—~

o

@) O

(
@)

0 00 S3F443FX0 O O

‘\J =
Ly
~ ’:) ~

jde T

goobgoopcBOOO0O0OO02a000000

20-S3-F443FX -092002

USER'S MANUAL

S3F443FX

16/32-Bit RISC
Microcontroller
Revision 0

ELECTRONICS

http://www.dzsc.com/ic/sell_search.html?keyword=S3F443FX
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

PRODUCT OVERVIEW

INTRODUCTION

SAMSUNG S3F443FX 16/32-bit RISC micro-controller is a cost-effective and high-performance solution for HDD
and general purpose applications.

An outstanding feature of the S3F443FX is its CPU core, a 16/32-bit RISC processor (ARM7TDMI) designed by
Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general-purpose, microprocessor macro-
cell which was developed for the use in application-specific and customer-specific integrated circuits. Its simple,
elegant, and fully static design is particularly suitable for cost-sensitive and power-sensitive applications.

The S3F443FX has been developed by using the ARM7TDMI core, CMOS standard cell, and data path compiler.
the S3F443FX has been designed to support only Big Endian. Most of the on-chip function blocks have been
designed by using a HDL synthesizer. The S3F443FX has been fully verified in SAMSUNG ASIC test
environment including internal Qualification Assurance Process.

By providing a complete set of common system peripherals, the S3F443FX can minimize the overall system
costs and eliminate the need to configure additional components, externally.

The integrated on-chip functions which are described in this document include:

— Memory system manager: 3 external memory banks. (If the internal flash ROM is not used for a boot code,
nCSO will be used for a boot ROM)

— Built-in 256Kbyte (64K ~ 32-bit) Flash memory

— 8K-bytes (2K~ 32-bit) internal SRAM for stack, data memory, and/or code memory

— One channel UART

— Six 16-bit internal timers with 8-bit pre-scaler and input Capture function

— Power down mode: STOP and IDLE modes

— One 8-bit basic timer and 3-bit watch-dog timer

— Interrupt controller (Total of 21 interrupt sources including 3 external sources)

— Sixteen programmable 1/O ports

— One 8-Bit PWM

— 64-pin LQFP

ELECTRONICS 1-1

PRODUCT OVERVIEW

S3F443FX (Preliminary Spec)

FEATURES

Architecture

Completely integrated micro-controller for
embedded applications

Big Endian only supported

Fully 16/32-bit RISC architecture

Efficient and powerful ARM7TDMI CPU core
Cost effective JTAG-based debugging solution

Memory

8-bit external bus support for one ROM bank
and two external memory banks

Programmable memory access times (from 0 to
7 wait cycles)

8-Kbyte SRAM (for stack, data memory, and/or
code memory)

Built-in 256-Kbyte Flash memory (for data
and/or code memory)

UART

One UART channel with interrupt-based
operation

Programmable baud rates

Supports asynchronous serial data
transmit/receive operations with 5-bit, 6-bit, 7-
bit, 8-bit data per frame

16-bit Timers/Counters with Capture Function
(TO, T1, T2, T3, T4 and T5)

Six programmable 16-bit timer/counters

Interval, capture, or match & overflow mode
operations

EXTCLK or TIN (Timer Input Capture Signal)
can be the clock source for the timer.

TIN is shared by all timers.

PWM
One-8 bit PWM

Clock source is driven from EXTCLK signal
source divided by 1/1 or byl/2

PWM signal out

Basic Timer and Watch-dog Timer

8-bit counter (Basic Timer) + 3-bit counter
(Watch-dog Timer).

Overflow signal from the 8-bit counter can
generate a basic timer interrupt and can be the
input clock for the 3-bit counter.

Overflow signal from the 3-bit counter resets the
system.

I/0 Ports

16 programmable 1/O ports (7 dedicated 1/O pins
only)

Each port pin can be configured individually as
input, output, or functional pin

Interrupts

21 interrupt sources including 3 external
Interrupt sources.

H/W interrupt priority logic and vector
generation

Normal or fast interrupt mode (IRQ, FIQ)

Power down mode
IDLE and STOP modes

Division of system clock to reduce the power
(1/1,1/2, 1/8, 1/16 and 1/1024)

Operating Voltage Range
Core: 1.8V ,l/O: 2.7-3.6V

Operating Frequency Range

up to 80MHz (CPU core, SRAM, and
Peripherals)

up to 40MHz (Flash ROM)

Package Type
64-pin LQFP

1-2

ELECTRONICS

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

BLOCK DIAGRAM

N CPU

(ARM7TDMI)
<:> Rglljtse . < Local Bus >
Clock Control <:> iE iE
(Power Down) - 256 K-byte 8K-byte
(2R Flash ROM SRAM
o |
E:
=0
UART <0
o
Re) Interrupt
= Controller
58
| 20
Timer 0,1,2,3,4,5 <:> Basic Timer
& WDT
1/0 Port .
Controller <:> <:I\‘/ 8bit-PWM
System Manager
Sytem Bus Controller Bus Interface
Bus Arbitration ROM/SRAM Controller

Figure 1-1. S3F443FX Block Diagram

ELECTRONICS 1-3

PRODUCT OVERVIEW

S3F443FX (Preliminary Spec)

PIN ASSIGNMENTS

<
Ug)m
%EQﬁsss
= = >
>'Oobo(')(')(')(')3§
9992220882053z
A RADMDAMDEMPAEADIDDEDWWWWWWW
ONOOBROMNROOONIOON®
D4 1 49 323
D3 50 3143
D2 — 51 30 &
D1 — 52 29 43
DO — 53 28 ™
EINTO = 54 27 3
EINT1 = 55 26 [
EINT2 = 56 SSF443FX 2543
TIN/GPIO7 3 57 24
GPIOO —] 58 (64-LQFP) 2343
VSS(1.8V)] 59 2243
VvDD(1.8v) — 60 214
GPIO1 = 61 204
GPI102 = 62 19 4
GPIO3 = 63 18 [
GPIO4 64@ 7=
PR RPRR LR R
PFNWRUONOOORNWDU O
NDO<<ddddm14<<3ZZ5
(9] loNQ] o] X W0 Py —
225653 R5°080EmMRER
RSN QLB R 4
W w TU®xH
SS 00SS
S QQ->
o b

A4
A5

VDD(3.3V)

VSS(3.3V)

A6

A7

A8

A9

A10

A1l

A12/GPIO8

A13/GPIO9
A14/GPIO10/PWM_OUT
A15/GPI011
A16/GPIO12
A17/GPIO13

Figure 1-2. S3F443FX Pin Assignments (64-LQFP)

1-4

ELECTRONICS

S3F443FX (Preliminary Spec) PRODUCT OVERVIEW

SIGNAL DESCRIPTIONS

Table 1-1. S3F443FX Signal Descriptions (64-pin LQFP)

Signal

Pin #

I/O Pin Type

Description

TDO

TDO (TAP Controller Data Output) is the serial output for the JTAG
port

TCK

TCK (TAP Controller Clock) provides the clock input for the JTAG
logic. A 100K pull-up resistor is connected to the TCK pin internally.

T™MS

TMS (TAP Controller Mode Select) controls the sequence of the
TAP controller state diagram. A 100K pull-up resistor is connected
to the TMS pin internally.

TDI

TDI (TAP Controller Data Input) is the serial input for the JTAG port.
A 100K pull-up resister is connected to the TDI pin internally.

NTRST

16

NTRST (TAP Controller Reset) resets the TAP controller at start.

A 100K pull-up resistor is connected to the nTRST pin internally.

If the debugger (Black ICE) is not used, nTRST pin should be L
level or low active pulse should be applied before running the CPU.
For example, nRESET signal can be tied with the nTRST.

MDI[1:0]

14,15

00: Normal mode (In-ROM mode). The nCS0 may be used for an
external device. (MDS can be used.)

01: External ROM mode. The nCSO0 will be used for boot code
instead of the internal FLASH ROM. (MDS can be used.)

10: Optional MDS mode for ICE. (External ROM mode is selected)

11: Test mode for Internal Flash memory, which is used only a flash
writer equipment.

NRESET

13

IUS

NRESET is the global reset input for the S3F443FX. For a safe
system reset, NRESET should be held at Low level for at least
150us.

Al17/GPIO13

17

IOPD

Al7: Address line A17
GPIO[13]: Programmable 1/0O port 13 for push-pull input or output.

A16/GPIO12

18

IOPD

A16: Address line A16
GPIO[12]: Programmable 1/0O port 12 for push-pull input or output.

A15/GPIO11

19

IOPD

A15: Address line A15
GPIO[11]: Programmable 1/O port 11 for push-pull input or output.

A14/GP1010/
PWM_OUT

20

IOPD

Al4: Address line A14
GPIO[10]: Programmable 1/0O port 10 for push-pull input or output.
PWM_OUT: PWM signal out

A13/GPIO9

21

IOPD

A13: Address line A13
GPIO[9]: Programmable 1/0O port 9 for push-pull input or output.

A12/GPIO8

22

IOPD

Al12: Address line A12
GPIO[8]: Programmable 1/0O port 8 for push-pull input or output.

A[11:0]

23-28,
31-36

Address lines A11-A0

ELECTRONICS

1-5

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

Table 1-1. S3F443FX Signal Descriptions (64-pin LQFP) (Continued)

Signal Pin # I/O Pin Type Description

nWE 37 0] nWE (Write Enable) indicates that the current bus cycle is a write
cycle.

nOE 38 0] nOE (Output Enable) indicates that the current bus cycle is a
read cycle.

nWAIT 45 U NWAIT requests to prolong a current bus cycle. As long as
NWAIT is L, the current bus cycle cannot be completed.

nCS0 39 0] NCSO (Chip Select 0) can be activated when the issued address

for memory access is within the address region 0x0—0x3FFFF
and MD[1:0] is configured as an external ROM mode.

nCS1 40 0] NnCS1(Chip Select 1) can be activated when the issued address
for memory access is within the address region 0x800000—
Ox83FFFF.

nCS2 41 0] nCS2 (Chip Select 2) can be activated when the issued address
for memory access is within the address region 0xC00000—
OXC3FFFF.

D[7:0] 46-53 IOPD D[7:0] (Bi-directional Data Bus) inputs data during memory read
and outputs data during memory write.

EXTCLK 42 IS External clock source.

EINT[2:0] 54-56 IOPUSE External interrupt inputs 2—0.

TIN/GPIO7 57 IOPUS TIN: Timer capture input
GPIO[7]: Programmable 1/0O port 7 for push-pull input or output.

GPIO[6:0] 58,61 IOPU GPIO[6:0]: Programmable 1/0O port 6~0 for push-pull input/output.

64,1-2

RXD/GPIO15 9 IOPUS RXD: Rx data input for the UART

GPIO[15]: Programmable I/O port 15 for push-pull input or
output.

TXD/GPIO14 10 IOPUS TXD: Tx data output for the UART

GPIO[14]: Programmable I/O port 14 for push-pull input or
output.
VDD(S 3v) 4,30 3.3 Volt for Peripheral Block
Vbp(.sv) 12,44, - 1.8 Volt for Core Block
60
VSS(3 3v) 3,29 3.3 Volt for Peripheral Block
Vss(1.8v) 11,43, - 1.8 Volt for Core Block
59

1-6 ELECTRONICS

S3F443FX (Preliminary Spec)

PRODUCT OVERVIEW

I/O PIN TYPES
Table 1-2. S3F443FX I/O Pin Types

I/O Type Descriptions
IOPUS Schmitt-trigger input/output pin with programmable pull-up resistor
IOPUSE Schmitt-trigger input/output pin with programmable pull-up resistor and edge detection
IOPD Input/output pin with programmable pull-down resistor
IOPU Input/output pin with programmable pull-up resistor
O Output pin
IUSs Schmitt-trigger Input pin with pull-up resistor
I Input pin
U Input pin with pull-up resistor
IS Schmitt-trigger input pin
A A pin for analog signal

ELECTRONICS

1-7

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

VDD
Pull-up Resistor
(Typical 50 KW)
Pull-up Enable {>o I
VDD
é—l /0
Vss

Figure 1-3. IOPUSE (Schmitt Input/Output Pin with Programmable Pull-up Resistor and Edge Detection)

Output Data

Output Enable

Input Data <

External E_A/_
Interrupt Input |

VDD

Pull-up Resistor

(Typical 50 KW)
Pull-up Enable {>o I
VDD
Output Data
1/0
Output Enable
Vss

Input Data < U

Figure 1-4. IOPUS (Schmitt Input/Output Pin with Programmable Pull-up Resistor)

1-8 ELECTRONICS

S3F443FX (Preliminary Spec)

PRODUCT OVERVIEW

VDD

Output Data:
110

Output Enable

Vss
Input Data <
Power-down Enable {>o I

Pull-down Resistor
(Typical 50K8§U)
Vss

Figure 1-5. IOPD (Input/Output Pin with Programmable Pull-down Resistor)

Pull-up Enable {>c I

Output Data:

Output Enable

VDD

Pull-up Resistor
(Typical 50 KW)

1/0

Input Data «

Figure 1-6. IOPU (Input/Output Pin with Programmable Pull-up Resistor)

ELECTRONICS

1-9

PRODUCT OVERVIEW S3F443FX (Preliminary Spec)

NOTES

1-10 ELECTRONICS

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

PROGRAMMER'S MODEL

OVERVIEW

S3F443FX was developed using the advanced ARM7TDMI core designed by Advanced RISC Machines, Ltd and
it supports only Big Endian mode.

PROCESSOR OPERATING STATES

From the programmer's point of view, the ARM7TDMI can be in one of two states:

— ARM state which executes 32-bit, word-aligned ARM instructions.
— THUMB state which operates with 16-bit, half-word-aligned THUMB instructions. In this state, the PC uses bit

1 to select between alternate half-words.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State
Entry into ARM state happens:

— On execution of the BX instruction with the state bit clear in the operand register.

— On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode's link register, and execution commences at the exception's vector address.

ELECTRONICS 2-1

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

Higher Address Word Address

Lower Address

31 24 23 16 15 7

8 9 10 11 8
4 5 6 7 4
0 1 2 3 0

» Most significant byte is at lowest address.
» Word is addressed by byte address of most significant byte.

LITTLE-ENDIAN FORMAT

Figure 2-1. Big-Endian Addresses of Bytes within Words

In Little-Endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines

7 through 0. (NOTE: S3F443EX does not support Little-Endian)

Higher Address

Lower Address

Word Address

31 24 23 16 15 7

11 10 9 8 8
7 6 5 4 4
3 2 1 0 0

- Least significant byte is at lowest address.

»Word is addressed by byte address of least significant byte.

Figure 2-2. Little-Endian Addresses of Bytes within Words

2-2

ELECTRONICS

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARMT7TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

ELECTRONICS 2-3

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

OPERATING MODES

ARM7TDMI supports seven modes of operation:

— User (usr): The normal ARM program execution state

— FIQ (fig): Designed to support a data transfer or channel process

— IRQ (irq): Used for general-purpose interrupt handling

— Supervisor (svc): Protected mode for the operating system

— Abort mode (abt): Entered after a data or instruction pre-fetch abort
— System (sys): A privileged user mode for the operating system

— Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes' known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: RO to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information.

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch and
Link (BL) instruction is executed. At all other times it may be treated as a general-
purpose register. The corresponding banked registers R14_svc, R14 _irq, R14 _fiq,
R14 abt and R14_und are similarly used to hold the return values of R15 when
interrupts and exceptions arise, or when Branch and Link instructions are executed
within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
[31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.
Register 16 is the CPSR (Current Program Status Register). This contains condition code flags and

the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fig-R14_fig). In ARM state, many FIQ handlers do
not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers
mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.

2-4 ELECTRONICS

S3F443FX (Preliminary Spec)

PROGRAMMER'S MODEL

ARM State General Registers and Program Counter

System & User FIQ Supervisor Abort IRQ Undefined

RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8_fiq R8 R8 R8 R8

R9 R9_fiq R9 R9 R9 R9

R10 R10 fiq R10 R10 R10 R10

R11 R11 fiq R11 R11 R11 R11

R12 R12 fiq R12 R12 R12 R12

R13 R13 fiq R13_svc R13_abt R13_irq R13 und

R14 R14 fig R14_svc R14 _abt R14 irq R14_und

R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

ARM State Program Status Registers
| CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

B: banked register

Figure 2-3. Register Organization in ARM State

ELECTRONICS

2-5

PROGRAMMER'S MODEL

S3F443FX (Preliminary Spec)

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, RO-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

THUMB State General Registers and Program Counter

System & User FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
SP SP_fiq SP_svc SP_abt SP_und SP_fiq
LR LR_fig LR_svc LR_abt LR_und LR_fig
PC PC PC PC PC PC
THUMB State Program Status Registers
| CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il: banked register

Figure 2-4. Register Organization in THUMB state

2-6

ELECTRONICS

S3F443FX (Preliminary Spec)

PROGRAMMER'S MODEL

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

THUMB state RO-R7 and ARM state RO-R7 are identical

THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical
THUMB state SP maps onto ARM state R13

THUMB state LR maps onto ARM state R14

The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

THUMB state

ARM state

RO

RO

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

Lo-registers

R6

R6

R7

R7

R8

R9

R10

R11

R12

Stack Pointer (SP)

Stack Pointer (R13)

Link register (LR)

Link register (R14)

Program Counter (PC)

Program Counter (R15)

CPSR

CPSR

SPSR

SPSR

Hi-registers

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

ELECTRONICS

2-7

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

Accessing Hi-Registers in THUMB State
In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0O-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register's functions are:

— Hold information about the most recently performed ALU operation
— Control the enabling and disabling of interrupts
— Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

Condition Code Flags (Reserved) Control Bits
I I I I I I
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
N Z C \Vi ® ° Y 3 [] L] ° | F T M4 M3 M2 M1 MO
1l I |
I— Overflow L Mode bits
Carry/Borrow/Extend State bit
Zero . FIQ disable
Negative/Less Than IRQ disable

Figure 2-6. Program Status Register Format

2-8 ELECTRONICS

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.
In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
be changed when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in
THUMB state, otherwise it is executing in ARM state. This is reflected on the TBIT
external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits ~ The | and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and MO bits (M[4:0]) are the mode bits. These determine the
processor's operating mode, as shown in Table 2-1. Not all combinations of the mode
bits define a valid processor mode. Only those explicitly described shall be used. The
user should be aware that if any illegal value is programmed into the mode bits, M[4:0],
then the processor will enter an unrecoverable state. If this occurs, reset should be
applied.

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR's flag or control
bits, you must ensure that these unused bits are not altered. Also, your program should
not rely on them containing specific values, since in future processors they may read
as one or zero.

ELECTRONICS 2-9

PROGRAMMER'S MODEL

S3F443FX (Preliminary Spec)

Table 2-1. PSR Mode Bit Values

M[4:0] Mode Visible THUMB State Registers Visible ARM State Registers
10000 User R7..RO, R14..RO,

LR, SP PC, CPSR

PC, CPSR
10001 FIQ R7..RO, R7..RO,

LR_fig, SP_fiq R14 fig..R8_fiq,

PC, CPSR, SPSR_fiq PC, CPSR, SPSR_fiq
10010 IRQ R7..RO, R12..RO,

LR_irqg, SP_irq R14 irq, R13_irq,

PC, CPSR, SPSR_irq PC, CPSR, SPSR_irq
10011 Supervisor R7..RO, R12..RO,

LR _svc, SP_svc, R14 svc, R13 svc,

PC, CPSR, SPSR_svc PC, CPSR, SPSR_svc
10111 Abort R7..RO, R12..RO,

LR _abt, SP_abt, R14 abt, R13 abt,

PC, CPSR, SPSR_abt PC, CPSR, SPSR_abt
11011 Undefined R7..RO R12..RO,

LR _und, SP_und, R14 und, R13 und,

PC, CPSR, SPSR_und PC, CPSR
11111 System R7..RO, R14..RO,

LR, SP PC, CPSR

PC, CPSR

Reserved bits

The remaining bits in the PSR's are reserved. When changing a PSR's flag or control

bits, you must ensure that these unused bits are not altered. Also, your program should
not rely on them containing specific values, since in future processors they may read
as one or zero.

2-10

ELECTRONICS

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.

See Exception Priorities on page 2-14.

Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate Link Register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the Link Register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the Link Register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the

case of SWI, MOVS PC, R14 svc will always return to the next instruction regardless of whether the SWiI
was executed in ARM or THUMB state.

Copies the CPSR into the appropriate SPSR
Forces the CPSR mode bits to a value which depends on the exception
Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nesting of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

Copies the SPSR back to the CPSR
Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

ELECTRONICS 2-11

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

Exception Entry/Exit Summary

Table 2-2 summarizes the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes
ARM R14 x THUMB R14 x
BL MOV PC, R14 PC +4 PC +2 1
SWiI MOVS PC, R14 _svc PC +4 PC +2 1
UDEF MOVS PC, R14_und PC +4 PC +2 1
FIQ SUBS PC, R14 _fiq, #4 PC +4 PC +4 2
IRQ SUBS PC, R14 _irq, #4 PC +4 PC +4 2
PABT SUBS PC, R14_abt, #4 PC +4 PC +4 1
DABT SUBS PC, R14_abt, #8 PC+8 PC+8 3
RESET NA - - 4

NOTES:

1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.

2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.

4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimizing the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

2-12 ELECTRONICS

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the | bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort
An abort indicates that the current memory access cannot be completed. It can be signaled by the external
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

— Prefetch abort: occurs during an instruction prefetch.
— Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

— Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

— The swap instruction (SWP) is aborted as though it had not been executed.

— Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (i.e. it has the base in the transfer list), the overwriting
is prevented. All register overwriting is prevented after an abort is indicated, which means in particular that
R15 (always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt#4 ; for a prefetch abort, or
SUBS PC,R14 abt#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

ELECTRONICS 2-13

PROGRAMMER'S MODEL

S3F443FX (Preliminary Spec)

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or

Thumb):

MOV

PC,R14 svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM

or Thumb):

MOVS

PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode in Entry
0x00000000 Reset Supervisor
0x00000004 Undefined instruction Undefined
0x00000008 Software Interrupt Supervisor
0x0000000C Abort (prefetch) Abort
0x00000010 Abort (data) Abort
0x00000014 Reserved Reserved
0x00000018 IRQ IRQ
0x0000001C FIQ FIQ

2-14

ELECTRONICS

S3F443FX (Preliminary Spec) PROGRAMMER'S MODEL

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

Reset
Data abort
FIQ

IRQ

Prefetch abort

o~ w DN BE

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decoding of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the CPSR's F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

ELECTRONICS 2-15

PROGRAMMER'S MODEL S3F443FX (Preliminary Spec)

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfig). At the end of this time ARM7TDMI will be executing the
instruction at Ox1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq.
This is 4 processor cycles.

RESET

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to
fetch instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value
of the saved PC and SPSR is not defined.
Forces M[4:0] to 10011 (Supervisor mode), sets the | and F bits in the CPSR, and clears the CPSR's T bit.
Forces the PC to fetch the next instruction from address 0x00.

Execution resumes in ARM state.

2-16 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Cond |0|0]| 1| Opcode |S Rn Rd Operand2 Data Processing/
PSR Transfer

Cond |0|0|0|0|0O|O[A|S| Rd Rn Rs [1|0|0[1] Rm |Multiply

Cond |0|0|0|0|1|U|A|S| RdHI RdLo Rn 1|lolofl1] Rm |Multiply Long

Cond (Ofo0fOf1|0(B|O]|O Rn Rd ojo|o|o|1|0f{0|1] Rm Single Data Swap

Cond (O|OfOf2|0|0O|1{Of2|2f1f2|2|2|1f21f2|2j1f2|0O|O|Of2 Rn Branch and Exchange

Cond ([0f0|O|P|U[O|W|L Rn Rd 0/0|0|0|1|S|[H|1] Rm Halfword Data Transfer:
register offset

Cond (OfO|O|P|U[1|W|L Rn Rd Offset [1|S|H|1| Offset |Halfword Data Transfer:
immediate offset

Cond (O|1f!I|P|U|B|W|L Rn Rd Offset Single Data Transfer

Cond (0|1}l 1 Undefined

Cond (1|0(0|P|U|B|W|L Rn Register List Block Data Transfer

Cond ([1|0|1]|L Offset Branch

Cond (1|1(0|P|U|B|W|L Rn CRd CP# Offset Coprocessor Data Transfer

Cond (1|1(1|0| CP Opc CRn CRd CP# CP |g| CRm | Coprocessor Data Operation

Cond |1(1|1|0| CP |L CRn Rd CP# CP |1| CRm [Coprocessor Register Transfer

Opc
Cond (1]1f1]1 Ignored by processor Software Interrupt
313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Figure 3-1. ARM Instruction Set Format

ELECTRONICS 3-1

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their
action may change in future ARM implementations.

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action
ADC Add with carry Rd: = Rn + Op2 + Carry
ADD Add Rd: = Rn + Op2
AND AND Rd: = Rn AND Op2
B Branch R15: = address
BIC Bit Clear Rd: = Rn AND NOT Op2
BL Branch with Link R14: = R15, R15: = address
BX Branch and Exchange R15: = Rn, T bit: = Rn[0]
CDP Coprocessor Data Processing (Coprocessor-specific)
CMN Compare Negative CPSR flags: = Rn + Op2
CMP Compare CPSR flags: = Rn - Op2
EOR Exclusive OR Rd: = (Rn AND NOT Op2)

OR (Op2 AND NOT Rn)
LDC Load coprocessor from memory Coprocessor load
LDM Load multiple registers Stack manipulation (Pop)
LDR Load register from memory Rd: = (address)
MCR Move CPU register to coprocessor cRn: = rRn {<op>cRm}
register
MLA Multiply Accumulate Rd: =(Rm~ Rs) + Rn
MOV Move register or constant Rd: = Op2
3-2 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action

MRC Move from coprocessor register to Rd: = cRn {<op>cRm}
CPU register

MRS Move PSR status/flags to register Rd: = PSR
MSR Move register to PSR status/flags PSR: = Rm
MUL Multiply Rd: =Rm~ Rs
MVN Move negative register Rd: = Not Op2
ORR OR Rd: = Rn OR Op2
RSB Reverse Subtract Rd: = 0p2 - Rn
RSC Reverse Subtract with Carry Rd: = Op2 - Rn - Not Carry Flag
SBC Subtract with Carry Rd: = Rn - Op2 - Not Carry Flag
STC Store coprocessor register to memory address: = CRn
STM Store Multiple Stack manipulation (Push)
STR Store register to memory <address>: = Rd
SUB Subtract Rd: = Rn - Op2
SWI Software Interrupt OS call
SWP Swap register with memory Rd: = [Rn], [Rn] := Rm
TEQ Test bitwise equality CPSR flags: = Rn EOR Op2
TST Test bits CPSR flags: = Rn AND Op2

ELECTRONICS

3-3

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction's condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction's mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal”,
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (sufix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning
0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same
0011 CcC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same
1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

3-4 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
Cond 00010 0 1 0J12 12 1 1J2 1 1 1y1 1 1 1j0 0 0 1 Rn

[3:0] Operand Register
If bit0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit0 of Rn =0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-2. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequencial (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.

BX {cond} Rn
{cond} Two character condition mnemonic. See Table 3-2.

Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behavior is undefined.

ELECTRONICS 3-5

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

EXAMPLES
ADR RO, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.
BX RO ; Branch and change to THUMB
; state.
CODE16 ; Assemble subsequent code as
Into THUMB ; THUMB instructions
ADR R5, Back_to_ARM ; Generate branch target to word aligned address
;- hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back to ARM

3-6 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below.

31 28 27 25 24 23 0
Cond 101 L Offset

[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously loaded into
a register. In this case the PC should be manually saved in R14 if a Branch with Link type operation is required.
THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!l{..PC} if the link register has been saved onto a stack pointed to by Rn.
INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
squential (S-cycle) and internal (I-cycle).

ELECTRONICS 3-7

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

ASSEMBLER SYNTAX

Items in {} are optional. Iltems in <> must be present.

B{L}{cond} <expression>

{L}
{cond}

<expression>

EXAMPLES

here BAL
CMP
BEQ
BL
ADDS

BLCC

Used to request the Branch with Link form of the instruction. If absent, R14 will not be

affected by the instruction.

A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be

used.

The destination. The assembler calculates the offset.

here
there
R1,#0

fred
sub+ROM
R1,#1

sub

Assembles to OXEAFFFFFE (note effect of PC offset).
Always condition used as default.

Compare R1 with zero and branch to fred

if R1 was zero, otherwise continue.

Continue to next instruction.

Call subroutine at computed address.

Add 1 to register 1, setting CPSR flags

on the result then call subroutine if

the C flag is clear, which will be the

case unless R1 held OxFFFFFFFF.

3-8

ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.
The instruction encoding is shown in Figure 3-4.

31

28 27 26 25 24 2120 19 16 15 12 11 0

Cond

00 OpCode |S Rn Rd Operand2

[15:12] Destination register
[19:16] 1st operand register

[20] Set condition codes
0 = Do not affect condition codes 1 = Set condition codes

[24:21] Operation code

0000 = AND-Rd: = Op1 AND Op2

0001 = EOR-Rd: = Opl EOR Op2

0010 = SUB-Rd: = Op1-Op2

0011 = RSB-Rd: = Op2-Op1

0100 = ADD-Rd: = Op1+0p2

0101 = ADC-Rd: = Op1+0Op2+C

0110 = SBC-Rd: = OP1-Op2+C-1

0111 = RSC-Rd: = Op2-Opl+C-1

1000 = TST-set condition codes on Op1l AND Op2
1001 = TEO-set condition codes on OP1 EOR Op2
1010 = CMP-set condition codes on Op1-Op2
1011 = SMN-set condition codes on Op1+0Op2
1100 = ORR-Rd: = Op1 OR Op2

1101 = MOV-Rd: =OP2

1110 = BIC-Rd: = Op1 AND NOT Op2

1111 = MVN-Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an immediate Value

[11:0] Operand 2 Type selection
11 4 3 0
Shift Rm

[3:0] 2nd Operand Register [11:4] Shift applied to Rm
11 8 7 0

Rotate Imm

[7:0] Unsigned 8 bit immediate value [11:8] Rotate applied to Imm

[31:28] Condition field

Figure 3-4. Data Processing Instructions

ELECTRONICS 3-9

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the | bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

3-10 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler Mnemonic OP Code Action
AND 0000 Operandl AND operand?
EOR 0001 Operandl EOR operand?2
SUB 0010 Operand1l - operand?
RSB 0011 Operand2 operandl
ADD 0100 Operandl + operand?2
ADC 0101 Operandl + operand?2 + carry
SBC 0110 Operandl - operand?2 -Not carry flag
RSC 0111 Operand? - operandl Not carry flag
TST 1000 As AND, but result is not written
TEQ 1001 As EOR, but result is not written
CMP 1010 As SUB, but result is not written
CMN 1011 As ADD, but result is not written
ORR 1100 Operandl OR operand2
MOV 1101 Operand?2 (operandl is ignored)
BIC 1110 Operandl AND NOT operand?2 (Bit clear)
MVN 1111 NOT operand2 (operandl is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

ELECTRONICS 3-11

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the least-significant byte of another register (other than R15). The
encoding for the different shift types is shown in Figure 3-5.

11 7 6 5 4 11 8 7 6 5 4

0 RS 0 1
[6:5] Shift type [6:5] Shift type
00 = logical left 01 = logical right 00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right 10 = arithmetic right 11 = rotate right
[11:7] Shift amount [11:8] Shift register
5 bit unsigned integer Shift amount specified in the

least-significant byte of Rs

Figure 3-5. ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

31 27 26 0

Cal’gl_o/

Contents of Rm

Value of Operand 2 00 O0O00O

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

3-12 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

31 5 4 0

Contents of Rm
w out

00 O0O00O Value of Operand 2

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm

instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure
3-8.

31 30 5 4 0

w out

Contents of Rm

Value of Operand 2

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

ELECTRONICS 3-13

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

Rotate right (ROR) operations reuse the bits which "overshoot" in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9.

Contents of Rm

L
carry out

Value of Operand 2

Figure 3-9. Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of the
barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity formed by
appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure 3-10.

31 10

Contents of Rm

c \ carry out

Value of Operand 2

Figure 3-10. Rotate Right Extended

3-14 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

Register specified shift amount
Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

LSL by 32 has result zero, carry out equal to bit 0 of Rm.

LSL by more than 32 has result zero, carry out zero.

LSR by 32 has result zero, carry out equal to bit 31 of Rm.

LSR by more than 32 has result zero, carry out zero.

ASR by 32 or more has result filled with the value of bit 31 of Rm, carry out equal to bit 31 of Rm.
ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

N o o ks~ w bR

ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ELECTRONICS 3-15

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which automatically restore both PC and
CPSR. This form of instruction should not be used in User mode.

USING R15 AS AN OPERAND

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction pre-fetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer
operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a privileged
mode and to do nothing if in User mode.

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles
Normal data processing 1S
Data processing with register specified shift 1S + 11
Data processing with PC written 2S + 1N
Data processing with register specified shift and PC written 2S + 1IN +1I

NOTE: S, N and | are as defined sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle) respectively.

3-16 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

ASSEMBLER SYNTAX

MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:
<Op2>
{cond}

{S}
Rd, Rn and Rm

<#expression>

<shift>

<shiftname>s

EXAMPLES

ADDEQ
TEQS

SuUB

MOV
MOVS

Rm{,<shift>} or,<#expression>

A two-character condition mnemonic. See Table 3-2.
Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Expressions evaluating to a register number.

If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<Shiftname> <register> or <shifthame> #expression, or RRX (rotate right one bit with

extend).

ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same

code.)

R2,R4,R5

R4,#3

R4,R5R7,LSR R2

PC,R14
PC,R14

If the Z flag is set make R2:=R4+R5
Test R4 for equality with 3.

(The S is in fact redundant as the
assembler inserts it automatically.)
Logical right shift R7 by the number in
the bottom byte of R2, subtract result
from R5, and put the answer into R4.
Return from subroutine.

Return from exception and restore CPSR
from SPSR_mode.

ELECTRONICS

3-17

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in
Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS
In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

You must not specify R15 as the source or destination register.
Also, do not attempt to access an SPSR in User mode, since no such register exists.

3-18 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

MRS (transfer PSR contents to a register)
31 28 27 232221 16 15 12 11 0
Cond 00010 IPS 001111 Rd 000000000000

[15:12] Destination Register

[22] Source PSR
0=CPSR 1 = SPSR_<current mode>

[31:28] Condition Field
MSR (transfer register contents to PSR)

31 28 27 2322 21 12 11 4 3 0
Cond 00010 |Pd| 101001111 00000000 Rm

[3:0] Source Register

[22] Destination PSR
0=CPSR 1 = SPSR_<current mode>

[31:28] Condition Field
MSR (transfer register contents or immediate value to PSR flag bits only)

31 28 27 26 25 24 23 22 21 12 11 0
Cond 00 10 IPdI 101001111 Source operand

[22] Destination PSR
0=CPSR 1 = SPSR_<current mode>

[25] Immediate Operand

0 = Source operand is a register

1 = Source operand is a immediate value

[11:0] Source Operand

11 4 3 0
00000000 Rm

[3:0] Source Register
[11:4] Source operand is an immediate value

11 8 7 0

Rotate Imm

[7:0] Unsigned 8 bit immediate value
[11:8] Rotate applied to Imm

[31:28] Condition Field

Figure 3-11. PSR Transfer

ELECTRONICS 3-19

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:
The reserved bits should be preserved when changing the value in a PSR.

Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

Examples

The following sequence performs a mode change:

MRS RO,CPSR ; Take a copy of the CPSR.

BIC RO,R0O,#0x1F ; Clear the mode bits.

ORR RO,R0,#new_mode ; Select new mode

MSR CPSR,R0O ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).

3-20 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

ASSEMBLY SYNTAX

MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N,Z,C
and V flags respectively.

Key:
{cond}
Rd and Rm

<psr>

<psrf>

<#expression>

EXAMPLES

Two-character condition mnemonic. See Table 3-2..

Expressions evaluating to a register number other than R15
CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR

and SPSR_all)
CPSR_flg or SPSR_flg

Where this is used, the assembler will attempt to generate a shifted immediate 8-bit field
to match the expression. If this is impossible, it will give an error.

In User mode the instructions behave as follows:

MSR
MSR
MSR
MRS

In privileged modes the instructions behave as follows:

MSR
MSR
MSR
MSR
MSR
MSR
MRS

CPSR_all,Rm
CPSR_flg,Rm
CPSR_flg,#0xA0000000
Rd,CPSR

CPSR_all,Rm
CPSR_flg,Rm
CPSR_flg,#0x50000000
SPSR_all,Rm
SPSR_flg,Rm
SPSR_flg,#0xC0000000
Rd,SPSR

CPSR[31:28] = Rm[31:28]
CPSR[31:28] = Rm[31:28]
CPSR[31:28] = OxA (set N,C; clear Z,V)
Rd[31:0] = CPSR[31:0]

CPSR[31:0] = Rm[31:0]

CPSR[31:28] = Rm[31:28]

CPSR[31:28] = 0x5 (set Z,V; clear N,C)
SPSR_<mode>[31:0] = Rm[31:0]
SPSR_<mode>[31:28] = Rm[31:28]
SPSR_<mode>[31:28] = OxC (set N,Z; clear C,V)
Rd[31:0] = SPSR_<mode>[31:0]

ELECTRONICS

3-21

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0
Cond 0 00O O O]JAlS Rd Rn Rs 1001 Rm

[15:12][11:8][3:0] Operand Registers
[19:16] Destination Register

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate

0 = Multiply only
1 = Multiply and accumulate

[31:28] Condition Field

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd=Rm” Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set. The multiply-accumulate form gives Rd=Rm” Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2's complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits -
the low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits
of a multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
OXFFFFFFF6 0x0000001 OXFFFFFF38

3-22 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

If the Operands Are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
OXFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as Ox13FFFFFF38, so the least significant 32 bits are OXFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

ELECTRONICS 3-23

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + ml and MLA 1S + (m+1)I cycles to execute, where S and | are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs. Its possible values are
as follows

If bits [32:8] of the multiplier operand are all zero or all one.
If bits [32:16] of the multiplier operand are all zero or all one.
If bits [32:24] of the multiplier operand are all zero or all one.

A W DN B

In all other cases.

ASSEMBLER SYNTAX

MUL{condH{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2..
{S} Set condition codes if S present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

EXAMPLES

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4, Setting condition codes.

3-24 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL, MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 28 27 23222120 19 16 15 12 11 8 7 4 3 0
Cond 00O0O01]JUJA]IS RdHi RdLo Rs 1001 Rm

[11:8][3:0] Operand Registers
[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned
1 = Signed

[31:28] Condition Field

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the
result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower 32 bits of the 64 bit
number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32
bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signed 64 bit result.

ELECTRONICS 3-25

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

OPERAND RESTRICTIONS

R15 must not be used as an operand or as a destination register.
RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)l and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed INSTRUCTIONS SMULL, SMLAL:
If bits [31:8] of the multiplier operand are all zero or all one.
If bits [31:16] of the multiplier operand are all zero or all one.
If bits [31:24] of the multiplier operand are all zero or all one.
In all other cases.

For Unsigned Instructions UMULL, UMLAL:
If bits [31:8] of the multiplier operand are all zero.
If bits [31:16] of the multiplier operand are all zero.
If bits [31:24] of the multiplier operand are all zero.
In all other cases.

S and | are defined as sequential (S-cycle) and internal (I-cycle), respectively.

3-26 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose
UMULL{cond{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32x32=64
UMLAL{condH{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32x32+64=64
SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32x32=64
SMLAL{cond{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32x32+64=64

where:
{cond} Two-character condition mnemonic. See Table 3-2.
{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

EXAMPLES

UMULL R1,R4,R2,R3 ; R4,R1:=R2*R3
UMLALS R1,R5R2,R3 ; R5,R1:=R2*R3+R5,R1 also setting condition codes

ELECTRONICS 3-27

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11

Cond

01

P

U

BwW]L Rn Rd

Offset

[15:12] Source/Destination Registers
[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value
1 = Offset is an register value

[11:0] Offset
11 0

Immediate

[11:0] Unsigned 12-bit immediate offset
11 4 3 0

Shift Rm

[3:0] Offset register [11:4] Shift applied to Rm
[31:28] Condition Field

Figure 3-14. Single Data Transfer Instructions

3-28

ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the least significant 8 bits of the destination register, and the remaining bits of the register are filled with
zeros. Please see Figure 2-2.

A byte store (STRB) repeats the least significant 8 bits of the source register four times across data bus outputs
31 through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ELECTRONICS 3-29

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

memory register
A > A
A+3 24 24
B »| B
A+2 16 16
C »(C
A+1 8 8
D »| D
A 0 0

LDR from word aligned address

memory register
A A
A+3 24 24
B B
A+2 16 16
C C
A+1 8 8
D D
A 0 0

LDR from address offset by 2

Figure 3-15. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the least significant 8 bits of the destination register and the remaining bits of the register are filled with
zeros. Please see Figure 2-1.

A byte store (STRB) repeats the least significant 8 bits of the source register four times across data bus outputs
31 through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of O or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

3-30 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.
Example:

LDR RO,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 11 and LDR PC take 2S + 2N +1I incremental cycles, where S,N and |
are defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

ELECTRONICS 3-31

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

ASSEMBLER SYNTAX

<LDR|STR>{cond{BHT} Rd,<Address>

where:

LDR
STR
{cond}
{B}
{1}

Rd
Rn and Rm

<Address>can be:

1

<shift>

{}

Load from memory into a register

Store from a register into memory

Two-character condition mnemonic. See Table 3-2.

If B is present then byte transfer, otherwise word transfer

If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

An expression evaluating to a valid register number.

Expressions evaluating to a register number. If Rn is R15 then the assembler will
subtract 8 from

the offset value to allow for ARM7TDMI pipelining. In this case base write-back should
not be specified.

An expression which generates an address:

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

A pre-indexed addressing specification:
[RN] offset of zero
[Rn,<#expression>]{!}
[Rn,{+/-}Rm{,<shift>}|{"}

offset of <expression> bytes
offset of +/- contents of index register, shifted
by <shift>

A post-indexed addressing specification:
[Rn],<#expression>
[Rn],{+/-}Rm{,<shift>}

offset of <expression> bytes
offset of +/- contents of index register, shifted as
by <shift>.

General shift operation (see data processing instructions) but you cannot specify the shift
amount by a register.

Writes back the base register (set the W bit) if! is present.

3-32

ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

EXAMPLES

STR

STR
LDR
LDR
LDREQB

STR
PLACE

R1,[R2,R4]!

R1,[R2],R4
R1,[R2,#16]
R1,[R2,R3,LSL#2]
R1,[R6,#5]

R1,PLACE

Store R1 at R2+R4 (both of which are registers)

and write back address to R2.

Store R1 at R2 and write back R2+R4 to R2.

Load R1 from contents of R2+16, but don't write back.
Load R1 from contents of R2+R3*4.

Conditionally load byte at R6+5 into

R1 bits 0 to 7, filling bits 8 to 31 with zeros.

Generate PC relative offset to address PLACE.

ELECTRONICS

3-33

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

HALFWORD AND SIGNED BYTE DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes. The memory
address used in the transfer is calculated by adding an offset to or subtracting an offset from a base register. The
result of this calculation may be written back into the base register if auto-indexing is required.

31 28 27 2524 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
Cond 000 PJujojwjL Rn Rd 0000 1|S|H]1 Rm

[3:0] Offset Register

[6][5] SH

0 0 = SWP instruction

0 1 = Unsigned halfword
1 1 =Signed byte

1 1 = Signed halfword

[15:12] Source/Destination Register
[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

Figure 3-16. Half-word and Signed Byte Data Transfer with Register Offset

3-34 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

31 28 27 2524 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
Cond 000 PJUl1|W]L Rn Rd Offset 11S|H]1 Offset

[3:0] Immediate Offset (Low Nibble)

[6][5] SH

0 0 = SWP instruction

0 1 = Unsigned halfword
1 1 =Signed byte

1 1 = Signed halfword

[11:8] Immediate Offset (High Nibble)
[15:12] Source/Destination Register
[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer

1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

Figure 3-17. Half-word and Signed Byte Data Transfer with Immediate Offset and Auto-Indexing

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to O of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is selected.

ELECTRONICS 3-35

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

HALF-WORD LOAD AND STORES
Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM7TDMI register and memaory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALF-WORD LOADS

The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to O of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALF-WORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A half-word load (LDRSH or LDRH) expects data on data bus inputs 15 through to O if the supplied address is on
a word boundary and on data bus inputs 31 through to 16 if it is a half-word boundary, (A[1]=1).The supplied
address should always be on a half-word boundary. If bit O of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected half-word is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the half-word.

A half-word store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate half-word subsystem to store the data.
Note that the address must be half-word aligned, if bit O of the address is HIGH this will cause unpredictable
behavior.

3-36 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A half-word load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to O if it is a half-word boundary, (A[1]=1). The supplied
address should always be on a half-word boundary. If bit O of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected half-word is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the half-word.

A half-word store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate half-word subsystem to store the data.
Note that the address must be half-word aligned, if bit O of the address is HIGH this will cause unpredictable
behavior.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I. LDR(H,SH,SB) PC take 2S + 2N + 1l incremental cycles.
S,N and | are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively. STRH
instructions take 2N incremental cycles to execute.

ELECTRONICS 3-37

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2..
H Transfer half-word quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended half-word (Only valid for LDR)
Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[RN] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[RN],{+/-}Rm offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the

assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this
case base write-back should not be specified.

{1 Writes back the base register (set the W bit) if ! is present.

3-38 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

EXAMPLES
LDRH R1,[R2,-R3]! ; Load R1 from the contents of the half-word address
; contained in R2-R3 (both of which are registers)
; and write back address to R2
STRH R3,[R4,#14] ; Store the half-word in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte
; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[RO] ; Conditionally load R11 with the sign extended contents
; of the half-word address contained in RO.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC #(FRED-HERE-8)]; Store the half-word in R5 at address FRED
FRED

ELECTRONICS 3-39

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit O of the register field will cause RO to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 28 27 2524 2322212019 16 15 0
Cond 100 PJUIS|W]L Rn Register list

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

Figure 3-18. Block Data Transfer Instructions

3-40 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified
base is required (W=1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value
of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been
overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

0x100C 0x100C
Rn —» 0x1000 R1 0x1000
OXOFF4 OXOFF4
1 2
0x100C Rn —» 0x100C
R7
R5 R5
R1 0x1000 R1 0x1000
OXOFF4 OXOFF4
3 4

Figure 3-19. Post-Increment Addressing

ELECTRONICS 3-41

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

0x100C 0x100C
R1
Rn —» 0x1000 0x1000
OxOFF4 OxOFF4
1 2
0x100C Rn —» R7 0x100C
R5 R5
R1 R1
0x1000 0x1000
OxOFF4 OxOFF4
3 4

Figure 3-20. Pre-Increment Addressing

0x100C 0x100C
Rn —» 0x1000 0x1000
R1
OxOFF4 OxOFF4
1 2
0x100C 0x100C
0x1000 R7 0x1000
R5 R5
R1 R1
OxOFF4 Rn —» OxOFF4
3 4

Figure 3-21. Post-Decrement Addressing

3-42 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

0x100C 0x100C
Rn —» 0x1000 0x1000
OxOFF4 R1 OxOFF4
1 2
0x100C 0x100C
0x1000 0x1000
R7
R5 R5
R1 OxOFF4 Rn —» R1 OxOFF4
3 4

Figure 3-22. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)
If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV RO, RO after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

ELECTRONICS 3-43

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Abort during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1l and LDM PC takes (n+1)S + 2N + 1l incremental cycles, where S,N
and | are defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

3-44 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{"}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{1 If present requests write-back (W=1), otherwise W=0.

{"} If present set S bit to load the CPSR along with the PC, or force transfer of user bank

when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit
Pre-Increment Load LDMED LDMIB 1 1 1
Post-Increment Load LDMFD LDMIA 1 0 1
Pre-Decrement Load LDMEA LDMDB 1 1 0
Post-Decrement Load LDMFA LDMDA 1 0 0
Pre-Increment Store STMFA STMIB 0 1 1
Post-Increment Store STMEA STMIA 0 0 1
Pre-Decrement Store STMFD STMDB 0 1 0
Post-Decrement Store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After,
Increment Before, Decrement After, Decrement Before.

ELECTRONICS 3-45

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

EXAMPLES

LDMFD SP!{RO,R1,R2}
STMIA RO,{RO-R15}
LDMFD SP!{R15}
LDMFD SP!{R15}"

STMFD R13,{R0O-R14}*

Unstack 3 registers.

Save all registers.

R15 - (SP), CPSR unchanged.
R15 - (SP), CPSR <- SPSR_mode
(allowed only in privileged modes).
Save user mode regs on stack
(allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling

routine:

STMED SP!,{R0-R3,R14}

BL somewhere
LDMED SP! {R0-R3,R15}

Save RO to R3 to use as workspace
and R14 for returning.

This nested call will overwrite R14
Restore workspace and return.

3-46

ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

SINGLE DATA SWAP (SWP)

31 28 27 2322 2120 19 16 15 12 11 8 7 4 3 0
Cond 00010 B] 00 Rn Rd 0000 1001 Rm

[3:0] Source Register
[15:12] Destination Register
[19:16] Base Register

[22] Byte/Word Bit

0 = Swap word quantity

1 = Swap byte quantity

[31:28] Condition Field

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are “locked” together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

ELECTRONICS 3-47

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and | are defined as squential
(S-cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.
{B} If B is present then byte transfer, otherwise word transfer
Rd,Rm,Rn Expressions evaluating to valid register numbers
EXAMPLES
SWP RO,R1,[R2] ; Load RO with the word addressed by R2, and
; store R1 at R2.
SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.
SWPEQ RO,R0,[R1] ; Conditionally swap the contents of the

; word addressed by R1 with RO.

3-48 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

31 28 27 24 23 0

Cond 1111 Comment Field (Ignored by Processor)

[31:28] Condition Field

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed
value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected operating system may be
constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.
COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

ELECTRONICS 3-49

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

ASSEMBLER SYNTAX

SWHcond} <expression>

{cond} Two character condition mnemonic, Table 3-2.
<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).
EXAMPLES

SWiI ReadC ; Get next character from read stream.

SWI Writel+"k” ; Output a "k" to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; Addresses of supervisor routines
DCD ZeroRtn

DCD ReadCRtn

DCD WritelRtn

Zero EQU 0O

ReadC EQU 256
Writel EQU 512
Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7. Assumes R13_svc points to a suitable stack
STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR RO,[R14,#-4] ; Get SWI instruction.
BIC RO0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,RO,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WritelRtn ; Enter with character in RO bits 0-7.
LDMFD R13{R0-R2,R15}* ; Restore workspace and return,

; restoring processor mode and flags.

3-50 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The S3F443FX, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the S3F443FX. These
coprocessor instructions can be emulated by the undefined trap handler. Even though external coprocessor can
not be connected to the S3F443FX, the coprocessor instructions are still described here in full for completeness.
(Remember that any external coprocessor described in this section is a software emulation.)

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0
Cond 1110 CP Opc CRn CRd Cp# Cp 0 CRm

[3:0] Coprocessor operand register
[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register
[19:16] Coprocessor operand register
[23:20] Coprocessor operation code

[31:28] Condition Field

Figure 3-25. Coprocessor Data Operation Instruction

Only bit 4 and bits 24 to 31 The coprocessor fields are significant to ARM7TDMI. The remaining bits are used by
coprocessors. The above field names are used by convention, and particular coprocessors may redefine the use
of all fields except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to

15) for each coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the

CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

ELECTRONICS 3-51

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bl incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and | are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.
p# The unique number of the required coprocessor
<expression1l> Evaluated to a constant and placed in the CP Opc field
cd, cnand cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively
<expression2> Where present is evaluated to a constant and placed in the CP field
EXAMPLES
CDP p1,10,c1,c2,c3 ; Request coprocessor 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.
CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coprocessor 2 to do operation 5
. (type 2)

; on CR2 and CR3, and put the result in CR1.

3-52 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessor’s registers directly to
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

31 28 27 2524 23 22 21 20 19 16 15 12 11 8 7 0
Cond 110 PJUIN|W]L Rn CRd CP# Offset

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register
[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance
N=0 could select the transfer of a single register, and N=1 could select the transfer of all the registers for context
switching.

ELECTRONICS 3-53

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

ADDRESSING MODES

ARMT7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old
value of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of
the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.
INSTRUCTION CYCLE TIMES
Coprocessor data transfer instructions take (n-1)S + 2N + bl incremental cycles to execute, where:

The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N and | are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively.

3-54 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2..

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[RN] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
3 A post-indexed addressing specification:
[Rn],<#expression offset of <expression> bytes
{1 write back the base register (set the W bit) if! is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE
If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

EXAMPLES
LDC pl,c2table ; Load c2 of coprocessor 1 from address
; table, using a PC relative address.
STCEQL p2,c3,[R5,#24]! ; Conditionally store ¢3 of coprocessor 2

; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

ELECTRONICS 3-55

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0
Cond 1110 CPOpc|L CRn Rd CP# CP 1 CRm

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Number

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register
[20] Load/Store Bit

0 = Store to coprocessor

1 = Load from coprocessor

[21] Coprocessor Operation Mode

[31:28] Condition Field

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS
The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

3-56 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES
MRC instructions take 1S + (b+1)l +1C incremental cycles to execute, where S, | and C are defined as sequential

(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bl +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)
MCR Move from ARM7TDMI register to coprocessor (L=0)
{cond} Two character condition mnemonic. See Table 3-2
p# The unique number of the required coprocessor
<expression1l> Evaluated to a constant and placed in the CP Opc field
Rd An expression evaluating to a valid ARM7TDMI register number
cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively
<expression2> Where present is evaluated to a constant and placed in the CP field
EXAMPLES
MRC p2,5,R3,c5,c6 ; Request coprocessor 2 to perform operation 5

; on cb5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coprocessor 6 to perform operation O
; on R4 and place the result in c6.
MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coprocessor 3 to

; perform operation 9 (type 2) on c5 and
; €6, and transfer the result back to R3.

ELECTRONICS 3-57

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 2827 2524 5 4 3 0
Cond 011 XXXXXXXXXXXXXXXXXXXX 1 XXXX

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 11 + 1N cycles, where S, N and | are defined as squential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

3-58 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

INSTRUCTION SET EXAMPLES
The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient

code. None of these methods saves a great deal of execution time (although they may save some), mostly they
just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label

CMP Rm, #q

BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Testsign
RSBMI Rn,Rn#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,

CMP Rb,#5 ; Testvalue,

ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,

CMPNE Rc,#""-1 ; Range test

MOVLS Rc# ™ ; IF Rc<="" OR Rc=ASCII(127)
; THEN Rc:=""

ELECTRONICS 3-59

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide

routine follows.

MOV
Divl CMP
CMPCC
MOVCC
MOVCC
BCC
MOV
Div2 CMP
SUBCS
ADDCS
MOVS
MOVNE
BNE

Rent,#1
Rb,#0x80000000
Rb,Ra
Rb,Rb,ASL#1
Rcnt,Rent, ASL#1
Divl

Rc,#0

Ra,Rb

Ra,Ra,Rb
Rc,Rc,Rcnt
Rcnt,Rent,LSR#1
Rb,Rb,LSR#1
Div2

Overflow Eetection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL
TEQ
BNE

2. Overflow in signed multiply with a 32-bit result

SMULL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,#0
overflow

Rd,Rt,Rm,Rn
Rt,Rd ASR#31
overflow

Enter with numbers in Ra and Rb.
Bit to control the division.
Move Rb until greater than Ra.

Test for possible subtraction.
Subtract if ok,

Put relevant bit into result
Shift control bit

Halve unless finished.

Divide result in Rc, remainder in Ra.

3 to 6 cycles
+1 cycle and a register

3 to 6 cycles
+1 cycle and a register

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,#0
overflow

4to 7 cycles
+1 cycle and a register

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL
TEQ
BNE

Rd,Rt,Rm,Rn
Rt,Rd, ASR#31

overflow

4to 7 cycles
+1 cycle and a register

3-60

ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL RI,Rh,RmM,Rn

ADDS RI,RI,Ral
ADC Rh,Rh,Ra2
BCS overflow

3 to 6 cycles

Lower accumulate
Upper accumulate

1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL RI,Rh,RmM,Rn

ADDS RI,RI,Ral
ADC Rh,Rh,Ra2
BVS overflow

does not occur in such calculations.

3 to 6 cycles

Lower accumulate
Upper accumulate

1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2*32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

TST Rb,Rb,LSR#1
MOVS Rc,Ra,RRX

ADC Rb,Rb,Rb

EOR Rc,Rc,Ra,LSL#12
EOR Ra,Rc,Rc,LSR#20

Enter with seed in Ra (32 bits),

Rb (1 bit in Rb Isb), uses Rc.

Top bit into carry

33 bit rotate right

Carry into Isb of Rb

(involved!)

(similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2”n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2*n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2”n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

ELECTRONICS

3-61

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1. If C even, say C = 2"n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2.1fCMOD 4 =1, say C = 2"n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. 1f C MOD 4 = 3, say C = 2"n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 . Multiply by 3
RSB Rb,Ra,Rb,LSL#2 . Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 - Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 . Multiply by 9
ADD Rb,Rb,Rb,LSL#2 . Multiply by 5*9 = 45

3-62 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

BIC
LDMIA
AND
MOVS
MOVNE
RSBNE
ORRNE

Rb,Ra,#3
Rb,{Rd,Rc}
Rb,Ra,#3
Rb,Rb,LSL#3
Rd,Rd,LSR Rb
Rb,Rb,#32
Rd,Rd,Rc,LSL Rb

Enter with address in Ra (32 bits) uses

Rb, Rc result in Rd. Note d must be less than c e.g. 0,1
Get word aligned address

Get 64 bits containing answer

Correction factor in bytes

...now in bits and test if aligned

Produce bottom of result word (if not aligned)

Get other shift amount

Combine two halves to get result

ELECTRONICS

3-63

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

NOTES

3-64 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the
ARM7TDMI core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format

instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1/]0|l0]O0 Op Offset5 Rs Rd Move Shifted register

2 10(0]0|2]1]|1 |Op| Rnloffset3 Rs Rd Add/subtract

31001 Op Rd Offset8 Move/compare/add/
subtract immediate

4 |0j1l0]0|O0]O Op Rs Rd ALU operations

5]1]0(12]0(0]0]|1 Op |H1|H2 Rs/Hs Rd/Hd Hi register operations
/branch exchange

6 |0(1|]0f[0]1 Rd Word8 PC-relative load

710(2]1]0(2|L|BJ|O Ro Rb Rd Load/store with register
offset

8 1010|212 |H|S]|1 Ro Rb Rd Load/store sign-extended
byte/halfword

9 |]0|1|1|B|L Offset5 Rb Rd Load/store with immediate
offset

mwo(1(0f(0|0|L Offset5 Rb Rd Load/store halfword

11100 |1|L Rd Word8 SP-relative load/store

12(1(0|1|0|(SP Rd Word8 Load address

13|1|0|1|]1|]0|]0fO0O]|]O]|S SWord7 Add offset to stack pointer

141|101)1fL|J1|O0]|R Rlist Push/pop register

15|11]0|0]|L Rb Rlist Multiple load/store

611|001 Cond Softset8 Conditional branch

7|11 0|1|21]|1f21]1 Value8 Software interrupt

(1(1(1|0|0O Offsetll Unconditional branch

191|112 |1|H Offset Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Figure 3-29. THUMB Instruction Set Formats

ELECTRONICS 3-65

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction

please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register Hi-Register Condition
Operand Operand Codes Set
ADC Add with Carry Y - Y
ADD Add Y - Y@
AND AND Y - Y
ASR Arithmetic Shift Right Y - Y
B Unconditional branch Y - -
Bxx Conditional branch Y - -
BIC Bit Clear Y - Y
BL Branch and Link - - -
BX Branch and Exchange Y Y -
CMN Compare Negative Y - Y
CMP Compare Y Y Y
EOR EOR Y - Y
LDMIA Load multiple Y - -
LDR Load word Y - -
LDRB Load byte Y - -
LDRH Load half-word Y - -
LSL Logical Shift Left Y - Y
LDSB Load sign-extended byte Y - -
LDSH Load sign-extended half-word Y - -
LSR Logical Shift Right Y - Y
MOV Move register Y Y Y @
MUL Multiply Y - Y
MVN Move Negative register Y - Y
3-66 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register Hi-Register Condition
Operand Operand Codes Set
NEG Negate Y - Y
ORR OR Y - Y
POP Pop register Y - -
PUSH Push register Y - -
ROR Rotate Right Y - Y
SBC Subtract with Carry Y - Y
STMIA Store Multiple Y - -
STR Store word Y - -
STRB Store byte Y - -
STRH Store half-word Y - -
SWI Software Interrupt - - -
SUB Subtract Y - Y
TST Test bits Y - Y
NOTES:
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.
ELECTRONICS 3-67

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

FORMAT 1: MOVE SHIFTED REGISTER

15 14 13 12

11

10 6 5

Offsetb

Rs Rd

[2:0] Destination Register
[5:3] Source Register
[10:6] Immediate Vale
[12:11] Opcode

0=LSL

1=LSR
2=ASR

OPERATION

Figure 3-30. Format 1

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in

Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OoP THUMB Assembler ARM Equipment Action

00 LSL Rd, Rs, #0ffset5 MOVS Rd, Rs, LSL #Offset5 | Shift Rs left by a 5-bit immediate
value and store the result in Rd.

01 LSR Rd, Rs, #0ffset5 MOVS Rd, Rs, LSR #Offset5 | Perform logical shift right on Rs by
a 5-bit immediate value and store
the result in Rd.

10 ASR Rd, Rs, #0ffset5 MOVS Rd, Rs, ASR Perform arithmetic shift right on Rs

#0ffset5 by a 5-bit immediate value and

store the result in Rd.

3-68

ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.

: Set condition codes on the result.

ELECTRONICS 3-69

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

FORMAT 2: ADD/SUBTRACT

15

14

13 12 11 10

9 8 6

0 1 1 1

Op Rn/Offset3

Rs Rd

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Vale

[9] Opcode
0=ADD
1=SUB

[10] Immediate Flag
0 = Register operand
1 = Immediate oerand

OPERATION

Figure 3-31. Format 2

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OoP THUMB Assembler ARM Equipment Action

0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 ADD Rd, Rs, #0ffset3 | ADDS Rd, Rs, #Offset3 | Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 SUB Rd, Rs, #0ffset3 | SUBS Rd, Rs, #Offset3 | Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

3-70

ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD RO, R3, R4
SUB R6, R2, #6

: RO := R3 + R4 and set condition codes on the result.
;. R6 := R2 - 6 and set condition codes.

ELECTRONICS 3-71

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 14 13 12 11 10 8 7 0
0 0 0 Op Rd Offset8

[7:0] Inmediate Vale
[10:8] Source/Destination Register

[12:11] Opcode
0 = MOV
1=CMP
2=ADD
3=SUB

Figure 3-32. Format 3

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OoP THUMB Assembler ARM Equipment Action

00 MOV Rd, #Offset8 MOVS Rd, #0ffset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #0ffset8 CMP Rd, #0ffset8 Compare contents of Rd with 8-bit
immediate value.

10 ADD Rd, #0ffset8 ADDS Rd, Rd, #Offset8 | Add 8-bit immediate value to contents of
Rd and place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 [Subtract 8-bit immediate value from

contents of Rd and place the result in Rd.

3-72 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

MOV
CMP
ADD
SUB

RO, #128
R2, #62

R1, #255
R6, #145

RO := 128 and set condition codes

Set condition codes on R2 - 62

R1 := R1 + 255 and set condition codes
R6 := R6 - 145 and set condition codes

ELECTRONICS

3-73

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

FORMAT 4: ALU OPERATIONS

15 14 13 12 11 10 9 6 5 3 2 0
0 0 0 0 0 0 Op Rs Rd

[2:0] Source/Destination Register
[5:3] Source Register 2

[9:6] Opcode

Figure 3-33. Format 4

OPERATION
The following instructions perform ALU operations on a Lo register pair.

NOTE
All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 4 Instructions

OoP THUMB Assembler ARM Equipment Action
0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs
0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs
0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd :=Rd << Rs
0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd :=Rd >>Rs
0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs
0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit
0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd - Rs - NOT C-bit
0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs
1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs
1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd=-Rs
1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs
1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs
1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd :=Rd OR Rs
1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd :=Rs*Rd
1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs
1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

3-74 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
EOR R3, R4 R3 := R3 EOR R4 and set condition codes
ROR R1, RO Rotate Right R1 by the value in RO, store
the result in R1 and set condition codes
NEG R5, R3 Subtract the contents of R3 from zero,
Store the result in R5. Set condition codes ie R5 = - R3
CMP R2, R6 Set the condition codes on the result of R2 - R6
MUL RO, R7 RO := R7 * RO and set condition codes
ELECTRONICS 3-75

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15

14

13

12 11

10

Op H1 | H2 Rs/Hs

Rd/Hd

[2:0] Destination Register
[5:3] Source Register
[6] Hi Operand Flag 2
[7] Hi Operand Flag 1

[9:8] Opcode

OPERATION

Figure 3-34. Format 5

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op =10 (MOV) is undefined, and should not

be used.
Table 3-12. Summary of Format 5 Instructions
Op H1 H2 THUMB assembler ARM equivalent Action
00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15to a
register in the range 0-7.
00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a
register in the range 8-15.
00 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15
01 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7
with a register in the range 8-15. Set
the condition code flags on the result.
01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15
with a register in the range 0-7. Set
the condition code flags on the result.
3-76 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

Table 3-12. Summary of Format 5 Instructions (Continued)

Op H1 H2 THUMB assembler

ARM equivalent

Action

01 1 1 CMP Hd, Hs

CMP Hd, Hs

Compare two registers in the range
8-15. Set the condition code flags on
the result.

10 0 1 MOV Rd, Hs

MOV Rd, Hs

Move a value from a register in the
range 8-15 to a register in the range O-
7.

10 1 0 MOV Hd, Rs

MOV Hd, Rs

Move a value from a register in the
range 0-7 to a register in the range
8-15.

10 1 1 MOV Hd, Hs

MOV Hd, Hs

Move a value between two registers in
the range 8-15.

11 0 0 BX Rs

BX Rs

Perform branch (plus optional state
change) to address in a register in the
range 0-7.

11 0 1 BX Hs

BX Hs

Perform branch (plus optional state
change) to address in a register in the
range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit O of the address determines the processor state on entry to the routine:

Bit0=0 Causes the processor to enter ARM state.
Bit0=1 Causes the processor to enter THUMB state.
NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

ELECTRONICS

3-77

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

EXAMPLES

Hi-Register Operations

ADD PC, R5 ;. PC := PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

: Switch from THUMB to ARM state.

ADR R1,outof THUMB ; Load address of outof THUMB into R1.
MOV R11,R1
BX R11 ;. Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
;. ARM or THUMB state is entered, ie. ARM state here.

ALIGN
CODE32

outofTHUMB ; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit O cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

3-78 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

FORMAT 6: PC-RELATIVE LOAD

15 14 13 12 11 10 8 7 0
0 0 0 0 0 Rd Word 8

[7:0] Immediate Value

[10:8] Destination Register

Figure 3-35. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #lmm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the PC. Load the
word from the resulting address into Rd.

NOTE: The value specified by #lmm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #lmm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than the address
of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

ELECTRONICS 3-79

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
;211 as the Word8 value.

3-80 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

15 14

13

12

11

10 9 8 6 5

Rd

[2:0] Source/Destination Register
[5:3] Base Register
[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

Figure 3-36. Format 7

ELECTRONICS

3-81

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-14. Summary of Format 7 Instructions

THUMB assembler

ARM equivalent Action

0 |STRRd, [Rb, Ro]

STR Rd, [Rb, RO] Pre-indexed word store:

Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the contents of Rd at the
address.

0 1 |STRBRd, [Rb, Ro]

STRB Rd, [RDb, RO] Pre-indexed byte store:

Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the byte value in Rd at the
resulting address.

1 0 |LDRRd, [Rb, Ro]

LDR Rd, [Rb, RO] Pre-indexed word load:

Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the contents of the address into
Rd.

1 1 LDRB Rd, [Rb, Ro]

LDRB Rd, [Rb, RO] Pre-indexed byte load:

Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the byte value at the resulting
address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
STR R3, [R2,R6]

LDRB R2, [RO,R7]

; Store word in R3 at the address

; formed by adding R6 to R2.

; Load into R2 the byte found at

; the address formed by adding R7 to RO.

3-82

ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALF-WORD

15 14 13 12 11

10

Rb

Rd

[2:0] Destination Register
[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag

0 = Operand not sing-extended

1 = Operand sing-extended

[11] H Flag

OPERATION

Figure 3-37. Format 8

These instructions load optionally sign-extended bytes or half-words, and store half-words. The THUMB

assembler syntax is shown below.

Table 3-15. Summary of format 8 instructions

THUMB assembler

ARM equivalent Action

0 |STRHRd, [Rb, Ro]

Store half-word:

Add Ro to base address in Rb. Store bits
0-15 of Rd at the resulting address.

STRH Rd, [Rb, Ro]

LDRH Rd, [Rb, Ro]

Load half-word:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to 0.

LDRH Rd, [Rb, Ro]

LDSB Rd, [Rb, Ro]

LDRSB Rd, [Rb, RO] Load sign-extended byte:

Add Ro to base address in Rb. Load bits
0-7 of Rd from the resulting address, and
set bits 8-31 of Rd to bit 7.

LDSH Rd, [Rb, Ro]

LDRSH Rd, [Rb, Ro] Load sign-extended half-word:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to bit 15.

ELECTRONICS

3-83

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
STRH R4, [R3, RO] ; Store the lower 16 bits of R4 at the
; address formed by adding RO to R3.
LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.
LDSH R3, [R4, R2] ; Load into R3 the sign extended half-word

; found at the address formed by adding R2 to R4.

3-84 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

15 14 13 12 11

10 6

Offsetb

Rb Rd

[2:0] Source/Destination Register

[5:3] Base Register
[10:6] Offset Register

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flad
0 = Transfer word quantity
1 = Transfer byte quantity

OPERATION

Figure 3-38. Format 9

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-16.

Table 3-16. Summary of Format 9 Instructions

THUMB assembler

ARM equivalent

Action

0 |STRRd, [Rb, #imm]

STR Rd, [Rb, #Imm]

Calculate the target address by adding
together the value in Rb and Imm. Store
the contents of Rd at the address.

LDR Rd, [Rb, #Imm]

LDR Rd, [Rb, #Imm]

Calculate the source address by adding
together the value in Rb and Imm. Load
Rd from the address.

STRB Rd, [Rb, #Imm]

STRB Rd, [Rb, #Imm]

Calculate the target address by adding
together the value in Rb and Imm. Store
the byte value in Rd at the address.

LDRB Rd, [Rb, #lmm]

LDRB Rd, [Rb, #lmm]

Calculate source address by adding
together the value in Rb and Imm. Load
the byte value at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #lmm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #lmm >> 2 in the Offset5 field.

ELECTRONICS

3-85

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R2, [R5,#116] ; Load into R2 the word found at the

; address formed by adding 116 to R5.

; Note that the THUMB opcode will

; contain 29 as the Offset5 value.
STRB R1, [RO,#13] ; Store the lower 8 bits of R1 at the

; address formed by adding 13 to RO.

; Note that the THUMB opcode will

; contain 13 as the Offset5 value.

3-86 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

FORMAT 10: LOAD/STORE HALF-WORD

15 14 13 12

11

10

Offsetb

Rb Rd

[2:0] Source/Destination Register
[5:3] Base Register
[10:6] Immediate Value

[11] Load/Store Flag

0 = Store to memory

1 = Load from memory

OPERATION

Figure 3-39. Format 10

These instructions transfer half-word values between a Lo register and memory. Addresses are pre-indexed,
using a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Half-word Data Transfer Instructions

THUMB assembler

ARM equivalent

Action

STRH Rd, [Rb, #Imm]

STRH Rd, [Rb, #Imm]

Add #Ilmm to base address in Rb and store
bits O - 15 of Rd at the resulting address.

1 | LDRH Rd, [Rb, #Imm]

LDRH Rd, [Rb, #Imm]

Add #lmm to base address in Rb. Load bits
0-15 from the resulting address into Rd and
set bits 16-31 to zero.

NOTE: #Imm is a full 6-bit address but must be half-word-aligned (ie with bit O set to 0) since the assembler places
#lmm >> 1 in the Offset5 field.

ELECTRONICS

3-87

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
;28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the half-word found at the address formed by
; adding 4 to R7. Note that the THUMB opcode will contain
;2 as the Offset5 value.

3-88 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

FORMAT 11: SP-RELATIVE LOAD/STORE

15 14 13 12 11 10 8 7 0
1 0 0 1 L Rd Word 8

[7:0] Immediate Value
[10:8] Destination Register
[11] Load/Store Bit

0 = Store to memory
1 = Load from memory

Figure 3-40. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store.The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

THUMB assembler ARM equivalent Action

STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Store the contents of Rd at the
resulting address.

1 LDR Rd, [SP, #imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Load the word from the resulting
address into Rd.

NOTE: The offset supplied in #lmm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #lmm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
;123 as the Word8 value.

ELECTRONICS 3-89

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

FORMAT 12: LOAD ADDRESS

15 14 13 12

11

10 8 7

SP

Rd

Word 8

[7:0] 8-bit Unsigned Constant

[10:8] Destination Register

[11] Source
0=PC
1=SP

OPERATION

Figure 3-41. Format 12

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

THUMB assembler

ARM equivalent

Action

ADD Rd, PC, #lmm

ADD Rd, R15, #lmm

Add #lmm to the current value of the
program counter (PC) and load the result
into Rd.

1 ADD Rd, SP, #lmm

ADD Rd, R13, #lmm

Add #lmm to the current value of the stack
pointer (SP) and load the result into Rd.

NOTE: The value specified by #lmm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #lmm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to O.

The CPSR condition codes are unaffected by these instructions.

3-90

ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R2, PC, #572 ; R2:=PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.
ADD R6, SP, #212 ; R6:=SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

ELECTRONICS 3-91

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

FORMAT 13: ADD OFFSET TO STACK POINTER

15 14 13 12 11 10 9 8 7 6 0
1 0 1 1 0 0 0 0 S SWord 7

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

Figure 3-42. Format 13

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instruction

L THUMB assembler ARM equivalent Action
0 ADD SP, #lmm ADD R13, R13, #lmm Add #Imm to the stack pointer (SP).
1 ADD SP, # -Imm SUB R13, R13, #imm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #lmm can be up to -/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #lmm to an 8-bit sign + magnitude number before placing it in field SWord7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 ; SP (R13) := SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
;26 as the Word7 value and S=1.

3-92 ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

FORMAT 14: PUSH/POP REGISTERS

15 14 13 12 11

10

Rlist

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

OPERATION

Figure 3-43. Format 14

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be Full Descending.

Table 3-21. PUSH and POP Instructions

THUMB assembler ARM equivalent Action
0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto
the stack. Update the stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13|, Push the Link Register and the registers

{ Rlist, R14 } specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP {Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the
registers specified by Rlist. Update the
stack pointer.

1 1 POP {Rlist, PC } LDMIA R13!, {Rlist, R15} | Pop values off the stack and load into
the registers specified by Rlist. Pop the
PC off the stack. Update the stack
pointer.

ELECTRONICS

3-93

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

PUSH {RO-R4,LR} ; Store RO,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.
POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

3-94 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

FORMAT 15: MULTIPLE LOAD/STORE

15 14 13 12 11 10 8 7 0
1 1 0 0 L Rb Rlist

[7:0] Register List
[10:8] Base Register
[11] Load/Store Bit

0 = Store to memory
1 = Load from memory

Figure 3-44. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

THUMB assembler ARM equivalent Action

STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STMIA RO!, {R3-R7} ; Store the contents of registers R3-R7

starting at the address specified in

RO, incrementing the addresses for each word.
Write back the updated value of RO.

ELECTRONICS 3-95

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

FORMAT 16: CONDITIONAL BRANCH

15 14 13 12 11 8 7 0
1 1 0 1 Cond SOffset 8

[7:0] 8-bit Signed Immediate

[11:8] Condition

Figure 3-45. Format 16

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 3-23. The Conditional Branch Instructions

L THUMB assembler ARM equivalent Action
0000 | BEQ label BEQ label Branch if Z set (equal)
0001 | BNE label BNE label Branch if Z clear (not equal)
0010 |BCS label BCS label Branch if C set (unsigned higher or same)
0011 | BCC label BCC label Branch if C clear (unsigned lower)
0100 | BMI label BMI label Branch if N set (negative)
0101 | BPL label BPL label Branch if N clear (positive or zero)
0110 | BVS label BVS label Branch if V set (overflow)
0111 |BVC label BVC label Branch if V clear (no overflow)
1000 | BHI label BHI label Branch if C set and Z clear (unsigned higher)
1001 | BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

3-96 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

Table 3-23. The Conditional Branch Instructions (Continued)

L THUMB assembler ARM equivalent Action

1001 | BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

1010 | BGE label BGE label Branch if N set and V set, or N clear and V clear (greater
or equal)

1011 | BLT label BLT label Branch if N set and V clear, or N clear and V set (less
than)

1100 | BGT label BGT label Branch if Z clear, and either N set and V set or N clear
and V clear (greater than)

1101 | BLE label BLE label Branch if Z set, or N set and V clear, or N clear and V set
(less than or equal)

NOTES:

1. While label specifies a full 9-bit two's complement address, this must always be half-word-aligned (ie with bit O set to 0)
since the assembler actually places label >> 1 in field SOffset8.

2. Cond = 1110 is undefined, and should not be used.
Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES
CMP RO, #45 ; Branch to over-if RO > 45.
BGT over ; Note that the THUMB opcode will contain
: ; the number of half-words to offset.

over ; Must be half-word aligned.

ELECTRONICS 3-97

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

FORMAT 17: SOFTWARE INTERRUPT

15 14 13 12 11 10 9 8 7
1 1 0 1 1 1 1 1 Value 8
[7:0] Comment Field
Figure 3-46. Format 17
OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB assembler

ARM equivalent

Action

SWI Value 8

SWI Value 8

Perform Software Interrupt:

SVC mode.

Move the address of the next instruction into LR,
move CPSR to SPSR, load the SWI vector address
(Ox8) into the PC. Switch to ARM state and enter

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

SWwi 18

Take the software interrupt exception.
Enter Supervisor mode with 18 as the
requested SWI number.

3-98

ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

FORMAT 18: UNCONDITIONAL BRANCH

15 14 13 12 11 10 0
1 1 1 0 0 Offsetll

[10:0] Immediate Value

Figure 3-47. Format 18

OPERATION
This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset

must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

Table 3-25. Summary of Branch Instruction

THUMB assembler ARM equivalent Action

B label BAL label (half-word offset) | Branch PC relative +/- Offsetll << 1, where label is
PC +/- 2048 bytes.

NOTE: The address specified by label is a full 12-bit two's complement address,
but must always be half-word aligned (ie bit O set to 0), since the assembler places label >> 1 in the Offset11 field.

EXAMPLES
here B here ; Branch onto itself. Assembles to OXE7FE.
; (Note effect of PC offset).
B jimmy ; Branch to 'jimmy".
: ; Note that the THUMB opcode will contain the number of
: ; half-words to offset.
jimmy : ; Must be half-word aligned.

ELECTRONICS 3-99

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

FORMAT 19: LONG BRANCH WITH LINK

15 14 13 12 11 10 0
1 1 1 1 H Offset

[10:0] Long Branch and Link Offset High/Low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

Figure 3-48. Format 19

OPERATION
This format specifies a long branch with link.

The assembler splits the 23-bit two's complement half-word offset specifed by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit O of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

3-100 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

THUMB assembler ARM equivalent Action

BL label none LR := PC + OffsetHigh << 12

temp := next instruction address
PC = LR + OffsetLow << 1
LR :=temp |1

EXAMPLES

BL faraway ; Unconditionally Branch to ‘faraway’
next : ; and place following instruction
; address, ie "next", in R14,the Link
; register and set bit O of LR high.
; Note that the THUMB opcodes will
contain the number of half-words to offset.
faraway : ; Must be Half-word aligned.

ELECTRONICS

3-101

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.
MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2*n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2*n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2*n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2"n (-2, -4, -8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2”n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SuUB Ra, Rb, Rt

Multiplication by any C = {2"n+1, 2"n-1, -2"n or -2"n-1} * 2"n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) 7 (2..5)
LSL Ra, Ra, #n ;. MOV Ra, Ra, LSL #n

3-102 ELECTRONICS

S3F443FX (Preliminary Spec) ARM INSTRUCTION SET

GENERAL PURPOSE SIGNED DIVIDE
This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by RO: returns quotient in RO,
; remainder in R1

:Get abs value of RO into R3

ASR R2, RO, #31 ; Get 0 or-1in R2 depending on sign of RO
EOR RO, R2 ; EOR with -1 (0" FFFFFFFF) if negative
SUB R3, RO, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with OxXFFFFFFFF and adding 1 if negative

ASR RO, R1, #31 ; Get 0 or-1in R3 depending on sign of R1
EOR R1, RO ; EOR with -1 (0" FFFFFFFF) if negative
SUB R1, RO ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in RO & R2) for later use in determining ; sign of quotient & remainder.
PUSH {RO, R2}

;Justification, shift 1 bit at a time until divisor (RO value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR RO, R1, #1
MOV R2, R3
B %FTO
just_| LSL R2, #1
0 CMP R2, RO
BLS just_|
MOV RO, #0 ; Set accumulator to 0
B %FTO ; Branch into division loop
div_| LSR R2, #1
0 CMP R1, R2 ;. Test subtract
BCC %FTO
SUB R1, R2 ; If successful do a real subtract
0 ADC RO, RO ; Shift result and add 1 if subtract succeeded
CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_| ; tested subtracting the ‘ones’ value).

ELECTRONICS 3-103

ARM INSTRUCTION SET

S3F443FX (Preliminary Spec)

Now fixup the signs of the quotient (RO) and remainder (R1)

POP
EOR
EOR
SuUB
EOR
SuUB
MOV

ARM Code

signed_divide
ANDS
RSBMI
EORS

;ip bit 31 = sign of result

;ip bit 30 = sign of a2
RSBCS

{R2, R3} ; Get dividend/divisor signs back

R3, R2 ; Result sign

RO, R3 ; Negate if result sign=-1

RO, R3

R1, R2 ; Negate remainder if dividend sign = - 1
R1, R2

pc, Ir

; Effectively zero a4 as top bit will be shifted out later
a4, al, #&80000000
al, al, #0
ip, a4, a2, ASR #32

a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)

MOVS
BEQ

just_|
CMP
MOVLS
BLO

div_|
CMP
ADC
SUBCS
TEQ
MOVNE
BNE
MOV
MOVS
RSBCS
RSBMI
MOV

a3, al
divide_by_zero

; Justification stage shifts 1 bit at a time
a3, a2, LSR #1
a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
s_loop

az, a3

a4, a4, a4
az, a2, a3
a3, al

a3, a3, LSR #1
s_loop2

al, a4

ip, ip, ASL #1
al, al, #0
az, a2, #0
pc, Ir

3-104

ELECTRONICS

S3F443FX (Preliminary Spec)

ARM INSTRUCTION SET

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and

ARM code.

Thumb Code

udivliO

ARM Code
udivliO

MOV
LSR
SUB
LSR
ADD
LSR
ADD
LSR
ADD
LSR
ASL
ADD
ASL
SUB
CMP
BLT
ADD
SUB

MOV

SUB
SUB
ADD
ADD
ADD
MOV
ADD
SUBS
ADDPL
ADDMI
MOV

az, al
a3, al, #2
al, a3
a3, al, #4
al, a3
a3, al, #8
al, a3
as3, al, #16
al, a3
al, #3
a3, al, #2
a3, al
a3, #1
az, a3
a2, #10
%FTO

al, #1
a2, #10

pc, Ir

az, al, #10

al, al, al, Isr #2
al, al, al, Isr#4
al, al, al, Isr #8
al, al, al, Isr #16
al, al, Isr #3

a3, al, al, asl #2
a2, a2, a3, asl #1
al, al, #1

az, a2, #10

pc, Ir

Take argument in al returns quotient in al,
remainder in a2

Take argument in al returns quotient in al,
remainder in a2

ELECTRONICS

3-105

ARM INSTRUCTION SET S3F443FX (Preliminary Spec)

NOTES

3-106 ELECTRONICS

S3F443FX (Preliminary Spec)

/0 PORTS

/0 PORTS

OVERVIEW

S3F443FX has 16 general input/output ports.

— Seven ports are dedicated to being I/O ports only(GP10[6:0])

— Nine ports are shared with other functional pins (Multiplexed 1/O ports :GPIO[15:7])

— Three external interrupt input or output pins

Each port can be easily configured by the software to meet various system configuration and design
requirements. The CPU accesses I/O ports by directly writing or reading port register addresses. For this reason,
special I/O instructions are not needed.

Table 4-1. S3F443FX Port Configuration Overview

Port Configuration Options Programmability

0 General C-MOS push-pull I/O port with pull-up resistor Port O Bit programmable
consists of GPIO[7:0].
GPIO7 is multiplexed with TIN.

1 General C-MOS push-pull I/O port with pull-up resistor or pull-down Bit programmable
resister. Port 1 consists of GPIO[15:8].
GPIO[15:8] are multiplexed with RXD,TXD and A[17:12].

2 External interrupt input or output port Bit programmable

ELECTRONICS 4-1

/0 PORTS

S3F443FX (Preliminary Spec)

PORT DATA REGISTERS

Table 4-2. Port Data Register Summary

Register Name Mnemonic Offset Reset Value R/W
Port 0 Data Register PO[7:0] 0xb000 xxh R/W
Port 1 Data Register P1[7:0] 0xb001 xxh R/W
Port 2 Data Register P2[7:0] 0xb002 xxh R/W
PORT CONTROL REGISTERS TABLE
Table 4-3. Port Control Register Summary
Register Name Mnemonic ADDR Reset Value R/W
Port 0 Control Register POCON 0xb010 00h R/W
Port 0 Pull-up Register POPUR 0xb015 ffh R/W
Port 1 Control Register P1CON 0xb012 0000h R/W
Port 1 Pull-up/down Register P1PUDR 0xb016 ffh R/W
Port 2 Control Register P2CON 0xb014 Oh R/W
Port 2 Pull-up Register P2PUR 0xb017 7h R/W
Port 2 External Interrupt Control Register EINTCON 0xb018 Oh R/W
Port 2 External Interrupt Mode Register EINTMOD Oxb0la 00h R/W

4-2

ELECTRONICS

S3F443FX (Preliminary Spec)

/0 PORTS

Table 4-4. Port 0 Control Register

Name

Bit

Description

POCON

Setting the GPIO[0] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

Setting the GPIO[1] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

Setting the GPIO[2] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

Setting the GPIO[3] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

Setting the GPI0O[4] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

Setting the GPIO[5] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

Setting the GPIO[6] bit of Port 0.

0: C-MOS input mode
1: C-MOS push-pull output mode

Setting the GPIO[7] bit of Port 0.

0: TIN / C-MOS input mode
1: C-MOS push-pull output mode

POPUR

7-0

Setting the GPIO[7:0] pull-up resistor of Port 0.

0: Disable pull-up resistor
1: Enable pull-up resistor

ELECTRONICS

4-3

/0 PORTS

S3F443FX (Preliminary Spec)

Table 4-5. Port 1 Control Register

Name

Bit

Description

P1CON

1:0

Setting the GPIO[8] bit of Port 1.
00: C-MOS input mode

01: C-MOS push-pull output mode
10: A12

3:2

Setting the GPIO[9] bit of Port 1.
00: C-MOS input mode

01: C-MOS push-pull output mode
10: A13

5:4

Setting the GPIO[10] bit of Port 1.
00: C-MOS input mode

01: C-MOS push-pull output mode
10: A14

11: PWM Signal Out

7:6

Setting the GPIO[11] bit of Port 1.
00: C-MOS input mode

01: C-MOS push-pull output mode
10: A15

9:8

Setting the GPIO[12] bit of Port 1.
00: C-MOS input mode

01: C-MOS push-pull output mode
10: Al6

11:10

Setting the GPIO[13] bit of Port 1.
00: C-MOS input mode

01: C-MOS push-pull output mode
10: A17

13:12

Setting the GPIO[14] bit of Port 1.
00: C-MOS input mode

01: C-MOS push-pull output mode
10: TXD

15:14

Setting the GPIO[15] bit of Port 1.
00: RXD / C-MOS input mode
01: C-MOS push-pull output mode

P1PUDR

Setting the GP10[13:8] pull-down resistor of Port 1.

0: Disable pull-down resistor
1: Enable pull-down resistor

(When P1 is set as an address line, the pull-down resistor is automatically disabled.)

7-6

Setting the GP10[15:14] pull-up resistor of Port 1.

0: Disable pull-up resistor
1: Enable pull-up resistor

4-4

ELECTRONICS

S3F443FX (Preliminary Spec) 1/0 PORTS

Table 4-6. Port2 Control Register

Name Bit Description
P2CON 2-0 Setting the EINT[2:0] bit of Port 2.

0: Input or external interrupt input(EINT2:0)
1: C-MOS push-pull output mode

P2PUR 2-0 Setting the EINT[2:0] pull-up resistor of Port 2.

0: Disable pull-up resistor
1: Enable pull-up resistor

EINTMOD 1,0 Setting the external interrupt mode of EINTO

00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: High level interrupt enable
11: Low level interrupt enable

3,2 Setting the external interrupt mode of EINT1

00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: High level interrupt enable
11: Low level interrupt enable

54 Setting the external interrupt mode of EINT2

00: Falling edge interrupt enable
01: Rising edge interrupt enable
10: High level interrupt enable
11: Low level interrupt enable

EINTCON 2-0 Setting the EINT[2:0] interrupt enable

0: Disable External Interrupt
1: Enable External Interrupt

ELECTRONICS 4-5

/0 PORTS

S3F443FX (Preliminary Spec)

NOTES

4-6

ELECTRONICS

S3F443FX (Preliminary Spec) BASIC/WATCHDOG TIMER

BASIC/WATCHDOG TIMER

OVERVIEW

The S3F443FX has an internal Basic Timer/Watch-Dog Timer. This timer can be used to resume controller
operation when it has been disturbed due to noise or other kinds of system error or malfunctions. To configure the
Watch-dog timer, the overflow signal from the 8-bit Basic timer should be fed to the clock input of the 3-bit
Watch-dog timer, as shown in figure below. User can enable or disable the Watch-dog by software, i.e., by
controlling the configuration in BTCON register. If the user does not want to configure the Watch-dog timer, the
8-bit Basic timer can be used as a normal interval timer to request interrupt services. It also can signal the end of
the required oscillation interval after a reset or a Stop mode release. For example, the Basic timer can give the
overflow signal to necessary logic blocks after a reset or release from Stop mode. In this case, the overflow
signal from Basic timer may mean that there is a stable clock from an external oscillator circuit.

STOP, IDLE
WDT Control Register
Clock DIV (write 10100101b to disable)
Clear
EXTCLK —p{ N2 > —

Fin/21! > 8-Bit Basic - OVE

Ein/212 » Counter ‘D—b 3-bit WDT —— nRESET
Fin/213 q (read only)

INTMASK

—» BTINT

BTCON.3-.2 T
Clear

‘ —p» CPU Start

RESET

BTCON.1 STOP

INTPEND

Figure 5-1. Watch-dog Timer Block Diagram

ELECTRONICS 5-1

BASIC/WATCHDOG TIMER S3F443FX (Preliminary Spec)

BASIC TIMER COUNTER REGISTER

The basic timer counter register, BTCNT(Offset address : 0xa007), is used to specify the time out duration, and is
a free-running 8-bit counter. The table below should be kept as reference for determining the duration of timer.
This is the case when the external clock is 20Mhz.

Register Offset Address R/W Description Reset Value
BTCNT 0xa007 R Basic timer count register 00h

Table 5-1. Basic Timer Counter Setting (at EXTCLK =20 MHz)

BTCON.3 | BTCON.2 Clock Source Resolution Interval Time Max. Interval
0 0 EXTCLK/213 409.6 ns 213 JEXTCLK = 28 104.86 ms
0 1 EXTCLK /212 204.8 s 212 JEXTCLK = 28 52.43 ms
1 0 EXTCLK /211 102.4 s 211 JEXTCL:K = 28 26.21 ms
1 1 EXTCLK /2° 25.6 s 29/ EXTCLK = 28 6.55 ms

EXTERNAL OSCILLATION STABILIZATION TIME AFTER STOP OR RESET
In Figure 5-1, the CPU Start signal after reset or STOP is activated just after the 8-bit basic timer bit 4 is set to 1.

So, there is delay time before CPU is started after RESET or STOP is released. This delay time may be used for
the oscillation time of an external clock source. This delay time is calculated as in Table 5-2.

Table 5-2. The Delay Time before CPU Time Start (at EXTCLK =20 MHz)

BTCON.3 BTCON.2 Clock Source WDT Interval Delay Time
0 0 EXTCLK/213 213 JEXTCLK = 24 6.55 ms
0 1 EXTCLK /212 212 JEXTCLK = 24 3.28 ms
1 0 EXTCLK /211 211 JEXTCLK = 24 1.64 ms
1 1 EXTCLK /2° 29/ EXTCLK = 24 0.41 ms

WATCH DOG TIMER COUNTER

The watch dog timer counter register, WTCNT, is used to specify the time out duration and is a free-running 3-bit
counter. To enable Watch-dog timer, user should write the data in BTCON[15:8] register except 0xA5, which will
disable the Watch-dog timer. After writing a value in the BTCONJ[15:8] register the system will reset if there is an
overflow.

Table 5-3. Watch Dog Timer Counter Setting (at EXTCLK =20 MHz)

BTCON.3 | BTCON.2 | Clock Source Resolution WDT Interval Interval Time
0 0 EXTCLK/213 409.6 ns 213 JEXTCLK = 28~ 23 838.86 ms
0 1 EXTCLK /212 204.8 s 212 JEXTCLK = 28~ 23 419.43 ms
1 0 EXTCLK /211 102.4 s 211 JEXTCLK " 28~ 23 209.72 ms
1 1 EXTCLK /2° 25.6 s 29/ EXTCLK = 28~ 23 52.43 ms

5-2 ELECTRONICS

S3F443FX (Preliminary Spec)

BASIC/WATCHDOG TIMER

BASIC TIMER CONTROL REGISTER

The basic timer control register, BTCON, contains watch-dog counter enable bits, clock input setting bits, and

counter clear bit.

Register

Offset Address

R/W Description Reset Value

BTCON

0xa002

R/W Basic Timer Control register 0000h

The basic timer control register has the following bits:

[0] WDT Counter clear bit
[1] Basic Counter clear bit
[3:2] Clock source select

[15:8] Watch dog timer enable

This bit clears the watch dog counter. When this bit is set, the
Watch-dog counter register will be cleared to zero.(synchronous reset)
And this bit will be cleared automatically.

This bit clears the basic counter. When this bit is set, the Basic timer
counter register will be cleared to all zero.(synchronous reset) And this bit
will be cleared automatically.

These bits select a clock source.
11b = EXTCLK / 29

10b = EXTCLK / 211

01b = EXTCLK / 212

00b = EXTCLK / 213

These bits enable or disable the watch-dog timer counting.

When these bits are {10100101b}, watch dog timer counter is stopped.
The other value enable watch-dog timer counting, and reset the system if
there is an overflow.

ELECTRONICS

5-3

BASIC/WATCHDOG TIMER S3F443FX (Preliminary Spec)

FUNCTION DESCRIPTION

INTERVAL TIMER FUNCTION

The primary function of a basic timer is to measure the elapsed time intervals. The standard time interval is equal
to 256 basic timer clock pulses.

The content of the 8-bit counter register, BTCNT, increases every time a clock signal corresponding to the
BTCON selected frequency is detected. The BTCNT continues its counting until an overflow occurs, i.e., the
content reaches 255. An overflow set on the BT interrupt pending flag, which signals elapse of the designated
time interval. Then, an interrupt request is generated; BTCNT is cleared to all zero; and the counting continues
from O0H, again.

Watchdog Timer Function

The basic timer can also be used as a "watch-dog" timer to detect an unexpected program sequence, that is, a
system or program operation error due to an external factor. For example, an external noise can create an this
type of error in which the CPU is running an unexpected code sequence, i.e., malfunction of CPU. To recover the
CPU from the unexpected sequence, the watch-dog timer should reset the CPU for malfunctions. But, during
normal sequence, the instruction, which clears the watch-dog timer within a given period, should be executed at
proper points in a program. If an instruction that clears the watch-dog timer is not executed within the specified
period, meaning an overflow of the watch-dog timer, the reset signal should be generated and the system should
be restarted with reset status. An operation of watch-dog timer is as follows:

— Each time BTCNT overflows, an overflow signal should be sent to the watch-dog timer counter, WDTCNT.

— If WDTCNT overflows, the system reset should be generated.

A reset signal clears the BTCON as #0000H. This value can enable the watch-dog timer because it is not OxA5.
During the normal operation, the application program should prevent the overflow. To do this, the WDTCNT
value should be cleared (by writing a "1" to BTCON.O0) at regular intervals before the overflow occurs.

NOTE

In order to save current consumption, Basic Timer counter is stop by register setting, which is
SYSCON.bit6, default mode ‘0’ is enable to run Basic Timer Counter. For stopping it, SYSCON.bit6
is to be set'l’.

5-4 ELECTRONICS

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

TIMER MODULE 0,1,2,3,4,5 (16-BIT TIMERS)

OVERVIEW

The S3F443FX has Six 16-bit timers:T0,T1,T2,T3,T4 and T5. The timers TO-T5 can operate in interval mode, in
capture mode, or in match & overflow mode. The clock source for the timers can be UTCLK or TIN. You can
enable or disable the timers by setting the control bits in the corresponding timer mode register.

The timers 0,1,2,3,4, and 5 have three operating modes. The user can select the mode by having the appropriate
TnCON setting:
— Interval timer mode

— Capture input mode with a rising or falling edge trigger at the input pin(TIN, which is shared by
timer0/1/2/3/4/5)

— Match & Overflow mode

ELECTRONICS 6-1

TIMER MODULE 0,1,2,3,4,5

S3F443FX (Preliminary Spec)

UTCLK

TnCON.6
Clear TnCON.2
° [TnCoN 2]

8-bit

A

Prescaler

TIN

MUX

Data Bus

!

INTPND
INTMASK —» TnOVF

16-bi

it Up Counter

(TNCNT) R

Clear
<_|

:

16-bi

it Comparator

Match
INTPND

INTMASK —» TnINT

4

Timer n Buffer Register

7y

|_'nCON 5-3

A

Match Signal
TnCLR
TnOVF

Timer

n Data Register

(Read/Write)

¢

Data Bus

[] Timer n Control Register
where,n=0,1,2,3,4and 5

Figure 6-1. 16-Bit Timer Block Diagram

6-2

ELECTRONICS

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

TIMER 0,1,2,3,4,5 CONTROL REGISTERS(TOCON,T1CON,T2CON,T3CON,T4CON,T5CON)

Users should have the configuration on the timer 0,1,2,3,4, and 5 control registers, i.e., TNnCON, to determine the
following:

— Select the timer n operating mode (interval timer mode, match & overflow mode, or capture mode)
— Select the timer n input clock (UTCLK or TIN)

— Clear the timer n counter, TNCONI[6]
— Enable/Disable the timer clock, TNnCON[7]

The INTMASK register can control whether the interrupt to CPU should be posted or not when the timer n
reaches to the overflow point in the interval timer mode, match & overflow mode, or capture mode. The
INTPEND register can store the interrupt pending bit if the corresponding interrupt is not serviced. After the
service of interrupt, the S/W should clear the pending bit.

During the system reset, TNnCON register is cleared to '00H’, automatically, which is a default configuration on the
timer. The default configuration is to have the interval timer mode and UTCLK as the timer input clock source.
User can clear the timer n counter at any time during normal operation by writing a "1" to TnCON[6].

INTERVAL MODE OPERATION

In interval timer mode, a match signal is generated when the counter value reaches to the written value in the Tn
reference data register, TnDATA. The match signal can generate a timer n match interrupt (TnINT) and clear the
counter value.

TnPRE=3

TnCNT Clock \ /—\ /—\ /—_

TNCNT 99 X 100 X 0 X 1

f

The timer match interrupt will occur.

NOTE: If the prescaler value is n, the prescaler factor is n + 1.

Figure 6-2. Interval Mode Example 1 (TnDATA=100, TnPRE=3, UTCLK is a Timer Source)

ELECTRONICS 6-3

TIMER MODULE 0,1,2,3,4,5 S3F443FX (Preliminary Spec)

TIN /—\ /—\ /—_

TnCNT 99 X 100 X 0 X 1

f

The timer match interrupt will occur

Figure 6-3. Interval Mode Example 2 (TnD ATA=100, TIN is a Timer Source)

CAPTURE MODE OPERATION

In capture mode, the timer performs the capturing operation, in which the current timer counter value in TNnCNT
register is latched to the timer n data register (TnDATA) in synchronization with an external trigger. For every
external trigger signal, the current timer counter value in TNnCNT register is latched to the timer n data register
(TnDATA) and the capture interrupt is generated. By using this feature, the user can measure the time difference
between the external trigger signals. If the TnCNT overflows, the overflow interrupt will be sent to the CPU core.
A valid edge detected at the capture input pin is used as the external trigger. When this overflow happens, the
timer counter starts its counting from O000H.

MATCH & OVERFLOW MODE OPERATION

In match mode, the match signal is generated when the timer counter value (TNCNT) is identical to the value of
the timer n data register (TNDATA), which was written by S/W. However, the match signal does not clear the
counter and can generate a match interrupt, only. It runs continuously, overflowing at FFFFH, and then continues
the increment from 0000H. When an overflow happens, an overflow interrupt is also generated.

6-4 ELECTRONICS

S3F443FX (Preliminary Spec)

TIMER MODULE 0,1,2,3,4,5

TIMER SPECIAL REGISTERS

TIMER CONTROL REGISTERS

The timer control registers, TOCON, T1CON, T2CON, T3CON, T4CON, and T5CON are used to control the
operations of the six 16-bit timers.

Register Offset Address R/W Description Reset Value
TOCON 0x9003 R/W | Timer O control register 00h
T1CON 0x9013 R/W | Timer 1 control register 00h
T2CON 0x9023 R/W | Timer 2 control register 00h
T3CON 0x9033 R/W | Timer 3 control register 00h
TACON 0x9043 R/W | Timer 4 control register 00h
T5CON 0x9053 R/W | Timer 5 control register 00h

Three timer mode registers have the following control settings:

This bit determines which clock source should be used as a timer input
clock for the corresponding timer. When this bit is 0, UTCLK should be
used as the timer clock source of the corresponding timer. When 1,
TIN should be used.

This field determines the operation mode of the corresponding timer to
be used(Interval, match & overflow mode, and capture mode) When
the user sets TNCONJ5:3] to 000b, the corresponding timer runs in the
interval mode. When 001b, the corresponding timer runs in the match
& overflow mode. When the user sets TNnCONJ5:3] to 1xx, the
corresponding timer runs in the capture mode. When 100Db, the
corresponding timer runs in the capture and the capturing will happen
at the falling edge of external triggering signal (TIN). When 101b, the
corresponding timer runs in the capture mode with the capturing at the
rising edge of external triggering signal (TIN). When 110b, the
corresponding timer runs in the capture mode with the capturing at
both edges of the external triggering signal(TIN).

This bit can clear the counter register(TNCNT). When this bit is set the
counter is cleared. Also, this bit is cleared automatically

User can enable or disable the timer clock by setting or clearing this
bit. When TnCON][7] is 1, the divided UTCLK will be asserted to the
16-bit up-counter through the MUX. Otherwise, the divided UTCLK wiill
not be fed. However, TIN will not be controlled by this bit. Although
TnCON[7] is 0, the TIN will make the counter count.

[2] Clock source selection

[5:3] Timer mode selection

[6] Counter Clear bit

[7] Timer clock enable/disable
ELECTRONICS

6-5

TIMER MODULE 0,1,2,3,4,5

S3F443FX (Preliminary Spec)

[1:0] Reserved to 00b

[2] Timer n Input Clock Selection Bits
0 = EXTCLK
1=TIN

[5:3] Timer n Operation Mode Selection Bits

000 = Interval mode

001 = Match & Overflow mode (Match &OVF INT can occur)

010 = Reserved

011 = Reserved

100 = Capture mode (Capture on falling edge, counter running, OVF can occur)

101 = Capture mode (Capture on rising edge, counter running, OVF can occur)

110 = Capture mode (Capture on rising or falling edge, counter running, OVF can occur)

[6] Timer n Counter
0=No
1 = Clear the timer n counter (when write)

[7] Timer n input clock enable bit
0 = Disable timer n input clock
1 = Enable timer n input clock

Figure 6-4. Timer 0,1,2,3,4,5 Control Registers

6-6

ELECTRONICS

S3F443FX (Preliminary Spec) TIMER MODULE 0,1,2,3,4,5

TIMER DATA REGISTERS

The timer data registers, TODATA, T1DATA, T2DATA, T3DATA, T4ADATA and T5DATA, contain values that
specify the time-out duration for each timer. The formula for calculating time-out duration is (Timer data + 1)
cycles. See Figure 6-5 below.

Register Offset Address R/W Description Reset Value
TODATA 0x9000 R/W | Timer O data register ffffh
T1DATA 0x9010 R/W | Timer 1 data register ffffh
T2DATA 0x9020 R/W | Timer 2 data register ffffh
T3DATA 0x9030 R/W | Timer 3 data register ffffh
TADATA 0x9040 R/W | Timer 4 data register ffffh
T5DATA 0x9050 R/W | Timer 5 data register ffffh
15 0
Timer Data

[15:0] Timer Data Value

This field specifies the time-out period the corresponding

timer. The time-out period is calculated as (Timer data + 1)
cycles. Therefore, a maximum time-out period of 2 16 cycles
is possible (when the timer data value is 0xffff). The minimum
time-out period (2 cycles) is obtained by writing the value
0x0001h to the timer data register field.

Figure 6-5. Timer Data Registers (TnDATA)

ELECTRONICS

6-7

TIMER MODULE 0,1,2,3,4,5

S3F443FX (Preliminary Spec)

TIMER COUNT REGISTERS

The timer count registers, TOCNT, TICNT, T2CNT, T3CNT, TACNT and T5CNT, have values which provides the
count value to the current timers 0,1,2,3,4, and 5 during normal operation, respectively (see Figure 6-6).

Register Offset Address R/W Description Reset Value
TOCNT 0x9006 R Timer O count register 0000h
T1CNT 0x9016 R Timer 1 count register 0000h
T2CNT 0x9026 R Timer 2 count register 0000h
T3CNT 0x9036 R Timer 3 count register 0000h
TACNT 0x9046 R Timer 4 count register 0000h
T5CNT 0x9056 R Timer 5 count register 0000h

15 0
Counting Data
[15:0] Counting Value
This field specifies the time-out period the corresponding timer.
The time-out period is calculated as (Timer data + 1) cycles.
Therefore, a maximum time-out period of 2 16 cycles is possible
(when the timer data value is Oxffff). The minimum time-out period
(2 cycles) is obtained by writing the value 0x0001h to the timer
data register field.
Figure 6-6. Timer Count Registers (TNCNT)
6-8 ELECTRONICS

S3F443FX (Preliminary Spec)

TIMER MODULE 0,1,2,3,4,5

TIMER PRE-SCALER REGISTERS

The timer pre-scaler registers, TOPRE, T1PRE, T2PRE, T3PRE, T4PRE, and T5PRE, have values which provide
the pre-scaler values (The main clock should be divided by the pre-scaler factor, which is the timer input clock) to

current timers 0/1/2/3/4/5 during normal operation, respectively(see Figure 6-7).

Register Offset Address R/W Description Reset Value
TOPRE 0x9002 R/W | Timer O pre-scaler register ffh
T1PRE 0x9012 R/W | Timer 1 pre-scaler register ffh
T2PRE 0x9022 R/W | Timer 2 pre-scaler register ffh
T3PRE 0x9032 R/W | Timer 3 pre-scaler register ffh
TAPRE 0x9042 R/W | Timer 4 pre-scaler register ffh
T5PRE 0x9052 R/W | Timer 5 pre-scaler register ffh

Prescaler Data

[7:0] Timer 0,1,2,3,4,5 Prescaler Value
This field cotains the timer 0,1,2,3,4,5 prescaler
value during normal timer operation.

Figure 6-7. Timer Pre-scaler Registers (TnPRE)

A pre-scaler register has an 8-bit pre-scaler value. If the pre-scaler value is n, the prescaler factor is n+1.

ELECTRONICS

6-9

TIMER MODULE 0,1,2,3,4,5 S3F443FX (Preliminary Spec)

NOTES

6-10 ELECTRONICS

S3F443FX (Preliminary Spec) UART

UART

OVERVIEW

The S3F443FX has an on-chip UART (Universal Asynchronous Receiver/Transmitter) block. The UART can be
operated in the interrupt-based mode

A UART has a programmable baud rate generator with Rx and Tx ports for UART communication, Tx and Rx
shift registers, Tx and Rx buffer registers, Tx and Rx control blocks and control registers. In other words the
UART in S3F443FX supports the programmable baud rate, simultaneous transmit/receive(Full duplex mode), one
or two stop bit insertion, 5-bit, 6-bit, 7-bit, or 8-bit data transmit/receive size, and parity checking capability.

The baud rate generator can generate the suitable bit rate by dividing EXTCLK. The bit rate is fully
programmable by S/W with an appropriate clock division factor, the programmable baud generator can generate
UART bit rates 1200, 2400, 4800, 9600, and so on. The transmitter and the receiver block have Tx and Rx data
buffer registers, and a Tx and a Rx shift register, respectively. The transmission data should be written to the Tx
buffer register, then copied to the Tx shift register, and shifted out through the transmit data pin(Tx). The data to
be received should be shifted in through the receive data pin(Rx), and then copied from shift register to the Rx
buffer register whenever one data byte is received. The control unit provides the selection on UART operation
mode and shows the status/interrupt generation of UART during operation.

NOTE

In order to save current consumption, the operation of UART is stopped by register setting, which is
SYSCON.bit7, default mode ‘0’ is enabled to make UART work. For stopping it, SYSCON.bit7 is to be set
1

ELECTRONICS 7-1

UART

S3F443FX (Preliminary Spec)

Tx

Rx

4 cK
|

Data Bus

Tx. Buffer Reg

A

Tx. Shift Reg

Rx. Shift Reg

Data Bus Data Bus
Rx. Buffer Reg LCON/UCON/USSR
A A
Tx Control
o !
Interrupt
* CK | Control Status
Rx Control f
[A
Serial Clock
Generator

UBRDR

A

EXTCLK —p»

16-bit Prescaler |

Baud Rate Generater |«

'

Data Bus

Figure 7-1. UART Block Diagram

7-2

ELECTRONICS

S3F443FX (Preliminary Spec) UART

INFRA-RED MODE

The S3F443FX UART block can support the infra-red (IR)-based transmit and receive (IrDA 1.0), which can be
selected by setting the infra-red-mode bit in the line control register (LCON). The implementation of the mode is
shown in Figure 7-2.

In IrDA mode, the transmitted bit data is slightly different from the normal transmitted bit data. In normal
transmitted bit data, the high value(Logic 1) will be maintained during one bit time if the bit data is 1. Otherwise,
the low value(Logic 0) will be maintained during one bit time if the bit data is 0. In IrDA mode, however, the high
value(Logic 1) will be pulsed with the duty of 3/16 during one bit time if the bit data is 1. Otherwise, the low
value(Logic 0) will be maintained during one bit time if the bit data is 0. Similarly with Tx case of IrDA mode, the
bit data of Rx has same bit shape as Tx. In other words, the receiver should detect the 3/16 pulsed-duty signal
when the bit data is 1. The normal operation of Rx is as same as the that of Tx in terms of bit shaping during one
bit time.

[~
TXD —e 0 » TxD
— 1
URAT IRS I
Block 0|« RxD
RxD 1
RE || IRTx [[IR Rx
—‘ Encoder Decoder
Figure 7-2. Infra-red Mode
< SIO Frame >
—» | Start |« Data Bits » | Stop |€—
Bit Bit

Figure 7-3. Serial I/O Frame Timing Diagram (Normal UART)

ELECTRONICS 7-3

UART

S3F443FX (Preliminary Spec)

\ 4

A

IR Transmit Frame

v

A

—» | Start Data Bits Stop | €—
Bit Bit

Bit
Time

<+ —b»| |<4— Pulse Width = 3/16 Bit Frame

Figure 7-4. Infra-Red Transmit Mode Frame Timing Diagram

v

IR Receive Frame

A

v

—» | Start Data Bits Stop | €—
Bit Bit

A

Figure 7-5. Infra-Red Receive Mode Frame Timing Diagram

7-4

ELECTRONICS

S3F443FX (Preliminary Spec) UART
UART SPECIAL REGISTERS
UART LINE CONTROL REGISTER
The UART Line control register, LCON, is used to control the UART.
Register Offset Address R/W Description Reset Value
LCON 0x5003 R/W UART line control register 00h
[1:0] Word length (WL) The two-bit word length value indicates the number of data bits to be

[2]

[5:3]

[6]
[7]

Number of stop bits

Parity mode (PMD)

Reserved

Infra-Red Mode

transmitted or received per frame. The options are 5-bit, 6-bit, 7-bit,
and 8-bit.

LCON[2] specifies how many stop bits should be inserted to signal
end-of-frame(EOF). When it is 0, one bit signals the EOF; when it is 1,
two bits signal EOF.

The 3-bit parity mode value specifies how the parity generation and
checking should be performed during UART transmit and receive
operations. There are five options (see Figure 7-3).

This bit determines whether or not to use infra-red mode
0 = Normal Mode operation
1 = Infra-red Tx/Rx mode

ELECTRONICS

7-5

UART

S3F443FX (Preliminary Spec)

PMD

WL

[1:0] Word-length Per Frame (WL)
00 = 5-bit
01 = 6-bit
10 = 7-bit
11 = 8-bit

[2] Number of Stop Bits at End of Frame

0 = One stop bit per frame
1 = Two stop bit per frame

[5:3] Parity Mode

Oxx = No parity bit in frame

100 = Odd parity

101 = Even parity

110 = Parity forced/checked as 1
111 = Parity forced/checked as O

[6] Reserved
[7] Infra-Red Mode Selection

0 = Normal mode operation
1 = Infra-red Tx/Rx mode

Figure 7-3. UART Line Control Register (LCON)

7-6

ELECTRONICS

S3F443FX (Preliminary Spec)

UART

UART CONTROL REGISTER

The UART control register, UCON, is used to control the single-channel UART.

Register

Offset Address

R/W Description Reset Value

UCON

0x5007

R/W UART control register 00h

[1:0] Enable receive interrupt

[2] Rx status interrupt enable

[4:3] Enable transmit interrupt

[5] Reserved

[6] Send break

[7] Loop-back bit

These bits enable the UART to generate a receive interrupt.
00= Disable 01= Interrupt Request or falling mode
10= Reserved 11= Reserved

This bit enables the UART to generate an interrupt if an exception
(break, frame error, parity error, or overrun error) occurs during a
receive operation. When UCON[2] is set to 1, a receive status interrupt
will be generated each time a Rx exception occurs. When UCON][2] is
0, no receive status interrupt will be generated.

These bits enable the UART to generate a transmit interrupt.
00= Disable 01= Interrupt Request or falling mode
10= Reserved 11= Reserved

Unknown value will be read.

Setting UCON][6] causes the UART to send a break. The break is
defined as giving the continuous low level signal on the transmit data
output (Tx port) of more than one frame transmission time. When the
transmitter is empty (transmitter empty bit, USSR[7] = 1), the exact
one-frame time can be obtained by using TBR & USSR registers.
When USSR[7] is 1, write dummy data to the transmit buffer register
(TBR). Then poll the USSR[7] value. When it returns to 1, clear (reset)
the send break bit, UCON[6].

Setting UCON[7] causes the UART to enter into the loop-back mode.
In loop-back mode, the transmit buffer register (TBR) is internally
connected to the receive buffer register (RBR). This mode is provided
for test purposes only.

ELECTRONICS

7-7

UART

S3F443FX (Preliminary Spec)

XM RxM

[1:0] Receive interrupt enable

00 = Do not generate a receive interrupt
01 = Generate a receive interrupt

10 = Not used

11 = Not used

[2] Receive status in interrupt enable
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

[4:3] Transmit interrupt enable

00 = Do not generate a transmit interrupt
01 = Generate a transmit interrupt

10 = Not used

11 = Not used

[5] Reserved (Unknown Value)

[6] Send Break
0 = Do not send break
1 = Send break

[7] Loop break enable
0 = Normal UART operating
1 = Infra-red Tx/Rx mode

Figure 7-4. UART Control Register (UCON)

7-8

ELECTRONICS

S3F443FX (Preliminary Spec)

UART

UART STATUS REGISTER

The UART status register, USSR, is a read-only register that is used to monitor the status of serial I/O operations
in the single-channel UART.

Register Offset Address

R/W Description Reset Value

USSR 0x500b

UART status register cOh

[0]

[1]

[2]

[3]

[4]
[5]

[6]

[7]

Overrun error

Parity error

Frame error

Break interrupt

Receive data ready

Tx buffer register empty

Transmitter empty (T)

USSR][0] is automatically set to 1 whenever an overrun error occurs
during a serial data receive operation. If the receive status interrupt
enable bit UCONJ2] is 1, a receive status interrupt will be generated if
an overrun error occurs. This bit is automatically cleared to O
whenever the UART status register (USSR) is read.

USSR[1] is automatically set to 1 whenever a parity error occurs
during a serial data receive operation. If the receive status interrupt
enable bit UCONJ2] is 1, a receive status interrupt will be generated if
a parity error occurs. This bit is automatically cleared to O whenever
the UART status register (USSR) is read.

USSR[2] is automatically set to 1 whenever a frame error occurs
during a serial data receive operation. If the receive status interrupt
enable bit UCONJ2] is 1, a receive status interrupt will be generated if
a frame error occurs. The frame error bit is automatically cleared to O
whenever the UART status register (USSR) is read.

USSR|[3] is automatically set to 1 to indicate that a break signal has
been received. If the receive status interrupt enable bit, UCON][2], is 1,
a receive status interrupt will be generated if a break occurs. The
break interrupt bit is automatically cleared to 0 when you read the
UART status register.

USSR[5] is automatically set to 1 whenever the receive data buffer
register (RBR) contains the valid data received over the serial port.
The receive data can then be read from the RBR. When this bit is O,
the RBR does not contain valid data.

USSR[6] is automatically set to 1 when the transmit buffer register
(TBR) does not contain valid data. In this case, the TBR can be written
with the data to be transmitted. When this bit is 0, the TBR contains
valid Tx data that has not yet been copied to the transmit shift register.
In this case, the TBR cannot be written with new Tx data.

USSR][7] is automatically set to 1 when the transmit buffer register has
no valid data to be transmitted and when the Tx shift register is empty.
When the transmitter empty bit is 1, it indicates that it can now disable
the transmitter function block if necessary.

ELECTRONICS

7-9

UART

S3F443FX (Preliminary Spec)

[O] Overrun Error

0 = No overrun error during receive

1 = Overrun error (Generate receive status interrupt
if UCON[2] is 1.)

[1] Parity Error

0 = No parity error during receive

1 = Parity error (Generate receive status interrupt
if UCON[2] is 1.)

[2] Frame Error

0 = No frame error during receive

1 = Frame error (Generate receive status interrupt
if UCON[2] is 1.)

[3] Break Interrupt

0 = No break receive

1 = Break error (Generate receive status interrupt
if UCON[2] is 1.)

[5] Receive Data Ready

0 = No valid data in the receive buffer register

1 = Valid data present in the receive buffer register
(Issue interrupt)

[6] Transmit Holding Register Empty

0 = Valid data present in transmit holding register
(Issue interrupt)

1 = No valid data in transmit holding register

[7] Transmitter Empty
0 = Transmitter not empty; Tx in progress
1 = Transmitter empty; no data for Tx

Figure 7-5. UART Status Register (USSR)

7-10

ELECTRONICS

S3F443FX (Preliminary Spec)

UART

UART TRANSMIT BUFFER REGISTER

The UART transmit holding register, TBR, contains an 8-bit data value to be transmitted over the single-channel

UART.
Register Offset Address R/W Description Reset Value
TBR 0x500f W Serial transmit buffer register xxh
[7:0] Transmit data This field contains the data to be transmitted over the single-channel

UART. When this register is written, the transmit buffer register empty
bit in the status register, USSR][6], should be 1. This prevents
overwriting the transmit data which may already be present in the
TBR. Whenever the TBR is written with a new value, the transmit
register empty bit USSR[6] is automatically cleared to 0.

Transmit Data

[7:0] Transmit Data for UART

This field contains the data to be transmitted over the
serial 1/0 interface. To avoid overwriting data that has
not yet been transmitted, the transmit holding register
empty bit, USSR[6], should be 1. Writing a value to
this register automatically clears USSR[6] to 0.

Figure 7-6. UART Transmit Buffer Register (TBR)

NOTE

Tx interrupt will be generated only when the TBR register is empty. So, if the TBR register has been
empty and you enable the UTXD interrupt using INTMASK register, the UTXD interrupt will not be
generated. Therefore, to generate the UTXD interrupt, the first character among the characters to be
transmitted should be written into TBR register.

ELECTRONICS

7-11

UART S3F443FX (Preliminary Spec)

UART RECEIVE BUFFER REGISTER

The receive buffer register, RBR, contains an 8-bit field for received serial data.

Register Offset Address R/W Description Reset Value
RBR 0x5013 R Serial receive buffer register xxh
[7:0] Receive data This field contains the data received over the single-channel UART.

When this register is read, the receive data ready bit in the UART
status register, USSR][5], should be 1. This can prevent the reading of
invalid receive data which may already be present in the RBR.
Whenever the RBR is written with a new value, the receive data ready
bit, USSRJ[5], is automatically cleared to 0.

Receive Data

[7:0] Receive Data for UART

This field contains the data received over the serial /O
interface. To avoid reading invalid data, the receive
data ready bit, USSR[5], should be 1. Reading this
register automatically clears the USSR[5] value to 0.

Figure 7-7. UART Receive Buffer Register (RBR)

7-12 ELECTRONICS

S3F443FX (Preliminary Spec)

UART

UART BAUD RATE PRESCALER REGISTERS

The value in the baud rate prescaler register, UBRDIV, can be used to determine the UART Tx/Rx clock
rate(baud rate) as follows:

UBRDR = (round_off) { MCLK / (transferrate ” 16)} -1

Where the divisor should be from 1 to (216 —1). For example, if the baud-rate is 115200bps and MCLK is 40MHz,

UBRDIV is:

UBRDR = (int) { MCLK / (Transferrate " 16)+ 0.5} -1

= (int) { 40000000 / (115200 * 16) + 0.5} — 1 = (int) (21.7 +0.5) -1

=22-1=21
Register Offset Address R/W Description Reset Value
UBRDR 0x5016 R/W Baud rate divisor register 0000h
15 0
Baud-Rate Divisor
[15:0] Baud-Rate Divisor Vaule
This field contains the baud rate divisor value for
corresponding SIO channel.
NOTE: The value of the baud-rate divisor should be from 0 to (216-1)
Figure 7-8. UART Baud Rate Divisor Registers (UBRDR)
ELECTRONICS 7-13

UART S3F443FX (Preliminary Spec)

NOTES

7-14 ELECTRONICS

S3F443FX RISC MICROCONTROLLER INTERRUPT CONTROLLER

INTERRUPT CONTROLLER

OVERVIEW

The S3F443FX interrupt architecture has a total of 21 interrupt sources. Interrupt request can be generated by the
internal functional blocks as well as external pins(External Interrupt Request). The ARM7TDMI core can
recognize two kinds of interrupt: a normal interrupt request (IRQ) and a fast interrupt request (FIQ). Therefore, all
S3F443FX interrupt should be categorized as either IRQ or FIQ. The interrupt sources in S3F443FX can be
serviced, delayed, or not be serviced by the combined configuration on the register INTMODE, INTPEND, and
INTMASK. To determine the service start address, the S3F443FX can support two kinds of mode. One is a
normal interrupt mode and the other is interrupt vector mode. In a case of normal interrupt mode, ARM7TDMI
core by H/W checks an interrupt source is which kind of a sort of one IRQ or FIQ and responds an interrupt
request to jump PC at the start address of IRQ(0x18) or FIQ(0x1C). Since then, in a program how to serve an
interrupt request is decided by user program normally checking the pending bit and the priority among them is
also decided by S/W. following the decision of which one to be served, S/W lets PC jump to the real start address
of corresponding interrupt request. Meanwhile in a case of vector interrupt mode, the start address is fixed by
H/W, regardless that the interrupt source is defined IRQ or FIQ. Which means that the above process by S/W to
search for the real start address of interrupt request is automatically performed by H/W. in other words, the H/W
can support the respective start address corresponding to each interrupt source. Because it will reduce interrupt
latency as possible as it can. To determine the normal interrupt mode or interrupt vector mode, the configuration
on interrupt priority register (INTPRIN) is done properly,

— Interrupt Mode Register: Defines the interrupt mode, IRQ or FIQ, for each interrupt source.

— Interrupt Pending Register: Interrupt pending register indicates that an interrupt request is pending. The
interrupt service routine will start if a pending bit is set and the I-flag or F-flag is cleared to 0,However, the
pending bit should be cleared before exiting on the interrupt service routine in order to clarify that a requested
interrupt service has been finished. As it is known, FIQ interrupt has higher priority than IRQ so that FIQ
interrupt request will be served first even if IRQ and IFQ concurrently request Interrupt service.

— Interrupt Mask Register: Interrupt mask register indicates that the corresponding interrupt request is not
allowable if the corresponding mask bit is 0. If an interrupt mask bit is 1, the interrupt request will be
allowable, normally.

— Interrupt Priority Register: Interrupt priority register has its own priority level which is defined by suffix ‘n’
value of INTPRIn and the total number of interrupt priority registers is 21 corresponding to the above
mentioned 21 interrupt sources contained in S3F443FX. In other words, S3F443FX has 21 priority levels
from 0 to 20 and PRIORITYO (Level 0) is highest one, while PRIORITY20(Level) is lowest. If you want to
assign an interrupt source into a certain priority level, please write the number of interrupt source on targeting
interrupt-level register of INTPRIn.

ELECTRONICS 8-1

INTERRUPT CONTROLLER

S3F443FX RISC MICROCONTROLLER

INTERRUPT SOURCES

S3F443FX has 21 interrupt sources, each an interrupt source has own number which is called interrupt number.
The followings illustrate specific number and interrupt source.

Sources Description Number
INT_URX UART receive interrupt. 0
INT_UTX UART transmit interrupt. 1
INT_UERR UART error. 2
INT_TOFO Timer 0 Overflow interrupt. 3
INT_TMCO Timer 0 Match/Capture interrupt 4
INT_TOF1 Timer 1 Overflow interrupt. 5
INT_TMC1 Timer 1 Match/Capture interrupt. 6
INT_TOF2 Timer 2 Overflow interrupt. 7
INT_TMC2 Timer 2 Match/Capture interrupt. 8
INT_TOF3 Timer 3 Overflow interrupt. 9
INT_TMC3 Timer 3 Match/Capture interrupt. 10
INT_TOF4 Timer 4 Overflow interrupt. 11
INT_TMC4 Timer 4 Match/Capture interrupt 12
INT_TOF5 Timer 5 Overflow interrupt. 13
INT_TMC5 Timer 5 Match/Capture interrupt. 14
INT_BT Basic Timer Interrupt 15
EINTO EINTO external interrupt. 16
EINT1 EINT1 external interrupt. 17
EINT2 EINT2 external interrupt. 18
INT_PWMOF PWM overflow interrupt. 19
INT_PWMMC PWM match interrupt. 20

8-2 ELECTRONICS

S3F443FX RISC MICROCONTROLLER

INTERRUPT CONTROLLER

INTERRUPT CONTROLLER SPECIAL REGISTERS

INTERRUPT MODE REGISTER (INTMOD)

Bits in the interrupt mode register (INTMODE) determine the interrupt mode of requested interrupt. There are two
kinds of interrupt mode, IRQ and FIQ mode. When the bit is set to 1, the corresponding interrupt service should
be serviced by FIQ (Fast Interrupt Mode) in ARM7TDMI. Otherwise, the corresponding interrupt service should
be serviced by IRQ (Normal Interrupt Request) mode in ARM7TDMI.

NOTE

If the interrupt priority control is enabled, a lower priority interrupt source, which is lower than a higher

priority interrupt source configured as IRQ, must not be configured as a FIQ mode.

Register Offset Address R/W Description Reset Value
INTMODE 0xc000 R/W | Interrupt mode register xxx0 0000h
0: IRQ mode
1: FIQ mode

INTMOD BIT Description Initial State
INT_URX [0] 0=IRQ mode 1=FIQ mode 0
INT_UTX [1] 0=IRQ mode 1=FIQ mode 0
INT_UERR [2] 0=IRQ mode 1=FIQ mode 0
INT_TOFO [3] 0=IRQ mode 1=FIQ mode 0
INT_TMCO [4] 0=IRQ mode 1=FIQ mode 0
INT_TOF1 [5] 0=IRQ mode 1=FIQ mode 0
INT_TMC1 [6] 0=IRQ mode 1=FIQ mode 0
INT_TOF2 [7] 0=IRQ mode 1=FIQ mode 0
INT_TMC2 [8] 0=IRQ mode 1=FIQ mode 0
INT_TOF3 [9] 0=IRQ mode 1=FIQ mode 0
INT_TMC3 [10] 0=IRQ mode 1=FIQ mode 0
INT_TOF4 [11] 0=IRQ mode 1=FIQ mode 0
INT_TMC4 [12] 0=IRQ mode 1=FIQ mode 0
INT_TOF5 [13] 0=IRQ mode 1=FIQ mode 0
INT_TMC5 [14] 0=IRQ mode 1=FIQ mode 0
INT_BT [15] 0=IRQ mode 1=FIQ mode 0
EINTO [16] 0=IRQ mode 1=FIQ mode 0
EINT1 [17] 0=IRQ mode 1=FIQ mode 0
EINT2 [18] 0=IRQ mode 1=FIQ mode 0
INT_PWMOF [19] 0=IRQ mode 1=FIQ mode 0
INT_PWMMC [20] 0=IRQ mode 1=FIQ mode 0

ELECTRONICS

8-3

INTERRUPT CONTROLLER

S3F443FX RISC MICROCONTROLLER

INTERRUPT PENDING REGISTER (INTPND)

The interrupt pending register (INTPEND) has interrupt pending bits for each interrupt source. When an interrupt
request is generated, it will be masked by the CPU if the I-flag or F-flag in the process status register(PSR) is set
because of previous interrupt. When a pending bit is set, the interrupt service routine can start whenever the I-
flag or F-flag is cleared to O, which means that the previous service was finished or ARM7TDMI core is ready to
accept other interrupts request during the service of previous interrupt request. The service routine should clear
the corresponding pending bit by writing O when CPU is ready to accept other interrupt request, or when the CPU
exit from the corresponding service routine, at least. Because FIQ interrupt has higher priority than IRQ, the FIQ
mode interrupt can be serviced before the complete service of IRQ mode interrupt even if the I-bit in PSR is set
to 1. In other word, The FIQ mode interrupt request can not be pending, if the IRQ mode interrupt service is on

processing.
Register Offset Address R/W Description Reset Value
INTPEND 0xc004 R/W Interrupt pending register xxx0 0000h
0: Clear the corresponding pending bit.
1: Preserve the previous pending bit status.
INTPEND BIT Description Initial State
INT_URX [0] 0=Not requested 1=Requested 0
INT_UTX [1] 0=Not requested 1=Requested 0
INT_UERR [2] 0=Not requested 1=Requested 0
INT_TOFO [3] 0=Not requested 1=Requested 0
INT_TMCO [4] 0=Not requested 1=Requested 0
INT_TOF1 [5] 0=Not requested 1=Requested 0
INT_TMC1 [6] 0=Not requested 1=Requested 0
INT_TOF2 [7] 0=Not requested 1=Requested 0
INT_TMC2 [8] 0=Not requested 1=Requested 0
INT_TOF3 [9] 0=Not requested 1=Requested 0
INT_TMC3 [10] 0=Not requested 1=Requested 0
INT_TOF4 [11] 0=Not requested 1=Requested 0
INT_TMC4 [12] 0=Not requested 1=Requested 0
INT_TOF5 [13] 0=Not requested 1=Requested 0
INT_TMC5 [14] 0=Not requested 1=Requested 0
INT_BT [15] 0=Not requested 1=Requested 0
EINTO [16] 0=Not requested 1=Requested 0
EINT1 [17] 0=Not requested 1=Requested 0
EINT2 [18] 0=Not requested 1=Requested 0
INT_PWMOF [19] 0=Not requested 1=Requested 0
INT_PWMMC [20] 0=Not requested 1=Requested 0

8-4

ELECTRONICS

S3F443FX RISC MICROCONTROLLER

INTERRUPT CONTROLLER

INTERRUPT MASK REGISTER (INTMSK)

The interrupt mask register (INTMASK) has interrupt mask bits for each interrupt source. Each of the interrupt
mask register (INTMASK) corresponds to an interrupt source. When an interrupt source mask bit is 0, the
interrupt request is not allowed by the CPU when the corresponding interrupt request is generated. If the mask bit

is 1, the interrupt is serviced or pending upon request.

Register Offset Address R/W Description Reset Value
INTMASK 0xc008 R/W | Interrupt mask register xxx0 0000h
0: Disable the corresponding interrupt.
1: Enable the corresponding interrupt.
INTMSK BIT Description Initial State
INT_URX [0] 0O=Masked 1=Service available 0
INT_UTX [1] 0=Masked 1=Service available 0
INT_UERR [2] 0=Masked 1=Service available 0
INT_TOFO [3] 0=Masked 1=Service available 0
INT_TMCO [4] 0=Masked 1=Service available 0
INT_TOF1 [5] 0=Masked 1=Service available 0
INT_TMC1 [6] 0O=Masked 1=Service available 0
INT_TOF2 [7] 0=Masked 1=Service available 0
INT_TMC2 [8] 0O=Masked 1=Service available 0
INT_TOF3 [9] 0O=Masked 1=Service available 0
INT_TMC3 [10] 0=Masked 1=Service available 0
INT_TOF4 [11] 0=Masked 1=Service available 0
INT_TMC4 [12] 0=Masked 1=Service available 0
INT_TOF5 [13] 0=Masked 1=Service available 0
INT_TMC5 [14] 0=Masked 1=Service available 0
INT_BT [15] 0O=Masked 1=Service available 0
EINTO [16] 0O=Masked 1=Service available 0
EINT1 [17] 0O=Masked 1=Service available 0
EINT2 [18] 0O=Masked 1=Service available 0
INT_PWMOF [19] 0=Masked 1=Service available 0
INT_PWMMC [20] 0O=Masked 1=Service available 0
ELECTRONICS 8-5

INTERRUPT CONTROLLER S3F443FX RISC MICROCONTROLLER

INTERRUPT VECTOR BASE ADDRESS

The S3F443FX can support two interrupt vector modes. One is a normal interrupt mode and the other is the
vectored interrupt mode.

Normal Interrupt mode

In normal interrupt mode it has two base addresses to serve IRQ(address: 0x18) and FIQ(address: 0x1C).In
other word, as soon as CPU recognize the interrupt request, there will be branch to fixed address 0x18 or
0x1C. Because the ARM can support just two interrupt mode of FIQ and IRQ, after jumping to destined base
address by H/W the user program tries to identify the interrupt source matched to the requested interrupt.
And then CPU makes PC(program counter) jump to corresponding ISR(interrupt service routine). The
process of searching for the corresponding ISR(interrupt service routine) should be performed by S/W, which
can be flexible but requires interrupt latency.

Vectored Interrupt mode

To reduce the interrupt latency ,the case of interrupt latency is critical in the system, s3f443fx can support the
concept of interrupt vector base address.Without time latency to branch the real start address of respective
interrupt source by going through IRQ or FIQ base address, it will directly go to its base address matching to
the requested interrupt source.The below shows the fixed start address of corresponding requested interrupt
when it has interrupt vector mode, nor normal interrupt mode. When interrupt vector mode is enabled, the
most high priority interrupt among the requested interrupt sources is serviced by CPU. The CPU will branch
into its vector address as shown below, directly. Address is calculated with being based on IRQ or FRQ
memory address. Because ARM core is recognized all Interrupt Service Routine(ISR) address based on 0x18
or 0x1C.So direct ISR address for user to make the H/W interrupt vector table has to be concerned.
(INT_UTX is the second interrupt source)

B HandlerUTXD (X)
B HandlerUTXD + (INT_MODE_ADD+4*1) (0)

8-6

ELECTRONICS

S3F443FX RISC MICROCONTROLLER INTERRUPT CONTROLLER

<Example> Vectored Interrupt code
AREA Init, CODE,READONLY
ENTRY
B ResetHandler ;for debug
B HandlerUndef :;handlerUndef
B HandlerSWI ;SWI interrupt handler
b HandlerPabort ;handlerPAbort
b HandlerDabort ;handlerDAbort
b. :handlerReserved
b IsrIRQ
b IsrFIQ
VECTOR_BRANCH yH/W interrupt vector table
;INT_MODE_ADD is defined any proper address by user
;Assume INT_MODE_ADD’s value to be 0x20.
b HandlerURXD + (INT_MODE_ADD+4*0)
b HandlerUTXD + (INT_MODE_ADD+4*1)
b HandlerUERR + (INT_MODE_ADD+4*2)
b HandlerTOOVF + (INT_MODE_ADD+4*3)
b HandlerTOMC + (INT_MODE_ADD+4*4)
b HandlerTIOVF + (INT_MODE_ADD+4*5)
b HandlerTIMC + (INT_MODE_ADD+4*6)
b HandlerT20VF + (INT_MODE_ADD+4*7)
b HandlerT2MC + (INT_MODE_ADD+4*8)

b HandlerT30OVF + (INT_MODE_ADD+4*9)

b HandlerT3MC + (INT_MODE_ADD+4*10)

ELECTRONICS 8-7

INTERRUPT CONTROLLER

S3F443FX RISC MICROCONTROLLER

Branch command to be executing

Sources Address
INT_URX 0x20
INT_UTX 0x24
INT_UERR 0x28
INT_TOFO 0x2c
INT_TMCO 0x30
INT_TOF1 0x34
INT_TMC1 0x38
INT_TOF2 0x3c
INT_TMC2 0x40
INT_TOF3 0x44
INT_TMC3 0x48
INT_TOF4 ox4c
INT_TMC4 0x50
INT_TOF5 0x54
INT_TMC5 0x58
INT_BT 0x5¢
EINTO 0x60
EINT1 0x64
EINT2 0x68
INT_PWMOF 0x6¢
INT_PWMMC 0x70

8-8

ELECTRONICS

S3F443FX RISC MICROCONTROLLER

INTERRUPT CONTROLLER

INTERRUPT PRIORITY REGISTER

The interrupt priority registers (INTPRIn) have information about which kind of interrupt sources are assigned to
the pre-defined interrupt priority fields. For example, If the PRIORITY 3 has 16 (the number of EINTO is 16), the
EINTO interrupt source will have priority level 3. The highest priority value is priority level 0, and the lowest value
is priority level 20. 3-bit left side of PRIORITYO field as called EN has the meaning of determination on vector
interrupt mode or normal interrupt mode as explained in previous page. If 3-bit is 0, it means the normal interrupt
mode for the corresponding interrupt request. Otherwise, it means the interrupt vector mode.

Register Offset Address R/W Description Reset Value
INTPRIO 0xc00c R/W Interrupt priority O register 0302 0100h
INTPRI1 0xc010 R/W Interrupt priority 1 register 0706 0504h
INTPRI2 0xc014 R/W Interrupt priority 2 register ObOa 0908h
INTPRI3 0xc018 R/W Interrupt priority 3 register 0fOe 0dOch
INTPRI4 0xc0lc R/W Interrupt priority 4 register 1312 1110h
INTPRI5 0xc020 R/W Interrupt priority 5 register 1716 1514h
INTPRI6 0xc024 R/W Reserved to 0x1b1a1918 1bla 1918h
INTPRI7 0xc028 R/W Reserved to Ox1fleldlc 1fle 1d1ich
Register [28:24] [20:16] [12:8] [4:0]
INTPRIO EN PRIORITY3 X PRIORITY2 X PRIORITY1 X PRIORITYO
INTPRI1 X PRIORITY7 X PRIORITY6 X PRIORITY5 X PRIORITY4
INTPRI2 X PRIORITY11 X PRIORITY10 X PRIORITY9 X PRIORITY8
INTPRI3 X PRIORITY15 X PRIORITY14 X PRIORITY13 X PRIORITY12
INTPRI4 X PRIORITY19 X PRIORITY18 X PRIORITY17 X PRIORITY16
INTPRI5 X X X X X X X PRIORITY20
INTPRIO Bit Description Initial State

EN [31:29] 000 = Disable interrupt priority other = Enable interrupt priority 000

PRIORITY N 5-bit The priority number for interrupt request source N.

X 3-bit Do not care field.

NOTES:

1. To use the programmable priority, set EN to 000b, then the priority should be determined by SW.

2. The PRIORITYn determines the priority of the corresponding interrupt source. For an instance, if you want to set the
priority of EINTO highest one, you have to write down 16(interrupt number of EINTO) on PRIORITYO .On the
contrary you want to set the priority of EINTO lowest , you should write 16 on RIORITY20. With the above way, you can
control the priority level of a certain interrupt source from 0 to 20

3. The highest priority is PRIORITYO, and the lowest priority is PRIORITY20.

ELECTRONICS

8-9

INTERRUPT CONTROLLER S3F443FX RISC MICROCONTROLLER

NOTES

8-10 ELECTRONICS

S3F443FX (Preliminary Spec)

SYSTEM MANAGER

SYSTEM MANAGER

OVERVIEW

The S3F443FX System Manager has the following functions:

Supports the big-endian mode. The internal system and the external memory are fixed as big-endian mode.

Memory controller for external memory/IO as well as internal memory.
Programmable Bank start and Bank end addresses.

Programmable access time for memory/IO access.

ELECTRONICS

9-1

SYSTEM MANAGER S3F443FX (Preliminary Spec)

SYSTEM MANAGER REGISTERS

The S3F443FX has the SFRs, Special Function Registers, to keep the system control information of system
manager as well as the configuration on peripherals. Among SFRs, there are SMRs (System Manager Register
files), to configure the external memory maps such SRAM, ROM and etc.

By utilizing the SMR, the user can specify the memory type, access cycles, required control signal timings, and
memory bank location. The SMR provides (or accepts) the control signals and addresses which are needed to
access external devices during normal system operation. Three registers control the memory banks

The S3F443FX provides up to 32Mbytes of address space and each bank provides up to 256Kbytes of memory
space because each bank can have 18 address pins.

OXO1FFFFFF
A SER A
Y- 0x01FF2000
8KB Internal SRAM
¥ _ 0x01FF0000
OXO0C3FFFF

CS2 (External memory)

¥ _ 0x00C00000

4 OXO083FFFF
CS1 (External memory)
¥Y_ 0x00800000

2 0x0003FFFF
Internal 256KB Flash ROM
A ¥ _ 0x00000000

Figure 9-1. S3F443FX Default Memory Map of the Normal Mode (In ROM Mode)

9-2 ELECTRONICS

S3F443FX (Preliminary Spec)

SYSTEM MANAGER

A

SFR .

8KB Internal SRAM :‘
256KB Internal Flash ROM :‘

CS2 (External memory)

CS1 (External memory)

CsO0
(External 256KB Flash ROM)

Ox01FFFFFF
0x01FF2000
0x01FFO0000
O0x01F3FFFF
0x01F00000
O0xO00C3FFFF

0x00C00000
0x0083FFFF

0x00800000
0x0003FFFF

0x00000000

Figure 9-2. S3F443FX Default Memory Map of External ROM Mode

The S3F443FX provides 32-MByte memory space and an internal 25-bit system address bus. You can use any of
the bank area addresses from 000_0000h to 1FF_FFFFh in 1M byte address steps. Each bank can be located
anywhere in the 32-MByte address space.

However, the user should allocate the SFRs to the upper 64-kbyte address areas, 1FFO000h -1FFFFFFh.

The configurable memory allocation in the S3F443FX is very effective in meeting user requirement. By
manipulating the SMRs, the user can easily allocate the memory area anywhere user desires and use the
consecutively connected memory space without changing the H/W.

For example, if the user wants to change the size of memory space from 1Mbytes to 2 Mbytes, the user can

expand the memory space by changing the next pointer of the bank and bank end address.

NOTE

Although the size of each bank may be more than 1M bytes, the physical bank size is max 256Kbytes
because the number of the address pins is 18 in total.

ELECTRONICS

9-3

SYSTEM MANAGER

S3F443FX (Preliminary Spec)

SYSTEM REGISTER ADDRESS CONFIGURATION REGISTER (SYSCFG)

The SMRs (System Manager Registers) have the SYSCFG (System Register Address Configuration Register),
which determines the start address (base point) of SFR (Special Function Register) files. The SYSCFG has the
start address of SFR. Because the reset value of SYSCFG is 1FF1h, the SYSCFG is mapped to the virtual

address 01FF 1000h.

Register

Offset Address

R/W

Description

Reset Value

SYSCFG

0x3000

R/W

Special function register to determine the start Ox1FF1

address

31

16 15 14 13 12

4 3 210

0

00

Start

[O] Stall Enable (ST)
When set to 1, Stall operation is enabled

0 = Disable; It is recommended for faster operation.

1 = Enable; Insert an internal wait inside the core logic when non-sequential

memaory accesses occur.

[12:4] SYSCFG Address (SFRs Start Address) (READ_ONLY)
These bits are fixed to 1FFH and it means SFRs start address is 1IFFO000h

Figure 9-3. System Register Address Configuration Register (SYSCFG)

9-4

ELECTRONICS

S3F443FX (Preliminary Spec)

SYSTEM MANAGER

EXTERNAL MEMORY CONTROL SPECIAL REGISTERS

MEMORY CONTROL REGISTERO, 1, 2

Register Offset Address R/W Description Reset Value
MEMCONO 0x4000 R/W Memory control register 0 (nCSO0) 0800 3000h
MEMCON1 0x4004 R/W Memory control register 1 (nCS1) 0c08 3000h
MEMCON2 0x4008 R/W Memory control register 2 (nCS2) 100c 3000h

[1:0] Reserved Reserved to 00b
[4:2] Tcos 000 = 0 cycles 001 =1cycles 010 =2 cycles
011 = 3 cycles 100 =4 cycles 101 =5 cycles
110 = 6 cycles 111 =7 cycles
[7:5] Tacs 000 = 0 cycles 001 =1cycles 010 =2 cycles
011 = 3 cycles 100 =4 cycles 101 =5 cycles
110 = 6 cycles 111 =7 cycles
[10:8] Tcoh 000 = 0 cycles 001 =1cycles 010 =2 cycles
011 = 3 cycles 100 =4 cycles 101 =5 cycles
110 = 6 cycles 111 =7 cycles
[13:11] Tacc Memory access time (Tacc)
000 = Disable bank 001 =2 cycles 010 = 3 cycles
011 =4 cycles 100 =5cycles 101 =6 cycles
110 =7 cycles 111 =8 cycles
If NWAIT is used, Tacc 3 3
[15:14] Reserved Reserved to 00b
[23:16] Base Address(BA) Indicates Bank start address. User can configure bank size by 1MB
unit. If bank start address is 0x0100000, the base address(BA) field
value of this bank should be 0x01. The available range is 0-Ox1e.
[31:24] End Address(EA) Indicates Bank end address. If the end address of the bank is 0x0f3ffff,

NOTES:

the end address (EA) field value of this bank should be

0x10((0f3ffffh>>20) +1). The available range is 0x1-0x1f

1. nCSO0 can be used for another external device if the In-ROM mode is selected by MD[1:0]=00b. If the nCSO0 area is
overlapped with the internal flash memory, the internal flash ROM will be read by CPU.
2. nCSO will be used for boot ROM if the external ROM mode is selected by MD[1:0]=01b.

ELECTRONICS

9-5

SYSTEM MANAGER S3F443FX (Preliminary Spec)

cructoay — M L 8 L/

_tacs

-
ADDR

tcos | P tcoh
| -
nCSn
P tacc

nOE
nWE

Figure 9-4. An Example of S3F443FX nCSn Timing Diagram

9-6 ELECTRONICS

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

INTERNAL FLASH ROM

OVERVIEW

The S3F443FX has an on-chip flash ROM, internally. For writing the data in flash ROM, the user can access the
flash ROM by a program or the external serial interface. Because of the full feature of NOR flash memory, user
can program the data in any address and in any time. The size of embedded flash memory in S3F443FX is 256K-
byte and it has the following features:

— Tool program mode (Apply VDD 3.3V externally and the dedicated serial interface)

— User program mode (Use the internal high voltage generator)
— Protection mode: Hardware protection, Read protection

The S3F443FX has 6 pins used for Flash ROM writer to read/write/erase the flash memory (Vpp 1 vy, Vop(.av),
Vss@av)y Vssqsv)y RESET, VPP, SDAT, SCLK), which is the programming by tool program mode. These six
pins are multiplexed with other functional pins. When the S3F443FX is in Vpp (MD1) = Vp_ 3.3V (internal flash

ROM test mode) & RESET (nRESET= L), these six pins can be used for flash programming in tool program
mode.

NOTE

Tool means an equipment such as a ROM writer. One of the tool which is used to program/erase the
internal flash (s3f443fx) is SPW2+.

ELECTRONICS 10-1

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

PROGRAMMING MODES

The S3F443FX flash memory control block supports two kinds of program mode:

— Tool Program Mode
— User Program Mode

Flash ROM Configuration

The 256KB Flash ROM consists of 512 sectors. Each sector consists of 512 bytes. So, the total size of flash
ROM is 512 x 512 bytes (256KB). User can erase the flash memory a sector unit at a time and write the data into
the flash memory word (4 bytes) unit at a time.

Additionally, there is the option sector, which is different from 256KB memory cell. This optional sector consists
of smart option bits and protection option bits. These bits control the protection features. These bits can be read
only by the FSOREAD/FPOREAD register.

The smart option bits are mapped to the address of 0xe38 (4bytes). The protection option bits are also mapped

to the address of Oxe3c (4 bytes).

Address Alignment

To set an address value in FMADDR register, abide by the following rules.

— Sector Erase : When erasing a sector, the low 9-bit address (FMADDR][8:0]) should be 000000000b because
the size of a sector is 512 bytes.

— Program : When programming the Flash ROM, the lower 2-bit (FMADDR[1:0]) should be 00b because data
should be written to the Flash ROM by a word unit (4 bytes).

NOTE

In the tool program mode, the low 2-bit address also should be 00b.

User Program Mode

User program mode is for erasing and writing internal flash ROM not by a tool writer but by User Program. To
enhance this, S3F443FX has the internal high voltage generator, which is replacing Vpp pin of supplying high
voltage into internal flash cells through tools, MD1 pins may be tied to Vgg or Vpp (in only MDS mode). More

details are as follows.

10-2 ELECTRONICS

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

The Program Procedure in the User Program Mode

In order to enable User Program Mode, first set FMUCON.3 (Normal Sector Program Enable) and make a
decision of using or not CPU hold function with FAMCON.7 (CPU hold bit) set. For an example, there is about
30us time required for one word data (32-bit) to be written to specific address flash cell. During that time, there
are two kinds of ways to recognize that the operation for erasing and writing of Internal flash ROM is finished.
One is CPU hold function that stops CPU not to work until all process is finished, another one is that while CPU is
running, program code continuously is being executed to check Operation start/stop bit (FMUCON.7 is cleared).
Usually CPU hold function is recommended. Especially CPU hold function must be used, when current running
code is located on Internal flash ROM. Because that during programming internal flash cell the high voltage that
goes around internal flash ROM will affect bad influence on fetching code from internal flash ROM. However
after that, write the data to be written on the data register (FMDATA) and the address into the address register
(FMADDR) respectively. As a next step, the user should write the values (Ox5a, 0xa5, 0x5a, 0xa5 in sequence)
on key registers 0/1/2/3 (FMKEYO0-3). Finally, by set appropriate configuration on flash memory control
register(FMUCON), one word data (32-bit) can be written into flash memory at the location of the specified
address. After the completion of the write operation, all FMKEY registers and the start bit in FMUCON will be
cleared. To perform the next writing operation, FMKEYO0-3 registers and FMUCON register should be written
again as before.

Sector erase procedure is the same as program procedure except setting the Flash memory data register
(FMDATA).

Tool Program Mode

The 6 pins are connected to a tool board and programmed by Serial OTP Tool (SPW). Vpp 3.3V should be
applied to the MD1 (Vpp) pin. The other modules except the internal flash ROM will be in reset state.

This mode does not support the sector erase. Instead the chip erase is supported. Two protection modes(hard
lock/read protection) can be enabled in this mode.

Flash Cell
A A A
CPU ' ——, | Address” | T Data” ! |, Address | Data

! |
+«—3 :
[}
A S — |
1 > |
|2 |
L = > l
A :
=) .
IS |

S | Tool Program
LS .

Address | [Data | || FMADDR |[FMDATA ||« Interace
[S |
b o A _______A_____ ' Normal Flash
User Program | Address Data Memory Interface
Interface
< i Data B i >
ata Bus
< \ 4 >
Address Bus

Figure 10-1. Flash Memory Read/Write Block Diagram

ELECTRONICS 10-3

INTERNAL FLASH ROM

S3F443FX (Preliminary Spec)

FLASH MEMORY SPECIAL REGISTERS

FLASH MEMORY KEY REGISTERS

To program data into the flash memory by the user programming mode, 4-key registers with Ox5a,0xa5,0x5a and
Oxa5 are required to prevent flash data from being destroyed under undesired situations.

Register Offset R/W Description Access Reset Value
FMKEYO 0x3010 W | Flash program / erase Key register0 B 00h
FMKEY1 0x3011 W | Flash program / erase Key registerl B 00h
FMKEY2 0x3012 W | Flash program / erase Key register2 B 00h
FMKEY3 0x3013 W | Flash program / erase Key register3 B 00h

NOTE: The FMKEYn register will be cleared automatically just after the completion of erase/program.

FLASH MEMORY ADDRESS REGISTER

In spite of address configuration In-ROM mode (Internal Flash ROM area: 0000 0000h—0003 FFFFh) or External
ROM (ROM:-less) mode (Internal Flash ROM area: 01F0 0000h—01F3 FFFFh), It is fixed for flash writing and

erasing address as like from 0000 0000h to 0003 FFFFh. therefore although External ROM mode is configured,
the address written to FMADDR is from 0000 0000h to 0003 FFFFh.

Register

Offset

R/W

Description

Access

Reset Value

FMADDR

0x3014

R/W

Flash program / sector erase address
register

W

0000 0000h

NOTE: To program the Option Sector area, set FMADDR to 0x0e38 (smart option) or Oxe3c (protection option) and
FMDATA by the appropriate value and start the write operation.

FLASH MEMORY DATA REGISTER

Register

Offset

R/W

Description

Access

Reset Value

FMDATA

0x3018

R/W

Flash program data register

W

0000 0000h

10-4

ELECTRONICS

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

FLASH MEMORY USER PROGRAMMING CONTROL REGISTER

The FMUCON can determine the program/erase operation. In user programming mode, the S3F443FX can
support sector erase; flash memory should be programmed by a word unit. However, It requires a consideration
in order to erase option sector area related to protection mode .When Flash erase to be used protection option is
being executed, at the same time all normal sectors are being erased as it called “chip erase”. In a consequence
Internal flash ROM is to be initialized data status. There are 4 enable bits in FMUCON, in which only one has to
be set enabled in one time. If more than 2 bits are concurrently set enabled, it will produce configuration error. In
this case, clear the error register and start the operation again.

Register Offset R/W Description Access Reset Value

FMUCON 0x301f R/W | Flash memory program/sector erase B 00h
control register

[0] Chip Erase Enable(CERS) 0 = Disable 1 = Enable
(by using protection option)

[1] Normal Sector Erase Enable (NSERS) 0 = Disable 1 = Enable

[2] Option (smart option) Sector Program 0 = Disable 1 = Enable
Enable(OSPGM)

[3] Normal Sector Program Enable (NSPGM) 0 = Disable 1 = Enable

[6:4] Not used Not used

[7] Operation Start/Stop 0 = Stop 1 = Start

This bit will be cleared automatically just after the
corresponding operation is completed.

The FMACON can control the cycle of read access for flash memory. This register setting is effective for reading
flash memory.

Register Offset R/W Description Access Reset Value
FMACON 0x3027 R/W | Flash memory access control register B 03h
[1:0] Flash Memory Access Cycles 11b= 3 cycles 10b = 2 cycle
01b= 1 cycles 00b = Not used

The internal Flash ROM access time is 25ns. So,
the access cycles will be configured as follows.
@ 40Mhz: 1 cycle

@ 80Mhz: 2 cycles

[6:2] Reserved

[7] CPU hold during Flash operation 0 = CPU working during Flash programming/erasing
In this case, the flash programming/erasing code
should not be on the internal flash ROM. The
completion of an operation is checked using
FMUCON register. The advantage is that CPU can
perform other tasks until the completion of an
operation.

1 = CPU hold during Flash programming/erasing

ELECTRONICS 10-5

INTERNAL FLASH ROM

S3F443FX (Preliminary Spec)

FLASH MEMORY ERROR REGISTER

If an error occurs during flash memory program / erase, the corresponding bit will be set. Then, user can check

the error type that had occurred.

Register Offset R/W Description Access Reset Value
FMERR 0x3023 R/W | Flash memory error register B 01h
[0] clear FMKEY / FMUCON 0: clear FMKEY and FMUCON register.
1: no operation.
This bit clears the FMKEYn & FMUCON registers. After the clear
operation, this bit will be restored to 1, automatically.
[6:1] Reserved
[7] configuration 0: No error
error(CFGERR) 1: Configuration error occurred.

This bit indicates that the command is invalid in the FMUCON register.
(For example, Program and Erase are active at the same time)

NOTE: To verify the erase/write operation, FMERR[7] will not be used. The completion of data should be verified by
reading the data.

10-6

ELECTRONICS

S3F443FX (Preliminary Spec)

INTERNAL FLASH ROM

FLASH MEMORY SMART OPTION BITS READ REGISTER

Be cautious of reading the Smart option / Protection option bits. It is possible only through FSOREAD /
FPOREAD registers because the bits of Smart option / Protection option cannot be read like normal cell.

Initial Value

Register Offset Address R/W Description
(at Fabrication)
FSOREAD 0x3028 R Smart Option bits read register MSB xxxX_Xxxx [31:24]
XXXX_XXXX
1111 1111

LSB 1111_1111b [7:0]

FLASH MEMORY PROTECTION OPTION BITS READ REGISTER

Initial Value

Register Offset Address R/W Description
(at Fabrication)
FPOREAD 0x302C R Protection Option bits read register MSB xxxX_1xxx
XXXX_XX1X
XXXX_XXX1

LSB XxxX_XxxXb

NOTE

If any bit of FMERR register is set, the user must clear the FMERR register and write (erase) the flash

memory again at first.

ELECTRONICS

10-7

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

(Start)

FMADDR <« 20-bit Address : Address set
FMDATA < 32-bit Data ; Data set
—>
| FMKEYO0-3 «0x5a, a5, 5a, a5 | ; Key value set whenenver starts

| FMUCON «0x08 |
| ; Mode select & start programming
| FMUCON «0x88 |

; Compare end address

; Error during programming

Clear FMERR

: Next address/data set

COUNT=END? Yes
Increase FMADDR —
FMDATA < 32-hit Data Finish

Figure 10-2. Normal Sector Program Flowchart in a User Program Mode

10-8 ELECTRONICS

S3F443FX (Preliminary Spec)

INTERNAL FLASH ROM

-

FMADDR <Smart option: 0x0e38

FMDATA < 32-bit Data

Protection option: 0x0e3C

| FMKEY0-3 < 0x5a, a5, 5a, a5 |

| FMUCON < 0x04 |

| FMUCON < 0x84 |

Clear FMERR

Option Address set

: Function set

; Set key value

; Mode select & start programming

; Error during programming

; If error, write one word again

Figure 10-3. Option Sector Program Flowchart in a User Program Mode

ELECTRONICS

10-9

INTERNAL FLASH ROM

S3F443FX (Preliminary Spec)

dl

[~

| FMADDR < 20-bit Address

—>

| FMKEY0-3 «9x5a, a5, 5a, a5

| FMUCON «-0x02 |

| FMUCON «-0x82 |

COUNT=END?

Clear FMERR

Yes

Increase FMADDR
FMDATA < 32-bit Data

Finish

: Set sector Start Address to be
erased

; Set key value

; Mode select & start programming

; Error during erasing?

; If error, erase again

Figure 10-4. Normal Sector Erase Flowchart

10-10

ELECTRONICS

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

| FMADDR <« 0x0e3c | ; Set Address to smart option

| FMKEYO0-3 ¢ 0x5a, a5, 5a, a5| ; Set key value

| FMUCON <« 0x01 |
| ; Mode select & start programming
| FMUCON <« 0x81 |

; Error during erasing?

Clear FMERR . If error, erase again

Figure 10-5. Full Chip Erase Flowchart (In User Program Mode)

ELECTRONICS 10-11

INTERNAL FLASH ROM S3F443FX (Preliminary Spec)

DATA PROTECTION
S3F443FX provides two kinds of protection mechanism.
— Hardware protection

— Read protection

These protection modes can be enabled by the configuration in the option sector. User can select it in the tool
program mode or the protection option bit/smart option bit in a user program mode.

The protection option bits (0x0e3c) can be enabled/disabled in terms of hardware protection and read protection.
The smart option bits (0x0e38) can adjust the area of hardware protection.

PROTECTION OPTION

Protection Bit table

FMADDR value FMDATA bit Description Initial Value (at Fabrication)
0x0e3c bit[7:0] Not used undefined
bit[8] 1: fixed value ,do not change 1
bit[16:9] Not used undefined
bit [17] 0: Enable the hardware protection 1
1: Disable the hardware protection
bit[26:18] Not used undefined
bit [27] 0: Enable the read protection 1
1: Disable the read protection
bit[31:28] Not used undefined

Read Protection bit 27

In order to prevent Internal Flash data from being read by tools, S3F443FX supports Read Projection which
disables JTAG port and hampers being read serially in the tool program equipments. Hence trying to read or
verify internal flash data in the tool program mode will result in all zero read-out. However if Hardware Protection
is not activated, user could set Read Protection in user program mode and tool program mode. In terms of user
program mode, the procedure of setting Read Protection is as follows, first set FMUCON.2(Option Sector
Program Enable Bit), decide whether to set FMACON.7,write 0xOe3c to the FMADDR, 0xQOffffff to FMDATA and
then follow the flowchart of Figure 10-3.By the tool this protection is set possible. Please refer to the manual of
serial program writer tool provided by the manufacturer. Meanwhile if the user intends to release protection,
make chip erase chip erase the option sector erase which is described in detail at Fig10-5. But it should be noted
that if Hardware Protection is not activated, Chip erase using Protection Option Option Sector Erase can release
all kinds of protections and erase all the data in the internal flash ROM as like chip erase supported by tool
program mode.

10-12 ELECTRONICS

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

Hardware Protection (hard lock) bit 17

If this function is enabled, the user cannot write or erase the data in a flash memory area and option sector area.
Hardware Protection is available in tool program mode as well as in user program mode. This protection can be
released by the chip erase execution (in the tool program mode or user program mode). Refer to smart option
about hard lock protection of blocks.

User could set Hardware Protection in user program mode and tool program mode. In terms of user program
mode, the procedure of setting Hardware Protection is that set FMUCON.2(Option Sector Program Enable Bit),
decide whether to set FMACON.7, write Ox0Oe3c to the FMADDR, OxffOOffff to FMDATA and then follow the
flowchart of Figure 10-3, Whereas in tool mode the manufacturer of serial tool writer could support Hardware
Protection. Please refer to the manual of serial program writer tool provided by the manufacturer.

ELECTRONICS 10-13

INTERNAL FLASH ROM

S3F443FX (Preliminary Spec)

SMART OPTION FOR H/W PROTECTION

In the Hardware protection function, the certain block area can be free of protection according to corresponding

smart option bits set, which are allocated in the address of smart option (0x0e38) for this function.

To enable the protection function on a certain block,

— Configure the smart option bits,

— Configure the H/W protection option bits (0xOe3c).

If the smart option bits are not configured (as default set), full 256K bytes flash memory will be protected.

FMADDR FMDATA Operation after Program Erased Value
Value Bit (initial)
0x0e38 Bit [0] 0: H/W protection is disabled at the area of 0K-16K 1

Bit [1] 0: H/W protection is disabled at the area of 16K—32K 1
Bit [2] 0: H/W protection is disabled at the area of 32K-48K 1
Bit [3] 0: H/W protection is disabled at the area of 48K—64K 1
Bit [4] 0: H/W protection is disabled at the area of 64K—80K 1
Bit [5] 0: H/W protection is disabled at the area of 80K—96K 1
Bit [6] 0: H/W protection is disabled at the area of 96K-112K 1
Bit [7] 0: H/W protection is disabled at the area of 112K-128K 1
Bit [8] 0: H/W protection is disabled at the area of 128K-144K 1
Bit [9] 0: H/W protection is disabled at the area of 144K-160K 1
Bit [10] 0: H/W protection is disabled at the area of 160K-176K 1
Bit [11] 0: H/W protection is disabled at the area of 176K—-192K 1
Bit [12] 0: H/W protection is disabled at the area of 192K—208K 1
Bit [13] 0: H/W protection is disabled at the area of 208K—224K 1
Bit [14] 0: H/W protection is disabled at the area of 224K—240K 1
Bit [15] 0: H/W protection is disabled at the area of 240K—256K 1

NOTE: The flash programming tips is as follows; Characteristic of flash memory cell, a bit can be changed from 1 to 0 but
not the vice versa by writing data into flash memory cell. If users do not want to change the certain cell, the user
only needs to write the bit as 1.

10-14

ELECTRONICS

S3F443FX (Preliminary Spec) INTERNAL FLASH ROM

FLASH MEMORY MAP

The S3F443FX can support two operating modes, the Normal operating mode(In-ROM mode) and the External
ROM(ROM:-less) mode.

In the normal operating mode, the program as well as boot program should exist in the internal flash memory. In
the External ROM(ROM-less) mode, the internal flash memory will be mapped to the other addresses as shown
in the below figure.

01FF FFFFh 01FF FFFFh
SFR Area SFR Area
01FF 2000h 01FF 2000h
SRAM Area 8K-byte SRAM Area 8K-byte
01FF 0000h 01FF 0000h
01F3 FFFFh
Flash Memory Area 256K-byte
External 01FO 0000h

Memory Area

External

Memory Area
0003 FFFFh

Flash Memory Area 256K-byte
0000 0000h 0000 0000h

Figure 10-6. Flash Memory Map according to Operating Mode

ELECTRONICS 10-15

INTERNAL FLASH ROM

S3F443FX (Preliminary Spec)

TOOL PROGRAM MODE

The tool program mode is the flash memory program mode, which uses an equipment such as a ROM writer

Table 10-1. The Pins Used to Read/Write/Erase the Flash ROM in Tool Program Mode

Pin Name Function Name | Pin No. I/O Function

RXD/GPIO15 SDAT 9 I/O [Serial DATA pin. (Output when reading, Input when
writing.) Input & push-pull output port can be assigned

TXD/GPIO14 SCLK 10 I Serial CLOCK, input only (Write speed: Max 1 MHz,
Read speed : Max 5 MHz)

MD1 VPP (VDD3.3V) 14 I When this pin is supplied with Vdd (3.3V), Tool flash
writing mode enters. Don't link it with 12.5 volt of VPP
generated from tools. The internal Voltage pumping
circuit is built in S3F443FX in replace of high voltage
outside, which can be possible to make the internal
circuit broken.

NRESET RESET 13 I Chip Initialization

VDD(3.3V) VDD(3.3V) 4,30 I 3.3Volt supplied port

VSS(3.3V) VDD(3.3V) 3,29 I 3.3Volt ground pin

VDD(1.8V) VDD(1.8V) 12,44,60 I 1.8Volt supplied port

VSS(1.8V) VSS(1.8V) 11,43,59 I 1.8Volt ground pin

10-16

ELECTRONICS

S3F443FX (Preliminary Spec)

8-BIT PWM

1 1 8-BIT PWM

OVERVIEW

The S3F443FX has an eight bit PWM (Pulse Width Modulation) counter, the clock signal supplied to 8 bit PWM
is driven from external clock divided by 1 or 2 and when the counter is stop , counting value will be retained until
the counter is restarted and running. If the counting value exceeds 256 or 127, it will be set to zero and resumed.

8 BIT resolution PWM (Pulse Width Modulation)

Clock source is driven from external clock (EXTCLK)
PWM_out shares PIN20 with A14/GPIO10

Counter is an 8 bit up counter which can reach 256 or 127
Overflow interrupt

Match interrupt

ELECTRONICS

111

8-BIT PWM

S3F443FX (Preliminary Spec)

EXTCLK/2
EXTCLK

0MUX 1

PWMCON.0

} 8-BIT COUNTER

8-BIT PWM
(PWMDAT)

4+ — — — When overflow,update

8-BIT BUFFER

1 When REG > Counter
8-BIT COMPARATOR *0* When REG <= Counter

] FPwv_our

PWMCON.4

v

Clear

PWMCON.1

MATINT

OVFINT

Figure 11-1. 8-Bit PWM Functional Block Diagram

11-2

ELECTRONICS

S3F443FX (Preliminary Spec) 8-BIT PWM

8-BIT PWM CONTROL

In order to control 8 bit PWM, first define counter size 256 (8-bit counter) or 127 (7-bit counter) by setting
corresponding register bit (PWMCON.2) and select a divider by 1/1 or by 1/2 (PWMCOM.3) As you know, PWM
signals high in the range from 0 to PWM data value and in turn low in rest of counts till reaching at the
maximum value of counter register. Please set the proper value for the PWMDAT to define pulse width and then
for initializing PWM, and then clear PWM Counter (PWMCON.1). The above setting makes PWM ready to start.
If you want to trigger PWM counter, Please set PWMCON.O0.

Required more details regarding to handling Match/ Overflow interrupt in PWM, please refer to Chapter 8
Interrupt Controller. In a brief, a match interrupt will be occurred at the point of matching with PWM counter and
PWMDATA where the pulse turns over. An overflow interrupt is taking place right on the point of rolling over.

8-BIT PWM SPECIAL REGISTERS

PWM CONTROL REGISTER

The PWM control register, PWMCON, is used to control the 8 bit PWM.

Register Offset Address R/W Description Size Reset Value
PWMCON 0x6003 R/W PWM control register B 00h
[0] PWM enable This bit is set to'l’ makes PWM run, whereas cleared to ‘0’ then PWM
stops.
[1] PWM counter clear PWMCON[1] bit is set to 1, which makes PWM counter cleared and
after one clock later automatically PWMCONTJ1] bit is returned to ‘0’,
[2] PWM counter size This bit PWMCON]2] indicates the total size of counting that reaches
selection top value of PWM counter. When it is 0, 8bits of counter register are

fully used, in other words, PWM counter is counting to 256 then rolls
over to zero. But it is 1, only 7bits is used to count 127, and then the
counter cleared to zero.

[4] PWM clock selection When PWMCON[4] is 0, PWM clock is selected as non-divided source
of the external clock. When it is 1, PWM clock is selected to the
divided one of external clock by 2

ELECTRONICS 11-3

8-BIT PWM S3F443FX (Preliminary Spec)

7 6 5 4 3 2 1 0
NOT USED

[0] PWM enable
0 =stop
1 =resume

[1] PWM counter clear
0 = default value
1 = makes the counter clear and then return to 0

[2] PWM counter bit selection
0 = 8bhit- counter(256 counting number)
1 = 7bit- counter(127 counting number)

[3] PWM counter bit selection
0 = divide external clock by 1
1 = divide external clock by 2

Figure 11-2. PWM Control Register (PWMCON)

11-4 ELECTRONICS

S3F443FX (Preliminary Spec)

8-BIT PWM

PWM DATA REGISTER

The PWM data register, PWMDAT, is used to control pulse width.

Register

Offset Address R/W Description Size

Reset Value

PWMDAT

0x6007 R/W PWM data register B

00h

PWMDAT

[7:0] PWMDAT

This field specifies the pulse width in a period decided by
counter size, for example a period is defined as 256 counter
size, pulse width can be modulated from 0~255 counter
size,The other case a period is 127, pulse width is from
0~126

Figure 11-3. PWM Data Registers (PWMDAT)

ELECTRONICS

11-5

8-BIT PWM S3F443FX (Preliminary Spec)

8-BIT PWM WAVE MODULATION

One period of 8 BIT PWM counter, if mode set 8-bit counter, is composed of 256 clocks while maximum width of
PWM Signal is 255 (Pulse width = PWMDAT-1), which generates one clock gap between one period and
another one. It means that even if PWMDAT is set maximized, there is one clock low signal included in a period.
PWM mode set as 7-bit counter has such a gap too. Look up the following wave form diagram to modulate the
proper signal.

Period1 I Period2

! i one clock gap
ovfiint /

Period0

match int

PWMDATA=0 ! !
'0<PWMDATA<256 or 127

I
PWMDATA= 256 or 127

Figure 11-4. PWM Wave

11-6 ELECTRONICS

S3F443FX (Preliminary Spec) SYSTEM CONTROL

1 2 SYSTEM CONTROL

POWER-DOWN MODE

In STOP mode, all logic will be stopped. The external interrupts (EINTO,1,2) can wake up the MCU. In IDLE
mode, the CPU and the internal flash ROM will be stopped. All enabled interrupts can wake up the MCU.

GLOBAL INTERRUPT CONTROL

All interrupt requests can be disabled by global interrupt control bit.

— UTCLK (UART & Timer Clock)

2

EXTCLK

i

CLKDIVSEL

Figure 12-1. Clock Circuit Diagram

ELECTRONICS 12-1

SYSTEM CONTROL S3F443FX (Preliminary Spec)

ENTERING THE STOP MODE
To enter the stop mode, do the following steps.

1. Setthe SYSCONIOQ] to enter the STOP mode.

2. There has to be at least 4 NOP instructions following the instruction to enter the STOP mode
3. S3F443FX is in STOP mode now.

EXITING FROM THE STOP MODE

To exit from the stop mode, the following steps should be executed. To configure the STOP exiting condition,
configure EINTMOD,EINTCON,INTMASK and SYSCON]8] registers.

1. EINT[2:0] will be issued to exit from the STOP mode.

IDLE MODE AND INTERNAL FLASH ROM

In the IDLE mode, the internal flash ROM will be stopped together. Just after exiting the IDLE mode, the interval
time (32 MCLKSs) for start-up time of the internal flash ROM should be available. This 32 MCLK interval is
inserted automatically by H/W logic.

12-2 ELECTRONICS

S3F443FX (Preliminary Spec)

SYSTEM CONTROL

SYSTEM CONTROL REGISTER

The system control register (SYSCON) can be used to control the system operation of chip.

Register Offset Address R/W Description Reset Value
SYSCON 0xd002 R/W | System Control register 000h
[0] STOP bit This bit determines whether the stop mode is enabled or disabled. In
STOP mode, all logic will be stopped. The external interrupts
(EINTO,1,2) can wake up MCU. This bit will be cleared automatically.
[1] IDLE bit This bit determines whether the idle mode is enabled or disabled. In
IDLE mode, the CPU and the internal flash ROM will be stopped. All
enabled interrupts can wake up MCU. This bit will be cleared
automatically
[2] UNUSED
[5:3] CLKDIVSEL The clock(EXTCLK) is divided by 1,2,8,16, or 1024. This bit
determines the divide ratio.
000: 1/16, 001:1/8, 010:1/2 011:1/1 100:1/1024
[6] Basic Timer stop bit 0: resume 1: stop bit
[7] UART stop bit 0: resume 1: stop bit
[8] Global Interrupt Control Global Interrupt Enable bit. This bit can mask all interrupt request.

When 0, all interrupt request will not be acceptable.

0: Disable all interrupt request
1: Enable the interrupt requests, which are enabled on INTMASK.

NOTE: To make CPU enter into STOP/IDLE mode perfectly, there have to be 4 NOP instructions after the activation of the
Stop or Idle mode.

ELECTRONICS

12-3

SYSTEM CONTROL S3F443FX (Preliminary Spec)

NOTES

12-4 ELECTRONICS

S3F443FX (Preliminary Spec) SPECIAL FUNCTION REGISTERS

SPECIAL FUNCTION REGISTERS

OVERVIEW

This chapter describes the S3F443FX Special function registers. 64KB SFR block has an 8KB SRAM area for
stack or data memory and special registers to control peripheral blocks.

'y : _ _ 2 OXOXLffffff
Special Function Registers \
Y- 0x01ff2000
8KB Internal SRAM
Y 0x01ff0000
0x00C3ffff

CS2 (External memory)

Y 0x00c00000

0x0083ffff
CS1 (External memory)

Y 0x00800000
0x0003ffff

Internal 256KB Flash ROM
A Y 0x00000000

Figure 13-1. S3F443FX Default Memory Map of the Normal Mode (In-ROM mode)

A A FFFFH (Offset)
Peripheral Control Registers

2000H (Offset)
A 1FFFH (Offset)

.l

SRAM (8KB)
A A 0000H (Offset)

Figure 13-2. Special Function Register

ELECTRONICS 13-1

SPECIAL FUNCTION

S3F443FX (Preliminary Spec)

S3F443FX SPECIAL REGISTERS

Table 13-1. S3F443FX Special Registers

Group Registers Offset R/W Description Access | Reset Value
System SYSCFG 0x3000 R/W | System Configuration register W 1fflh
Manager | MEMCONO | 0x4000 R/W | Memory Bank O control register W 0800 3000h

MEMCON1 | 0x4004 R/W | Memory Bank 1 control register W 0c08 3000h
MEMCONZ2 | 0x4008 R/W | Memory Bank 2 control register W 100c 3000h
Internal FMKEYO 0x3010 W | Flash program/erase Key registerO B 00h
Flash FMKEY1 0x3011 W | Flash program/erase Key registerl B 00h
ROM FMKEY2 0x3012 W | Flash program/erase Key register2 B 00h
FMKEY3 0x3013 W | Flash program/erase Key register3 B 00h
FMADDR 0x3014 R/W | Flash user program address register W 0 0000h
FMDATA 0x3018 R/W | Flash user program data register W 0000 0000h
FMUCON 0x301f R/W | Flash program/erase control register B 00h
FMACON 0x3027 R/W | Flash access cycle control register B 03h
FMERR 0x3023 R/W | Flash error register B 01h
FSOREAD 0x3028 R Smart Option bits read register W 0000 ffffh
FPOREAD 0x302C R Protection Option bits read register W 0802 01ffh
UART LCON 0x5003 R/W | UART line control register B 00h
UCON 0x5007 R/W | UART control register B 00h
USSR 0x500b R UART status register B cOh
TBR 0x500f W | UART transmit buffer control register B xxh
RBR 0x5013 R UART receive buffer control register B Xxh
UBRDR 0x5016 R/W | UART baud rate divisor register H 0000h
PWM PWMCON 0x6003 | R/W | PWM Control Register B 00h
PWMDAT 0x6007 | R/W | PWM data B FFh

NOTE: B: byte (8-bit), H: half-word (16-bit), W: word (32-bit)

13-2

ELECTRONICS

S3F443FX (Preliminary Spec)

SPECIAL FUNCTION REGISTERS

Table 13-1. S3F443FX Special Registers (Continued)

Group Registers Offset R/W Description Access | Reset Value
Timer O TODATA 0x9000 R/W | Timer O data register H ffffh
TOPRE 0x9002 R/W | Timer O prescaler register B ffh
TOCON 0x9003 R/W | Timer O control register B 00h
TOCNT 0x9006 R Timer O counter register H 0000h
Timer 1 T1DATA 0x9010 R/W | Timer 1 data register H ffffh
T1PRE 0x9012 R/W | Timer 1 prescaler register B ffh
T1CON 0x9013 R/W | Timer 1 control register B 00h
T1CNT 0x9016 R Timer 1 counter register H 0000h
Timer 2 T2DATA 0x9020 R/W | Timer 2 data register H ffffh
T2PRE 0x9022 R/W | Timer 2 prescaler register B ffh
T2CON 0x9023 R/W | Timer 2 control register B 00h
T2CNT 0x9026 R Timer 2 counter register H 0000h
Timer 3 T3DATA 0x9030 R/W | Timer 3 data register H ffffh
T3PRE 0x9032 R/W | Timer 3 prescaler register B ffh
T3CON 0x9033 R/W | Timer 3 control register B 0000h
T3CNT 0x9036 R/W | Timer 3 counter register H 00h
Timer 4 TADATA 0x9040 R/W | Timer 4 data register H ffffh
TAPRE 0x9042 R/W | Timer 4 prescaler register B ffh
TACON 0x9043 R/W | Timer 4 control register B 00h
TACNT 0x9046 R/W | Timer 4 counter register H 0000h
Timer 5 T5DATA 0x9050 R/W | Timer 5 data register H ffffh
T5PRE 0x9052 R/W | Timer 5 prescaler register B ffh
T5CON 0x9053 R/W | Timer 5 control register B 00h
T5CNT 0x9056 R/W | Timer 5 counter register H 0000h

NOTE: B: byte (8-bit), H: half-word (16-bit), W: word (32-bit)

ELECTRONICS

13-3

SPECIAL FUNCTION S3F443FX (Preliminary Spec)

Table 13-1. S3F443FX Special Registers (Continued)

Group Registers | Offset | R/IW Description Access | Reset Value
BT & BTCON 0xa002 | R/W | Basic timer control register H/B 0000h
WDT BTCNT 0xa007 R | Basic timer counter register B 00h
I/O Port PO 0xb000 | R/W | Port O data register B xxh

P1 0xb001 | R/W | Port 1 data register B xxh
P2 0xb002 | R/W | Port 2 data register B xh
EINTCON | 0xb018 | R/W | Port 2 external Interrupt Control register B Oh
EINTMOD | OxbOla | R/W | Port 2 external Interrupt Mode register B 00h
I/O Port POCON 0xb010 | R/W | Port O control register B 00h
Control P1CON 0xb012 | R/W | Port 1 control register H 0000h
Register | P2CON 0xb014 | R/W | Port 2 control register B Oh
I/O Port POPUR 0xb015 | R/W | Port O pull-up resister control register B 00h
Resistor | P1PUDR 0xb016 | R/W | Port 1 pull-up/down resister control. B ffh
Control P2PUR 0xb017 | R/W | Port 2 pull-up resister control register B ffh
Interrupt | INTMODE | 0xc000 | R/W [Interrupt Mode register W xxx0 0000h
Contro- INTPEND | Oxc004 | R/W | Interrupt Pending register W xxx0 0000h
ller INTMASK | 0xc008 | R/W | Interrupt Mask register W xxx0 0000h
INTPRIO 0xc00c | R/W | Interrupt priority O register W 0302 0100h
INTPRI1 0xc010 | R/W | Interrupt priority 1 register W 0706 0504h
INTPRI2 0xc014 | R/W | Interrupt priority 2 register W ObOa 0908h
INTPRI3 0xc018 | R/W | Interrupt priority 3 register W 0fOe 0dOch
INTPRI4 0xcOlc | R/W | Interrupt priority 4 register W 1312 1110h
INTPRI5 0xc020 | R/W | Interrupt priority 5 register W 1716 1514h
System SYSCON | 0xd002 | R/W | System Control register H 000h
Control PLLCON 0xd004 | R/W | System Control register W 38080h
Internal SRAM 0x0000 | R/W | Internal 8KB SRAM area B,HW xxh
SRAM — Ox1fff

NOTE: B: byte (8-bit), H: half-word (16-bit), W: word (32-bit)

13-4 ELECTRONICS

S3F443FX (Preliminary Spec)

ELECTRICAL DATA

ELECTRICAL DATA

DC ELECTRICAL CHARACTERISTICS

Table 14-1. Absolute Maximum Ratings

(To= 25°C)

Parameter Symbol Conditions Rating Unit

Supply voltage 1.8V Vpp - 2.7 \Y
3.3V Vpp 3.8
Input voltage VN - 3.8 \
Latch up current I atch - + 200 mA
Storage temperature Tsre - - 65to + 150 °C
ELECTRONICS 14-1

ELECTRICAL DATA

S3F443FX (Preliminary Spec)

Table 14-2. D.C. Electrical Characteristics

(TA = 0°Cto +70°C, Vpp = 2.7-3.6V)

Parameter Symbol Conditions Min Typ Max Unit
Operating Voltage Vop Fosc=80MHz 64Pins 2.7 - 3.6 \Y
Operating temperature Tp 0 - 70 °C
High level input voltage Vi MD21,MDO,nRESET,EXTCLK 2.0 - - \Y

Schmitt Pad,COMS pad
Low level input voltage Vi MD1,MDO,nRESET,EXTCLK - - 0.8 \
Schmitt Pad,COMS pad
High level input current 1 lH1 V,y =Vss, no pull-up resistor -10 - 10 UA
High level input current 2 k2 V|y =Vss, with pull-up resistor 10 33 60 UA
Low level input current 1 i1 V |y =Vpp: no pull-down resistor -10 - 10 UA
Low level input current 2 liLo V\\=Vpp: With pull-down resistor -60 -33 -10 UA
High level output voltage Vou Port0,portl,port2,A0-A11,D0-D7 2.2 - - \Y
Low level output voltage VoL Port0,port1,port2,AO-Al11, DO-D7 - - 0.4 \Y
Operating current Ipp1 | Vop = 3.3V, Vppi, =1.8V - 50 mA
IDLE mode current Ipp2 | Vpp = 3.3V, Vppi, =1.8V - 10 mA
STOP mode current Ibps | Vpp = 3.3V, Vppi, =1.8V - 1 mA
Internal core voltage Vppin | Volt for core block 1.65 18 1.95 \
NOTE: nRESET (pin #13) has 250Kohm pull-up resistor. So typical high level input current is 13.2 uA.
14-2 ELECTRONICS

S3F443FX (Preliminary Spec)

ELECTRICAL DATA

Table 14-3. Typical Quiescent Supply Current on Vp @IDLE Mode, Flash Tacc=1

Power Mode 30MHz | 40MHz | 50MHz 60MHz 70MHz | 80MHz | Unit
IDLE Core_1.8 0.056 0.073 0.090 0.106 0.121 0.136 mA
System_3.3 0.207 0.226 0.185 0.174 0.184 0.194 mA

IDLE Current 0.263 0.299 0.275 0.280 0.305 0.330 mA

NOTE: The above current measurement is done in the case that the code is running on internal flash ROM & internal

SRAM.

Table 14-4. Typical Quiescent Supply Current on Vp @IDLE Mode, Flash Tacc=2

Power Mode 30MHz 40MHz 50MHz 60MHz 70MHz 80MHz Unit
IDLE Core_1.8 2.529 3.3645 4.1800 4.994 5.822 6.62 mA
System_3.3 0.1958 0.2258 0.2055 0.204 0.1836 0.15 mA

IDLE Current 2.7248 3.5903 4.3855 5.198 6.0056 6.77 mA

NOTE: The above current measurement is done in the case that the code is running on internal flash ROM & internal
SRAM.
Table 14-5. Typical Quiescent Supply Current on Vo @STOP Mode

Power Mode 30MHz 40MHz 50MHz 60MHz 70MHz 80MHz Unit
STOP Core_1.8 0.056 0.073 0.090 0.106 0.121 0.136 mA
System_3.3 0.207 0.226 0.185 0.174 0.184 0.194 mA

STOP Current 0.263 0.299 0.275 0.280 0.305 0.330 mA

NOTES:

1. The above current measurement is done in the case that the code is on internal flash ROM & internal SRAM.
2. The STOP mode current consumption is not independent to the internal flash memory Tacc.

ELECTRONICS

14-3

ELECTRICAL DATA S3F443FX (Preliminary Spec)

AC ELECTRICAL CHARACTERISTICS

EXTCLK

tMCLKDLY
MCLK
(internal clock)

Figure 14-1. EXTCLK and MCLK (Internal Clock) When PLL is not Used.

NOTE

In the figure 14-1, MCLK is the simulated waveform for the case of not using PLL. Because the
MCLK can't be shown, all the timing diagram should be drawn only for the case that EXTCLK is
signaled by an external clock source without using PLL. Also, all the timing diagram are drawn using
the EXTCLK instead of MCLK as a reference clock because only the EXTCLK can be shown.

14-4 ELECTRONICS

ELECTRICAL DATA

S3F443FX (Preliminary Spec)

EXTCLK

ADDR
nCSs

nOE

nWAIT

:3)

=0.tacc

1,tacs=0.tcon

cos™

Figure 14-2. SRAM Read Access Timing without nWAIT (t

EXTCLK

ADDR
nCSs

o)
E=3 R < S A S
J: i
%---.‘v 8- - -
v S u
|||||||| S F=p---)-
.Mb 4 o
A L £, 17
Nl s &g e
Z a
IIIIIIIIIIII [7, J R Ry,
Y__leE
™ ﬁ Awn
_n_p ||||||||||| c--—-—--1---
3} 2
3 2
||||||| Bl b _____|___
w
ol _ ____ | __Lb________1___
L = =
o < 3
c W <
c =
a

:2)

3, external wait

1, taAcs=0: teon=0, tacc™

cos™

Figure 14-3. SRAM Read Access Timing with nWAIT (t

14-5

ELECTRONICS

S3F443FX (Preliminary Spec)

EXTCLK

ELECTRICAL DATA

%)
1
()
|||||||||||||||||||||||||||||||||| O
= -ttt
(=}
T
|||||||||||||||||||||||||||||||||| H - Y S | S
o}
0
|||||||||||||||||||||||||||||||||| (=)
n —=——--F--r--7-"- {——~ - 1---
(]
A @
< W T [a]
|||||||||||||||||||||||||||||||||| A _ ||||||-||..|||C.||||.M||||||||||.W|..|||
— h— =
3
b v v 2 =
(@) o i
.................................. LI S e e
a = - R bt P - E---H---Alm. |||||||||
||||||||||||||| EIIIIIIIIII|M|||II < _ |.W|II-I%.II-I|-WIIIL. P I = I AN
£ = 2 = = 0 =
v v = c - s |eg
.«. E \ 4 Z m
= PR I S —— - - -} - -} - o e 4 Y ____ 17, J R R .
|||||||||||||||||||||||||||||| — - — R I I (U SN |||A|A|M.IIIIIIIII
5 3 = e ﬁ =
el il A (1 T e il it =g S ——r--fF--7-----—A wF=—-1--*F--r- -1 -
S I £ 0 o
8 E o s |5
= 31z
............. % M N N IS ﬂ L PRE LB
............. ﬁ 2 i T S B [e o
[&] v
||||||||||||||||||||||||||| o _ R S ISR DU A DD R S —— i R
o 0¥ oy
BBV I R = N o 5 0 S T
-Rl%----y = B -Rl%-l-y
N IE . > 2l |8
S =< =
[n'd
x 0 L = < <
a O = < = 2 X X 8 < = 2
o < < . aQ = < <
[a) c = b < _m [a) c c = <
< = = 3 S < = =
S = f 5
o
5
i
(I

ELECTRONICS

3, external wait

cos™L tacs=0: tcon=0, tacc™

Figure 14-5. SRAM Write Access Timing with nWAIT (t

14-6

ELECTRICAL DATA

S3F443FX (Preliminary Spec)

EXTCLK

—
/
IIIIIIIIII e — -
1l
3 T~ 0
S IS IO, 25 R I R, e __d_-_
g
- IIIAI o
= o c
IIIIIIIIIIIII © =_Jd_ | =_____1___
Y 2
N © I+ S
(%))
||||||||||||||||||||||||||| e Tt
<
o P =
||||||||||||| /TT E R
4]
0
S
|||||||| H o D U D R
1l
— 0
0
||||||| R s T S
x %) w = 7
@) < c = <
< = M
o

Figure 14-6. SRAM Read Access Timing with nWAIT

(t

3, external wait = 2)

0, tacs=1, teon=1, tacc™

cos™

EXTCLK

—
— ~—
@
_ | g------
o
- IIIAI o
=0 o
||||||||||||| O E T
o~ O o
4 £
©
||||||||||||||||||||||||||| N _f___
=
o P M
||||||||||||| [T P N EUNN— NN RIS
4]
0
S
|||||||| s DS N D R
1l
— "
0
|||||||| I R R i St Bt
o 0 L = m
a (@) (@) < =
@) < c = <
< = M
o

Figure 14-7. SRAM Read Access Timing with nWAIT
at the Last Cycle of Half-Word/Word Access and Byte Access

3, external wait = 2)

cos=0: tacs=1, tcon=0: tacc™

(t

14-7

ELECTRONICS

ELECTRICAL DATA

S3F443FX (Preliminary Spec)

[}

ADDR

—

nCSs

[} [}

[} [}

]]

l l

| |

]]

[} [}

[} [}

[} [}

: tAcc;S ! 2 wait | i i

' l l | cycle) l l

nOE b\ l l l l | |
. l l l l l l . l l

[} [} [} [} [} [} [} [} [} [}

[} [} [} [} [} [} [} [} [} [}

NWAIT i i i i\ | :/ i i i i
[} [} [} [} [} [} [} [} [} [}

t t t t t]]]]
R A

! ! ! NWAIT Sampling Points ! ! !

ISUUP S S S N R I e oo a U R B
R) ; ; ; ; ; ! N ; ;
[} [} [} [} [} [}]] [} [} [}

Figure 14-8. SRAM Read Access Timing with nWAIT
During Half-Word/Word Access, except the Last Cycle
(tcos=0, tacs=1, teon=0, tacc=3, external wait = 2)

I I L I
|
EXTCLK !

(Internal Clock) !

nWAIT

@ Internal nWAIT

DATA(R)

@ Data Fetch Time

NOTES:
1. External nWAIT is synchronized at the falling edge of EXTCLK.

That is, CPU recognizes the internal NWAIT as external memory wait signal.
2. Internal CPU fetches the data at the falling edge of internal clock, MCLK.

Figure 14-9. NWAIT Data Fetch Timing

14-8

ELECTRONICS

S3F443FX (Preliminary Spec)

ELECTRICAL DATA

Table 14-6. Timing Constants
(Vpp=2.7Vv-3.6V, Tp = 0°C to + 70 °C, operating frequency = 80 MHz)

Parameter Symbol Min Typ Max Unit
EXTCLK input frequency when not using PLL fexTeLK 0 - 80 MHz
EXTCLK to MCLK delay time t\McLKDLY 5 ns
Address delay time tADDR - 16
nCS (chip select) delay time tnes - 14
nOE (read enable) delay time tNoE - 14
nWE (write enable) delay time tywEe - 14
NWAIT sampling setup time tawTs 0 -
NWAIT sampling hold time tNwTH 10 -
Write data delay time two - 14.5
Data setup time ths 0
Data hold time ton 10

Table 14-7. AC Electrical Characteristics for Internal Flash ROM

(TA = 0°C to+70°C,Vpp = 2.7V-3.6V)

Parameter Symbol Conditions Min Typ Max Unit
Programming Ftp 30 40 50 nS
time (1)

Chip Erasing Ftpl 37 50 63 mS
Time (2)
Sector Erasing Ftp2 37 50 63 mS
time (3)
Data access time Ftrs - 25 - nS
Number of writing FNwe - - 1,000 Times
/erasing

NOTES:

1. The programming time is the time during which one word (32-bit) is programmed.

2. The Chip erasing time is the time during which all 256K-byte block is erased.

3. The Sector erasing time is the time during which all 512-byte block is erased.

4. The chip erasing is available in Tool Program Mode only.

ELECTRONICS 14-9

ELECTRICAL DATA S3F443FX (Preliminary Spec)

NOTES

14-10 ELECTRONICS

S3F443FX RISC MICROCONTROLLER MECHANICAL DATA

MECHANICAL DATA

PACKAGE DIMENSIONS

- ARAAAAAERARAAE
- :
| U

#

0.20 -0.03
(omeese ||| ™ elowumr]
‘_

A A / OIT
\ o
Shem ﬁmmﬂﬂﬂmmﬂﬂﬁﬂﬂﬂ%
A
0.45-0.75

=

[
: : +0.07

1.60 MAX
1.40 + 0.05
0.09-0.20

-
»i

0.10 £ 0.05

Figure 15-1. 64-LQFP-1010 Package Dimensions (unit: mm)

ELECTRONICS 15-1

MECHANICAL DATA S3F443FX RISC MICROCONTROLLER

NOTES

15-2 ELECTRONICS

