	26	mW/Sr	–15° ≤ θL ≤ 15°
Intensity 2	IE2	_	_	3.6	mW/Sr	$\theta L \le -30^{\circ}, 30^{\circ} \le \theta L$
Half-Angle	θL / 2	_	±18	_	deg	
Rise time / Fall time	Tr / Tf	_	_	100	nsec	10%~90%
Optical over shoot		_	_	25	%	
Edge jitter	Tj	-40	_	40	nsec	
Irradiance in angular	Ee	0.0068	-	500	mW / cm ²	-15° ≤ θL ≤ 15°
INPUT Half-Angular	θD / 2	±15	_	-	deg	
Maximum Emitting Time	TLEDmax	16	48	90	μѕес	TXD=Vcc

This product is not designed for protection against radioactive rays.
 This product dose not include laser transmitter.
 This product includes one pin photo diode.
 This product dose not include optical load.

Timing chart


Notes

- 1) LEDVcc (8pin) and Vcc (3pin)
 - · Other power source can be used difference between LEDVcc and Vcc.
- 2) Caution in designing board lay-out

To get maximum potential from RPM870-H7, please keep in mind following instruction.

- The line of RXD (6pin) should be connected at backside via through hole close to RPM870-H7 pin lead. Better not to be close to photo diode side (1pin).
- ⇒This is to minimize feedback supplied to photo diode from RXD.
- \cdot As for C1 between 3-4 pin should be placed close to RPM870-H7.
- · Better to be placed more than 1.0cm in radius from photo diode (pin1 side) and also away from the parts which generates noise, such as DC / DC converter.
- 3) Others
 - \cdot Please be sure to set up the TXD (7pin) input to be "L" (under 0.5V) except transmitting data (for < 90 μ sec. on duty < 20%).
 - · Powerdown current might increase if exposed by strong light (ex. direct sunlight) at powerdown mode.
 - · Please use by the signal format which is specified by IrDA Ver1.2 (Low Power). There might be on error if used by different signal format.
- 4) Eye Safe
 - · IEC825-1 (EN60825-1) Class 1 Eye Safe.

●External dimensions (Units : mm)

