DECODER FOR CD-MP3/CD-ROM

INTRODUCTION

S5L9274 is a single chip ISO/IEC 11172-3 Layer III audio decoder, capable of decoding compressed elementary bit stream as specified in ISO/IEC standard. As a decoder for the DISC-MAN, it can provide you more small and cheaper solution for MP3 player application.

S5L9274 is low voltage IC that can read MP3 and CD-ROM format discs and can be applied to various products.

64-LQFP-1010

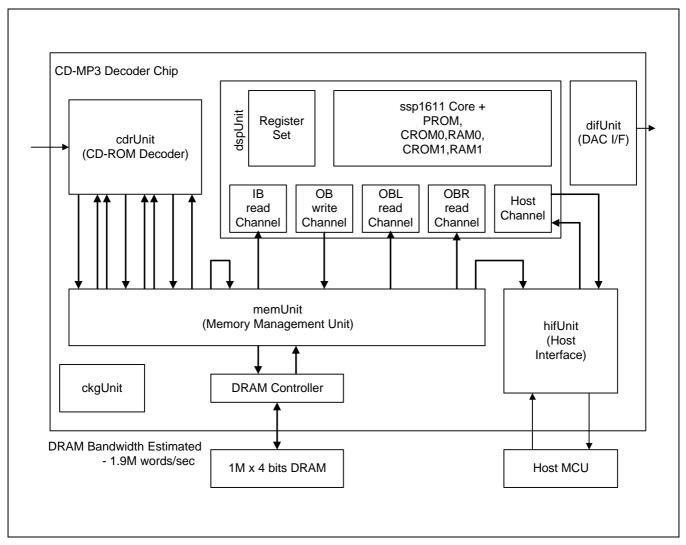
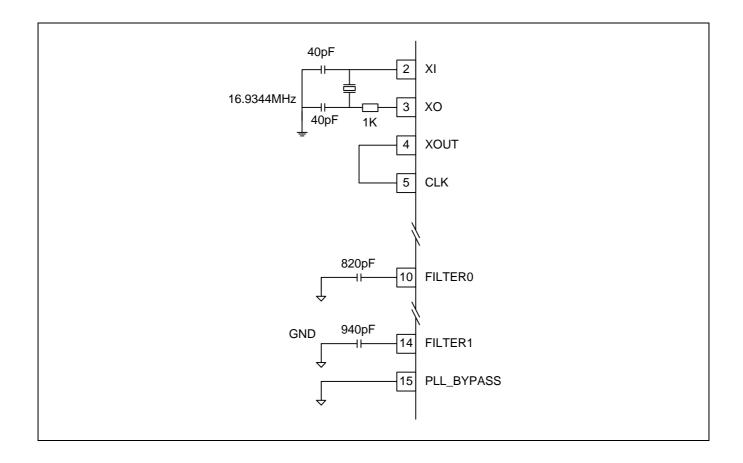
FEATURES

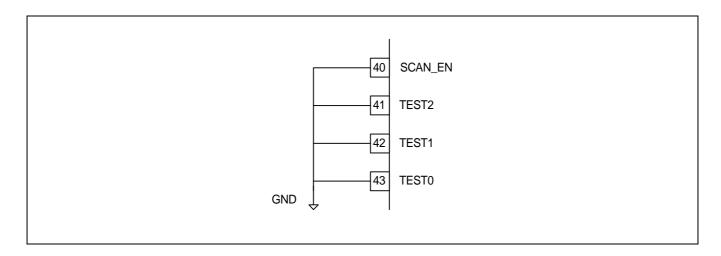
- Single-chip ISO/IEC 11172-3 Layer III Audio Decoder
- Support All MPEG Bit Rates including free format
- Support 32/44.1/48 kHz Sampling Frequency for MPEG Bit Stream
- Support Single Channel, Dual Channel, Stereo and Joint Stereo
- Any Combination of Intensity Stereo & MS Stereo is supported
- Serial Host Interface
- Simple Software for Micom
- Support Off-chip DAC interface
- Anti Shock Memory Controller
- Power Save Mode : POWER-DOWN, SLEEP (when paused)
- Use of Standard Crystal 16.9344MHz
- 16.9344MHz Clock Output Port
- Soft Mute Function
- CDFS(CD-ROM File System) Decoding
- Low Power Dissipation: 171mW @3.0 volts

ORDERING INFORMATION

Device	Package	Supply Voltage	Operating Temperature
S5L9274X01-E0R0	64-LQFP-1010	2.8V — 3.3V	-20°C — +75°C

FUNCTIONAL BLOCK DIAGRAM


Figure 1. Functional Block Diagram of S5L9274

APPLICATION DIAGRAM

Test Pin Connection

PIN CONFIGURATION

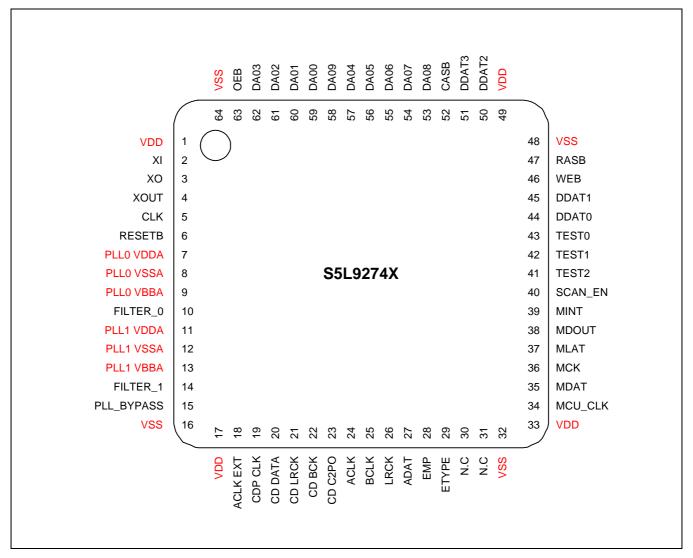


Figure 2. 64 pin Low profile Quad Flat Package (LQFP)

PIN DESCRIPTION

Pin No	Symbol	I/O	Description
1	VDD	Р	Digital Power
2	XI	ı	X'tal Oscillator input(16.9344MHz)
3	XO	0	X'tal Oscillator output
4	XOUT	0	Buffered Output of XO
5	CLK	ı	System Clock input
6	RESETB	I	System Reset Active LOW
7	PLL0 VDDA	Р	Analog Power for PLL0
8	PLL0 VSSA	G	Analog Ground for PLL0
9	PLL0 VBBA	G	Analog Ground for PLL0
10	FILTER_0	0	External Capacitor port for PLL0
11	PLL1 VDDA	Р	Analog Power for PLL1
12	PLL1 VSSA	G	Analog Ground for PLL1
13	PLL1 VBBA	G	Analog Ground for PLL1
14	FILTER_1	0	External Capacitor port for PLL0
15	PLL_BYPASS	I	Tied to GROUND.
16	VSS	G	Digital Ground
17	VDD	Р	Digital Power
18	ACLK EXT	I	External Audio Clock source
19	CD CLK	0	Clock Output for CD DSP IC
20	CD DATA	ı	Data from CD DSP IC
21	CD LRCK	I	LRCK from CD DSP IC
22	CD BCK	I	BCK from CD DSP IC
23	CD C2PO	ı	C2PO from CD DSP IC
24	ACLK	0	Audio clock to DAC clock input
25	BCLK	0	BCLK to DAC
26	LRCK	0	LRCK to DAC
27	ADAT	0	Data to DAC
28	EMP	0	Emphasis On/Off
29	ETYPE	0	Indicates emphasis type
30	N.C	-	No used
31	N.C	-	No used
32	VSS	G	Digital Ground

PIN DESCRIPTION (Continued)

Pin No	Symbol	I/O	Description
33	VDD	Р	Digital Power
34	MCU_CLK	0	Clock Output for External MCU
35	MDAT	I	Data input pin
36	MCK	I	Micom Clock pin
37	MLAT	I	Data Latch input pin
38	MDOUT	0	Data from CD-MP3 to MCU
39	MINT	0	Interrupt output to MCU
40	SCAN_EN	I	Scan Test enable
41	TEST2	I	Tied to GROUND.
42	TEST1	I	Tied to GROUND.
43	TEST0	I	Tied to GROUND.
44	DDAT0	В	Data0 BUS for External DRAM
45	DDAT1	В	Data1 BUS for External DRAM
46	WEB	0	Write Enable for External DRAM
47	RASB	0	Row Address for External DRAM
48	VSS	G	Digital Ground
49	VDD	Р	Digital Power
50	DDAT2	В	Data2 BUS for External DRAM
51	DDAT3	В	Data3 BUS for External DRAM
52	CASB	0	Column Address for External DRAM
53	DA08	0	Address Output8 for DRAM
54	DA07	0	Address Output7 for DRAM
55	DA06	0	Address Output6 for DRAM
56	DA05	0	Address Output5 for DRAM
57	DA04	0	Address Output4 for DRAM
58	DA09	0	Address Output9 for DRAM
59	DA00	0	Address Output0 for DRAM
60	DA01	0	Address Output1 for DRAM
61	DA02	0	Address Output2 for DRAM
62	DA03	0	Address Output3 for DRAM
63	OEB	0	Output to make data output to " Hi-Z" at DRAM
64	VSS	G	Digital Ground

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ra	Unit	
power supply voltage	VDD	-0.3 — + 3.8		٧
Input supply voltage	VI	3.3V I/O -0.3 — VDD + (V
		5V-tolerant	- 0.3 — 5.5	
Operating temperature	TOPR	0 — 70		°C
Storage temperature	TSTG	-40 —	-40 — 125	

ELECTRICAL CHARACTERISTICS

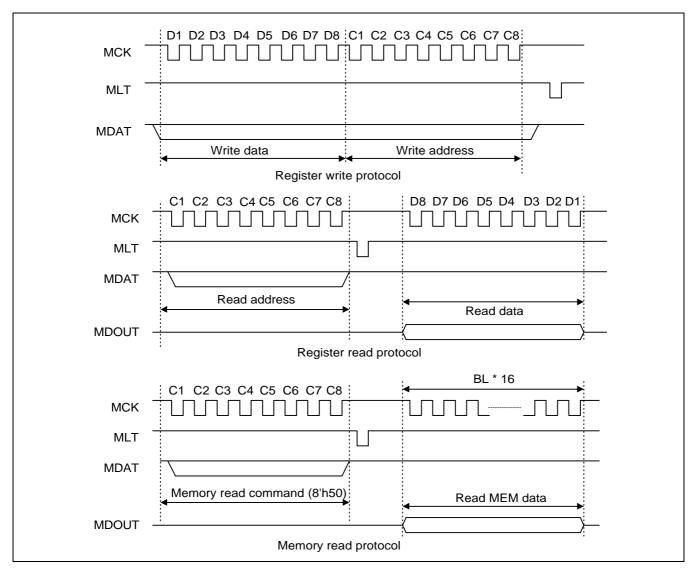
Pin Number	Description
Pin 10, Pin11	Analog Normal Output Pad with Resistor 50ohm and Separate Bulk Bias
Pin2, Pin3	Oscillator Cell with Enable and 1Mohm Resistor
Pin4,Pin19,Pin34,Pin38,Pin39,Pin28,Pin29	LVCMOS Normal Output Buffer
Pin18,Pin5	LVCMOS-Schmit Trigger Level Input Clock Driver
Pin20,Pin21,Pin22,Pin23	5V-tolerant LVCMOS Level Input Buffer
Pin6,Pin15,Pin40,Pin41,Pin42,Pin43	5V-tolerant LVCMOS Schmitt Trigger Level Input Buffer
Pin35,Pin36,Pin37	LVCMOS Schmitt Trigger Level Input Buffer
Pin44,Pin45,Pin50,Pin51	LVCMOS Tri-State Bi-Directional buffer with Pull-Up
Pin24,Pin25,Pin26,Pin27,Pin46,Pin47,Pin52,Pin53,Pin 54,Pin55,Pin56,Pin57,Pin58,Pin59,Pin60,Pin61,Pin62, Pin63	Tri-State Output Buffer

 V_{DD} = $3.3\pm0.3V,\,\text{TA}$ = 0 to 70°C (In case of normal IO)

Symbol	Parameter	Condition	Min	Type	Max	Unit
V _{IH}	High level input voltage (LVCMOS interface)		2.0			V
V_{IL}	Low level input voltage (LVCMOS interface)				0.8	V
VT	Switching threshold	LVCMOS		1.4		
VT+	Schmitt trigger, positive-going threshold	LVCMOS			2.0	V
VT-	Schmitt trigger, negative-going threshold	LVCMOS	0.8			
	High level input current					
I_{IH}	Input buffer	$V_{IN} = V_{DD}$	-10		10	uA
	Input buffer with pull-up		10	30	60	
	Low level input current					
I_IL	input buffer		-10		10	uA
	Input buffer with pull-up	$V_{IN} = V_{SS}$	-60	-30	-10	
	High level output voltage					
V_{OH}	Type B1 to B24 Note2	I _{OH} = -1uA	V _{DD} -0.05			
	Type B1	I _{OH} = -1mA	2.4			V
	Type B2	I _{OH} = -2mA				
	Low level output voltage					
V_{OL}	Type B1 to B24Note2	I _{OH} = 1uA			0.05	
	Type B1	I _{OH} = 1mA			0.4	V
	Type B2	I _{OH} = 2mA				
I _{OZ}	Tri-state output leakage current	$V_{OUT} = V_{SS}$ or V_{DD}	-10		10	uA
I _{os}	Output short circuit current	$V_{DD} = 3.6V, V_{O} = V_{DD}$			210	mA
		$V_{DD} = 3.6V, V_{O} = V_{SS}$	-170			
I _{DD}	Quiescent supply current	$V_{IN} = V_{SS}$ or V_{DD}			100 ^{note3}	uA
C _{IN}	Input capacitanceNote4	Any Input and Bidirectional Buffers			4	pF
C _{OUT}	Output capacitanceNote4	Any Output Buffer			4	pF

 $\rm V_{DD}$ = 3.3 \pm 0.3V, VEXT = 5+ 0.25V, TA = 0 to 70°C (In case of 5V-tolerant IO)

Symbol	Parameter	Condition	Min	Туре	Max	Unit
V _{IH} Note1	High level input voltage (LVCMOS interface)		2.0			V
V _{IL} Note1	Low level input voltage (LVCMOS interface)				0.8	V
VT	Switching threshold	LVCMOS		1.4		
VT+	Schmitt trigger, positive-going threshold	LVCMOS			2.0	V
VT-	Schmitt trigger, negative-going threshold	LVCMOS	0.8			
	High level input current					
I _{IH}	Input buffer	$V_{IN} = V_{DD}$	-10		10	uA
	Input buffer with pull-up		10	30	60	
	Low level input current					
I _{IL}	input buffer		-10		10	uA
	Input buffer with pull-up	$V_{IN} = V_{SS}$	-60	-30	-10	
I _{OZ}	Tri-state output leakage current	$V_{OUT} = V_{SS}$ or V_{EXT}	-10		10	uA
Ios	Output short circuit current	V_{DD} =3.6V, V_{O} = V_{DD}			55	mA
		$V_{DD} = 3.6V, V_{O} = V_{SS}$	-55			
I _{DD}	Quiescent supply current	$V_{IN} = V_{SS}$ or V_{DD}			100 ^{Note3}	uA
C _{IN}	Input capacitance	Any Input and Bidirectional Buffers			4	pF
C _{OUT}	Output capacitance	Any Output Buffer			4	pF


NOTES:

- 1. All 5V-tolerant input have less than 0.2V hyterisis.
- 2. Type B1 means 1mA output driver cells, and Type B6/24 means 6mA/24mA output driver cells.
- 3. This value depends on the customer design.
- 4. This value exclude package parasitics.

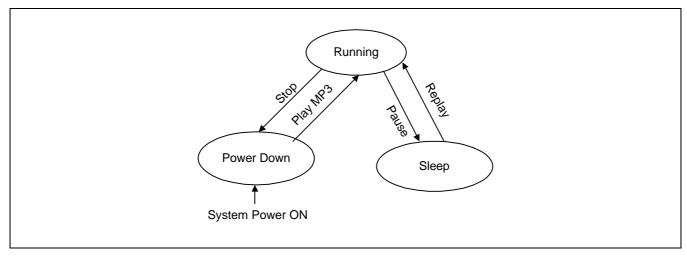
OPERATION DESCRIPTION

IO TIMING SPECIFICATION

MCU Interface

Description for the memory read protocol

- 1. Write Start Address to H_MEM_ADDR_HIGH (8'hf0), H_MEM_ADDR_MID (8'hf1), and _MEM_ADDR_LOW (8'hf2).
- 2. Write BL(Burst Length) to H_MEM_ADDR_BL (8'hf3). The BL is programmable between and 63. The default value of the H_MEM_ADDR_BL when reset is 1.
- 3. Send command 8'h50 (i.e. Transfer address of the H_MEM_READ).
- 4. Read MDOUT as many bits as the "BL*16". (16bits per 1 burst, each burst is MSB first.)


POWER MANAGEMENT

Power Save Modes

Down: Master Clock Disabled. Whole chip is in reset state and clocking is disabled.

(Host Interface ?, Clocks for CD-DSP chip ?)

Mode: All units suspended except hifUnit and DRAM Controller Block to refresh DRAM.

Power down mode

Power down mode is implemented using MLAT, MCK, and MDAT. When the MLAT is low the MDAT is goes to low, the CD-MP3 goes to "power down reset" mode. It means power ON state. When the MLAT is low and the MCK goes to LOW, the CD-MP3 the "power down mode". The default value of MLAT, MCK, and MDAT is HIGH. the system power becomes ON and the master reset comes, Micom should set the of MLAT, MCK, and MDAT to HIGH. And should reset the power down mode of -MP3 using MLAT and MDAT LOW. Finally should send the S/W reset to CD-MP3 H_SOFT_RST (8'hE0) register.

Sleep mode

In sleep mode, the minimal power is supplied which is needed just for DRAM refresh, host command, and etc. There is a register H_SLEEP_CR to control Sleep. To enter sleep mode write "1xxxxxxxx" into the H_SLEEP_CR. To wake up from mode write "0xxxxxxxx" into the H_SLEEP_CR.

_SLEEP_CR

8'hdf

HOST MCU CONTROL SPACE

Registers to control CD-ROM sector decoding

```
// Read only registers (8'h20 — 8'h2F reserved for cdrUnit - Read)
H MIN R
              8'h24
                      "minute" in the header of the sector being currently decoded.
                      "second" in the header of the sector being currently decoded.
H SEC R
              8'h25
              8'h26
                      "frame" in the header of the sector being currently decoded.
H FRM R
H_MODB_R 8'h27
                      CD-ROM Mode information in the header of the sector being currently
                      decoded.
                      The file number information in the sub header of the current frame.
H FN R
              8'h28
                      This is valid for Mode-2 format.
H_CN_R
              8'h29
                      The channel number information in the sub header of the current frame.
                      This is valid for Mode-2 format.
H SM R
              8'h2a
                      The sub-mode information in the sub header of the current frame.
                      This is valid for Mode-2 format.
H CI R
              8'h2b
                      The coding information in the sub header of the current frame.
                      This is valid for Mode-2 format.
H ERR R
              8'h2c
                      The Header Error flags in the sub header of the current frame.
                      bit7
                                   M EMIN (Error in MIN)
                                   M_ESEC (Error in SEC)
                      bit6
                      bit5
                                   M EFRM (Error in FRM)
                      bit4
                                   M_EMOD (Error in MODB)
                      bit3
                                   M_EFN (Error in FN)
                      bit2
                                   M ECN (Error in CN)
                      bit1
                                   M ESM (Error in SM)
                      bit0
                                   M ECI (Error in CI)
H BLKST R 8'h2d
                      Indicates that unexpected Sync has been detected.
                                   Long Block
                      bit7
                                   0: Normal case.
                                   1 : The CD-ROM decoder detects the Internal Synchronization pattern
                                   but does not detect the External Synchronization pattern. The previous
                                   frame has longer bytes of data than expect.
                                   Short Block
                      bit6
                                   0 : Normal case.
                                   1 : The CD-ROM decoder detects the External Synchronization pattern
                                   but does not detect the Internal Synchronization pattern. The previous
                                   frame has shorter bytes of data than expect.
                      bit5
                                   Invalid Block
                                   0: Normal case.
                                   1 : The CD-ROM decoder does not detect either External or Internal
                                   Synchronization pattern when Internal or External Synchronization
                                   pattern is detected. Current frame data is invalid.
                      bit4:0
                                   not used
// Write only registers (8'hB0 — 8'hBF reserved for cdrUnit - Write)
H INPIF W 8'hB1
                      bit7
                                   M BCKS1
                      bit6
                                   M_BCKS0
                                   Indicate the number of BCKs per 16-bit word
                      bit7:6
                                   00 = 16 BCKs, Data valid at every BCK
                                   01 = 24 BCKs. Data valid for the last 16 BCKs
                                   10 = 24 BCKs. Data valid for the first 16 BCKs
```


	44 OO DOKA Data walkii farritha laat 40 DOKa
1. 20	11 = 32 BCKs. Data valid for the last 16 BCKs
bit	-
	Must be set equal to '1' for the input data with MSB first
bit	 -
1.20	Must be set equal to '1' for the input C2PO with MSB first
bit	
L-10	Must be set equal to '1' if HIGH of LRCK indicates the left channel.
bit	
	1 : Input data is latched on the rising edge of BCK,
	0 : Input data is latched on the falling edge of BCK.
bit	
	1 : C2PO data is input with other data,
L-10	0 : No C2PO data is input with other data.
bite	-
	When the CD-DSP data format is as PHILIPS', this bit should be a
	logical '1'
	1: Supports PHILIPS' IIS DSP interface format.
	0 : Do not supports PHILIPS' IIS DSP interface format. default value : 0x00
H_HEAD_W 8'hB2	MODE1, MODE2-Form1, MODE2-Form2
bit	
bit	1 : Mode2
	0 : Mode1
bite	
Sitt	1 : Form2
	0 : Form1
bit	
2	1 : CD-ROM decoder acts as according to the value of mode/form bits in
	the header/sub header
	0 : CD-ROM decoder acts as according to the value of bit7:6 of this
	register
bite	
	1 : Descrambling Enable
	0 : Descrambling Disable
bit	3:0 not used
H_OPSR_W 8'hB3	
	0x00: Set CDROM decoding mode to IDLE mode. CDROM decoder
	discards all input bitstream and does no decoding. All registers
	containing decoded header information is not valid in this mode.
	0x90: Set CDROM decoding mode to MONITORING mode. Decodes
	Header only.
	0x91: Set CDROM decoding mode to DECODING mode. This causes
	S5L9274 starts to decode the following sector and store to DRAM.
H_START_M 8'hB4	Not Used
H_START_S 8'hB5	Not Used
H_START_F 8'hB6	Not Used
H_ECC_EN 8'hB7	Control register for ECC enable/disable.
bit' bit	
	fault value : 0x00
de	iauit valut . UXUU

Registers to communicate with embedded DSP core

// Read only registers (8'h00 — 8'h0F reserved for dspUnit - Read)
H_OUT1_LOW 8'h01 Low byte of OUT1 register.
H_OUT1_HIGH 8'h02 High byte of OUT1 register.
H_OUT2_LOW 8'h03 Low byte of OUT2 register.
H_OUT2_HIGH 8'h04 High byte of OUT2 register.
H_OUT_XTRA 8'h05 Extra byte of OUT register.

H_EMPH 8'h06 Indicate Emphasis ON/OFF and Emphasis Type.

bit[7:2]: not used.

bit[1]: If "1", Emphasis ON. If "0", emphasis OFF.

bit[0]: Emphasis Type

// Write only registers (8'h80 — 8'h8F reserved for dspUnit - Write)

H_SSPINT 8'h80 Micom command register. Micom writes a command to this register.

H_IN_LOW 8'h81 Low byte of in register
H_IN_HIGH 8'h82 High byte of in register
H_IN_XTRA 8'h83 Extra byte of in register

Registers for configuration and status of DRAM

// Read only registers (8'h10 — 8'h1F reserved for memUnit - Read)

H_DUMP_CNT 8'h11 Total number of CD frames currently been dumped to DRAM since 0x91

was written to OPSR register. Once all frames as many as specified in the H_FRAME_NO register are dumped into DRAM, OPSR value will be changed to 90 automatically after completion of dump. At every time after 0x91 was written to OPSR and 1 frame has been dumped, the

H DUMP CNT reset to "1".

H_IB_STATE 8'h12 Input Buffer Occupancy

bit0 : Empty bit1 : Low bit2 : High

H_CD_START_H H_CD_START_L H_CD_END_H H_CD_END_L H_IB_START_H H_IB_START_L H_IB_END_H H_IB_END_H H_IB_END_L H_OBL_START_H H_OBL_START_L H_OBL_END_H H_OBL_END_H H_OBL_END_H H_OBL_END_H H_OBL_END_H H_OBR_START_H H_OBR_START_H H_OBR_START_H H_OBR_START_L H_OBR_START_L H_OBR_START_L H_OBR_START_L H_OBR_START_L H_OBR_START_L H_OBR_END_H H_OBR_END_H H_OBR_END_H	8'h90 8'h91 8'h92 8'h93 8'h94 8'h95 8'h96 8'h97 8'h98 8'h99 8'h99 8'h9b 8'h9c 8'h9d 8'h9c 8'h9d 8'h9e 8'h9f 8'h9d 8'h9f 8'h93 8'h94	reserved for memUnit - \	
H_REFRESH_INTER	VAL	oit1:0 00: 62 01: 60 10: 57	h interval rate 24 cycles 28 cycles 26 cycles 30 cycles
H_DRAMIF_NOE	8'ha7	DRAM Interface Output Er	
H_FRAME_NO	8'ha8	dumped into DRAM after evalue will be changed to 9	recified in this H_FRAME_NO register are every 0x91 is written in the OPSR. OPSR 0 automatically after completion of dump. The or the H_FRAME_NO is IBsize/1024.
H_SHOCK	8'ha9	xxxxxxxx1". This causes to many as specified in the H	ck, it sets this register with the value of constant stop dump operation and deletes frames as _RETURN_SECTOR register from the Input hock, Micom sets H_SHOCK register with the
H_IB_WR_OFFSET	8'haa		e when the condition below is met : equal to or less than (Size of Input Buffer - the FFSET) "
H_RETURN_SECTOR	8'hab	When occurred shock, bef	ore detect shock, data cause to dump in dram. ay as specified from the shock.

Registers to control DAC interface

```
// Read only registers (8'h30 — 8'h3F reserved for difUnit - Read)

// Write only register (8`hB0)

// Write only registers (8'hC0 — 8'hCF reserved for difUnit - Write)

H_DACIF_nOE 8'hC0 To control Tri-State Output of difUnit.

bit7: If "1", DAC Interface outputs goes high impedance state.

If "0", DAC Interface outputs enabled.

bit6 — 0: don't care
```

Registers for configuration of clock

```
// Read only registers (8'h40 — 8'h4F reserved for ckgUnit - Read)
// Write only registers (8'hD0 — 8'hDF reserved for ckgUnit)
                                   P register for PLL0 (See setting system clock frequency)
H PLL0 P0
                      8'hd0
H PLL0 M0
                                  M register for PLL0 (See setting system clock frequency)
                      8'hd1
                      8'hd2
                                   S register for PLL0 (See setting system clock frequency)
H PLL0 S0
H PLL1 P1
                      8'hd3
                                   P register for PLL1 (See setting system clock frequency)
H PLL1 M1
                      8'hd4
                                  M register for PLL1 (See setting system clock frequency)
                                   S register for PLL1 (See setting system clock frequency)
H PLL1 S1
                      8'hd5
H CKG DIV XY
                      8'hd6
                                   (See setting system clock frequency)
                                                (See setting system clock frequency)
H_CKG_CMD_0
                                  8'hd7
                                  SLEEP control register
H_SLEEP_CR
                      8'hdf
                                  bit7 — 1 : don't care
                                  bit0: If "1", Set S5L9274 to SLEEP mode. If "0", set S5L9274 to
                                  RUNNING mode.
```

Registers for reset control

```
// Write only registers (8'hE0 — 8'hEF reserved for rstUnit - Write)
H_SOFT_RST 8'hE0 Master reset by software control
```

Registers for DRAM access and Interrupt Source Register

```
// Read only registers (8'h50 — 8'h5F reserved for hifUnit - Read)
H_MEM_READ 8'h50 Buffer Register for DRAM burst read
H_INT_READ 8'h51 Interrupt Source Register

// Write only registers (8'hF0 — 8'hFF reserved for hifUnit - Write)
H_MEM_ADDR_HIGH8'hf0 High byte of start address for DRAM burst read
H_MEM_ADDR_MID 8'hf1 Middle byte of start address for DRAM burst read
H_MEM_ADDR_LOW 8'hf2 High byte of start address for DRAM burst read
H_MEM_ADDR_BL 8'hf3 Burst Length for DRAM burst read (1 — 63, default is 1.)
```


SETTING SYSTEM CLOCK FREQUENCY

NOTE:

ACLK: audio clock of BI9274X internal. CLK: system clock of BI9274X internal.

MODE 1 - Dual PLL Mode A (H_CKG_CMD0[2:1] = 01 or 00 , PLL_BYPASS = LOW)

		aclk = 12.288MHz clk = 38.7MHz	aclk = 16.9344MHz clk =38.7MHz	aclk = 18.432MHz clk = 38.7MHz	
	H_PLL0_P0	19 (D)	19 (D)	19 (D)	
	H_PLL0_M0	40 (D)	40 (D)	40 (D)	
	H_PLL0_S0	0 (D)	0 (D)	0 (D)	
Host Control	H_PLL0_P1	5 (D)	xxxx xxxx (B)	5 (D)	
	H_PLL0_M1	12 (D)	xxxx xxxx (B)	22 (D)	
	H_PLL0_S1	0 (D)	xxxx xxxx (B)	0 (D)	
	H_CKG_DIV_XY	xx11 xx00 (B)	xxxx xxxx (B)	xx11 xx00 (B)	
	H_CKG_CMD0	0000 0010 (B)	0000 0000 (B)	0000 0010 (B)	
	CLK (I)		CONNECTED TO XOUT		
PIN SETTING	ACLK_EXT (I)		TIED TO GND		
	XI	16.9344MHz X-tal			
	XO		16.9344MHz X-tal		

MODE 2 - Dual PLL Mode B (H_CKG_CMD0[2:1] = 01 or 00 , PLL_BYPASS = LOW)

		aclk = 12.2919MHz clk = 32.33MHz	aclk = 16.9344MHz clk = 32.33MHz	aclk = 18.4378MHz clk = 32.33MHz
	H_PLL0_P0	20 (D)	20 (D)	20 (D)
	H_PLL0_M0	34 (D)	34 (D)	34 (D)
	H_PLL0_S0	0 (D)	0 (D)	0 (D)
Host Control	H_PLL0_P1	10 (D)	xxxx xxxx (B)	14 (D)
	H_PLL0_M1	65 (D)	xxxx xxxx (B)	65 (D)
	H_PLL0_S1	3 (D)	xxxx xxxx (B)	2 (D)
	H_CKG_DIV_XY	xx01 xx00 (B)	xxxx xxxx (B)	xx01 xx00 (B)
	H_CKG_CMD0	0000 0010 (B)	0000 0000 (B)	0000 0010 (B)
	CLK (I)		CONNECTED TO XOUT	
PIN SETTING	ACLK_EXT (I)		TIED TO GND	
	XI		16.9344MHz X-tal	
	XO		16.9344MHz X-tal	

MODE 3 - Single PLL Mode (H_CKG_CMD0[2:1] = 10 or 00 , PLL_BYPASS = LOW)

		aclk = 12.3159MHz clk = 36.9MHz	acik = 16.9344MHz cik =38.7MHz	aclk = 18.407MHz clk = 36.8MHz
	H_PLL0_P0	20 (D)	19 (D)	21 (D)
	H_PLL0_M0	40 (D)	40 (D)	42 (D)
	H_PLL0_S0	0 (D)	0 (D)	0 (D)
Host Control	H_PLL0_P1	xxxx xxxx (B)	xxxx xxxx (B)	xxxx xxxx (B)
	H_PLL0_M1	xxxx xxxx (B)	xxxx xxxx (B)	xxxx xxxx (B)
	H_PLL0_S1	xxxx xxxx (B)	xxxx xxxx (B)	xxxx xxxx (B)
	H_CKG_DIV_XY	xx10 xxxx (B)	xxxx xxxx (B)	xx01 xxxx (B)
	H_CKG_CMD0	0000 0100 (B)	0000 0000 (B)	0000 0100 (B)
	CLK (I)		CONNECTED TO XOUT	
PIN SETTING	ACLK_EXT (I)		TIED TO GND	
	XI		16.9344MHz X-tal	
	XO		16.9344MHz X-tal	<u> </u>

MODE 4 - PLL BYPASS Mode (PLL_BYPASS = HIGH)

		aclk = External Source (ACLK_EXT) clk = External Source (CLK)
	H_PLL0_P0	xxxx xxxx (B)
	H_PLL0_M0	xxxx xxxx (B)
Host Control	H_PLL0_S0	xxxx xxxx (B)
	H_PLL0_P1	xxxx xxxx (B)
	H_PLL0_M1	xxxx xxxx (B)
	H_PLL0_S1	xxxx xxxx (B)
	H_CKG_DIV_XY	xxxx xxxx (B)
	H_CKG_CMD0	xxxx xxxx (B)
	CLK (I)	System Clock Frequency
PIN SETTING	ACLK_EXT (I)	Audio Clock Frequency (384Fs)
	XI	TIED TO GND
	ХО	OPEN

MICOM PROGRAMMING GUIDELINE

Transferring Input Bitstream to S5L9274

Micom is allowed to initiate the transfer when the Input Buffer is in LOW state which is by the "Input Buffer State" Interrupt (See section skip function) from CD-MP3 IC.

Burst Transfer with the number of sectors being transferred.

Verify the Input Buffer is in LOW state. The register H_IB_STATE tells Input Buffer (Empty, Low, or High). When there is any change in the H_IB_STATE, "Input Buffer " Interrupt arises, and External MCU can read the H_IB_STATE to know the Input State. When Input Buffer is in lower than the "Input Buffer Low Threshold" we say is in LOW state. Input Buffer Low Threshold is determined by the value of the register IB WR OFFSET. It has the following relationship.

Low Threshold = (Input Buffer Size in number of words) - (H_IB_WR_OFFSET)*1024

- Micom decides the start sector address from which the CD-ROM sectors are transferred S5L9274.
- Write number of sectors being transferred into H_FRAME_NO register.
- Micom initiate to transfer CD-ROM sectors from CDP subsystem to S5L9274 starting the address (MSF) which is several sectors ahead the start sector address.
- Micom gets sector address information (MSF) from CDP subsystem while CDP transfers CD-ROM sectors to S5L9274.
- Micom checks continuously if the MSF received from CDP subsystem is reached at the MSF from which Micom wants to put the corresponding sector in S5L9274.
- If the MSF received from CDP subsystem is reached at (the start MSF 1), Micom "0x91" to H_OPSR_W in S5L9274 to allow for S5L9274 to start decode sectors when sector boundary is reached.
- When "Dump-End" interrupt encountered during sector transfer, read the H_DUMP_CNT and check if the content of the H_DUMP_CNT is equal to the content of _FRAME_NO. If they are equal, it indicates all sectors have been transferred successfully if they are not, it indicates that Input Buffer High condition were met in the middle of transfer and the remaining transfer has been discarded after that condition. If that n has occurred, Micom should transfer again from the sector which was cancelled. new start sector address can be calculated with the previous start sector address and content of the H_DUMP_CNT register.
- * S5L9274 set the "Dump-End" interrupt when the content of the H_DUMP_CNT is equal to content of H_FRAME_NO and also when Input Buffer High condition were met during transfer.

Burst Transfer without the number of sectors being transferred.

Verify the Input Buffer is in LOW state. The register H_IB_STATE tells Input Buffer (Empty, Low, or High). When there is any change in the H_IB_STATE, "Input Buffer " Interrupt arises, and External MCU can read the H_IB_STATE to know the Input State. When Input Buffer is in lower than the "Input Buffer Low Threshold" we say is in LOW state. Input Buffer Low Threshold is determined by the value of the register _IB_WR_OFFSET. It has the following relationship.

Low Threshold = (Input Buffer Size in number of words) - (H IB WR OFFSET)*1024

- Micom decides the start sector address from which the CD-ROM sectors are transferred S5L9274.
- Write 0 to the H FRAME NO. (The default value after reset this is 0 therefore, this would not be necessary.)
- Micom initiate to transfer CD-ROM sectors from CDP subsystem to S5L9274 starting the address (MSF) which is several sectors ahead the start sector address.
- Micom gets sector address information (MSF) from CDP subsystem while CDP transfers CD-ROM sectors to S5L9274.
- Micom checks continuously if the MSF received from CDP subsystem is reached at the MSF from which Micom wants to put the corresponding sector in S5L9274.
- If the MSF received from CDP subsystem is reached at (the start MSF 1), Micom "0x91" to H_OPSR_W in S5L9274 to allow for S5L9274 to start decode sectors when sector boundary is reached.
- When "Dump-End" interrupt encountered during sector transfer, it indicates the input is in BUFFER-HIGH state and any more transfer is discarded to avoid input buffer.
- Read the H_DUMP_CNT register which represents the number of sectors that have successfully transferred.
- Micom calculate new start sector address which is the one for the next to the last which has been transferred before.
- Repeat the whole process.

CDFS Table Read

BI9274X decodes File Allocation Table of CD-ROM and stores it to DRAM. Micom can DRAM to read the CDFS Table using register read protocol. (See Section MCU interface.)

Setting DRAM Refresh Rate

Micom can change DRAM refresh rate by change a code in the H_REFRESH_INTERVAL as following:

H_REFRESH_INTERVAL(8'ha2) VALUE	Maximum Refresh Interval
8'bxxxxxx00	624 cycles
8'bxxxxxx01	608 cycles
8'bxxxxxx10	576 cycles
8'bxxxxxx11	480 cycles

Configuration of DRAM Memory Map

When S5L9274 is reset the DRAM is configured to the default memory map as shown .

H_CD_START	0x00000	CD-ROM Decoder
H_CD_END	0x00DB6	Working Buffer
		Not used
H_IB_START	0x01000	
		Input Buffer
II ID END	0.40555	
H_IB_END	0x19FFF	
H_OBL_START	0x1A000	
		Output Buffer
		L_CH
H_OBL_END	0x280FF	
H_OBR_START	0x28100	
		Output Buffer
		R_CH
H_OBR_END	0x361FF	
	0x36200	
		Reserved
	0x3FFFF	

REGISTER	ADDRESS (HEX)	ADDRESS (DEC)	SIZE
H_CD_START	0x00000	0	Size = 3511
H_CD_END	0x00DB6	3510	
	0x00DB7	3511	585 words
	0x00FFF	4095	Not Used
H_IB_START	0x01000	4096	IB_Size = 100K
H_IB_END	0x19FFF	106495	
H_OBL_START	0x1A000	106496	OBL_Size = 57600
H_OBL_END	0x280FF	164095	
H_OBR_START	0x28100	164096	OBR Size = 57600
H_OBR_END	0x361FF	221695	
	0x36200	221696	40448 Words
	0x3FFFF	262143	Reserved

A storage for CDFS Table which is decoded by S5L9274 is needed for Micom to access. CDFS Table also stored in OBR(Output Buffer Right Channel) and OBL(Output Buffer Channel). S5L9274 provides memory map switching mechanism which enables of the OBR(Output Buffer Right Channel) Map between CDFS decoding and decoding modes. In CDFS decoding mode OBR and OBL are allocated outside of location of them in MP3 decoding mode to keep the CDFS table does not overlap the audio output buffer. Micom can access CDFS Table any time if necessary.

Memory	Man	for	CDES	Decodina	
INICITION	IVIAD	101	CDIS	Decounia	

Memory M	ap for MF	3 Decoding
----------	-----------	------------

H_CD_START	0x00000	CD_ROM Decoder	H_CD_START	0x00000	CD-ROM Decoder
H_CD_END		Working Buffer	H_CD_END	0x01000	Working Buffer
H_IB_START	0x01000		H_IB_START		
		Input Buffer			Input Buffer
H_IB_END	0x19FFF		H_IB_END	0x19FFF	
	0x1A000		H_OBL_START	0x1A000	Output Buffer
					L_CH
		Reserved	H_OBL_END	0x280FF	
			H_OBR_START	0x28100	Output Buffer
	0x361FF				L_CH
H_OBR_START	0x36200	Output Buffer	H_OBR_END	0x361FF	
H_OBR_END		R_CH		0x36200	
H_OBL_START		Output Buffer			Reserved
H_OBL_END	0x3FFFF	L_CH			
				0x3FFFF	

Data Structure of CDFS Table in DRAM

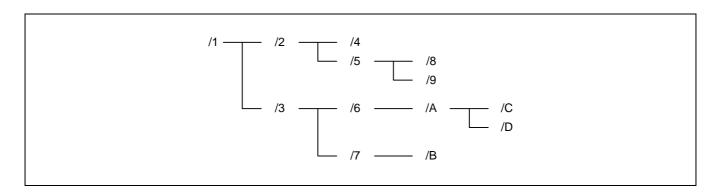
Structure of CDFS Table divided into four areas: The Introduction Table Area, Table Area, File Table Area and Identifier Table Area. According to Figure, is a typical configuration of DRAM, Output Buffer R-CH and Output Buffer L-CH are to store all CDFS Tables when S5L9274 is in the CDFS decoding mode. The Area, Directory Table Area and File Table Area are located in the Output R-CH. The Identifier Table Area is located in the Output Buffer L-CH.

H_OBR_START	0x36200		
		Introduction table	
		Directory table	Output Buffer
		File table	R_CH
H_OBR_END	0x36FFF		
H_OBL_START	0x37000		
		Identifier table	Output Buffer
			L_CH
H_OBL_END	0x3FFFF		

Introduction Table

Table consists of 4 words (1 word = 16bits). This Table is located in the top the Output Buffer R-CH.

Address	Contents (16 bits)
36200	Total number of directories in a CD
36201	Total number of MP3 files in a CD
36202	Total number of directories which contains any MP3 file in a CD
36203	The directory number which contains the 1'st MP3 file in the whole directory path. The directory number is assigned for each directory in the order of sequence in the file system structure.


Directory Table

Directory Table follows the Introduction Table and comprises of consecutive directory records. There are as many directory records as the total number of directories in a table. Each directory record consists of 6 words as following.

Address	Contents (16 bits)
36204+6i	The 1'st MP3 file number in this directory.
	(if there is no MP3 files in this directory, this represents the 1'st MP3 file number in next directory)
36205+6i	The total number of MP3 files in this directory
	(Zero if there is no MP3 files in this directory.)
36206+6i	Directory identifier length
36207+6i	Parent directory number
36208+6i	Sub directory number
36209+6i	Next directory number

i: 0 — (total number of directories-1)

directories in a CD are given directory number which is a series of number from 1 to number of the total directory count. Directories which has no MP3 files also given number and included in the directory table. Therefore root directory is always directory number 1. An explanation is given below about the relationship between directory, sub directory and next directory with an example :

directory number	1	2	3	4	5	6	7	8	9	Α	В	С	D
parent directory	1	1	1	2	2	3	3	5	5	6	6	Α	Α
sub directory	1	4	6	4	8	Α	7	8	9	С	В	O	D
next directory	1	3	2	5	4	7	6	9	8	В	Α	D	C

File Table

File Table follows the Directory Table and comprises of consecutive file records. In the table, there are as many file records as the total number of MP3 file. Each file record of 6 words as following.

Address	Contents							
36204 + Nd*6 +6j	M S							
36204 + Nd*6 +6j +1	0x00 F							
36204 + Nd*6 +6j +2	L8	L7	L6	L5				
36204 + Nd*6 +6j +3	L4 L3 L2 L1							
36204 + Nd*6 +6j +4	MP3 file identifier length							
36204 + Nd*6 +6j +5	MP3 file type							

Nd: total number of directories

j: 0 — (Nf-1), Nf = total number of MP3 files

There is no file record for a non-MP3 file.

M, S, and F are the values indicating 1 sector before to the actual sector address beginning of a file. A file length is described as 8 hex digits (L8 — L1). The length represented is FFFFFFF.

The value of M, S, and F which are all 0xAA or 0xBB indicates End of File Table data.

Identifier Table

Table is stored in the Output Buffer CH-L. Because the maximum length of or file identifier is 128 bytes both of the identifiers occupy 64(40h) words in . The directory identifiers comes first and file identifiers follow the directory . The first directory identifier occupies address 37000h — 3703Fh in DRAM. The addresses of each directory identifier (=X) are calulated as following :

$$X = 37000h + i * 40h$$
 , $i: 0 - (Nd - 1)$

The start addresses of each file identifiers (=Y) are calulated as following:

$$Y = 37000h + (nd * 40h) + j * 40h$$
, $j = 0 - (Nf - 1)$

Boot Process Programming

1. Power on CD-MP3 IC

#initial i_MLT=i_MDAT=i_MCK=HIGH #25ns(min) i_MLT <= LOW #25ns(min) i_MDAT <= LOW #25ns(min) i_MDAT <= HIGH #25ns(min) i_MLT <= HIGH

When the system is powered-on and the "power-on reset" comes, Micom should set the of MLT, MCK, and MDAT to 1'b1. When the MLT is low and the MDAT goes to , the CD-MP3 goes to "power-on" mode. After power-on at initial, the S/W reset is .

The power-on process shown above is the very initial process required when the system powered on. After that you can switch between power-on and power-off mode using _MCK signal.


```
#initial i_MLT=i_MDAT=i_MCK=HIGH

#25ns(min) i_MLT <= LOW

#25ns(min) i_MCK <= LOW

#25ns(min) i_MCK <= HIGH

#25ns(min) i_MLT <= HIGH
```

At every supply of MCK pulse (active LOW) the mode is toggled between power-on and -off.

2. S/W Reset

Software Reset to CD-MP3 by writing to H_SOFT_RST(8'hE0) with 8'bxxxxxx01. After ? system cycles Software Reset automatically cleared.

3. Configuration of ckgUnit

(Refer to Product Specification Chapter? -Setting System Clock Frequency) To configure ckgUnit to Mode1 44.1kHz,

```
H PLL0 P0
                                 * 8d'19
                     (8'hD0)
                                 * 8d'40
H PLL0 M0
                     (8'hD1)
H PLL0 S0
                     (8'hD2)
                                 * 8d'0
H_PLL0_P1
                     (8'hD3)
                                 * don't care
H_PLL0_M1
                     (8'hD4)
                                 * don't care
H PLL0 S1
                     (8'hD5)
                                 * don't care
H_CKG_DIV_XY
                     (8'hD6)
                                 * don't care
                                 * 8d'0
H_CKG_CMD_0
                     (8'hD7)
```

4. Set DAC Type

```
H_DAC_TYPE (8'hB0) *8'h91 for DAC in 9288
```

5. Set CDP Type

```
H_INPIF_W (8'hB1) * 8'h72 // for SAMSUNG CD-DSP chip
H_HEAD_W (8'hB2) * 8'h18 // for MODE1 FORM1
H_ECC_EN (8'hB7) * 8'bxxxxxxx1 // Enable ecc
```

6. Enable DRAM Interface Output Drivers

```
H_DRAMIF_NOE (8'hA7) * 8'b0xxxxxxx
```

7. Enable DAC Interface Output Drivers

```
H_DACIF_nOE (8'hC0) * 8'b0xxxxxxx
```

8. Set DRAM Refresh Interval

```
H_REFRESH_INTERVAL (8'hA6) * 8'bxxxxxx00 Can select one of the four preset refresh interval value.
```


CDFS Decode Process Programming

- Boot Process
- 2. Set Memory Map Address for File Table

(Use default memory map for Input Buffer, and set map for output buffers as following:)

H_OBL_START_L	(8'h9C)	*8'h00
H_OBL_START_M	(8'h9B)	*8'h70
H_OBL_START_H	(8'h9A)	*8'hX3
H_OBL_END_L	(8'h9F)	*8'hFF
H_OBL_END_M	(8'h9E)	*8'hFF
H_OBL_END_H	(8'h9D)	*8'hX3
H_OBR_START_L	(8'hA2)	*8'h00
H_OBR_START_M	(8'hA1)	*8'h62
H_OBR_START_H	(8'hA0)	*8'hx3
H_OBR_END_L	(8'hA5)	*8'hff
H_OBR_END_M	(8'hA4)	*8'hff
H_OBR_END_H	(8'hA3)	*8'hf3

We must note that upper 4 bits of H_OBR_END_H should be 1111 to indicate end of map transmission.

3. Wait for Interrupt

When interrupted read H_INT_READ register to identify interrupt type.

- H_INT_READ (8'h51) * 8'bxxx010xx that indicates remap done successfully.
- 4. Check CD-ROM format and if it is mode2-form2 send a command "8'h0D".

H SSPINT (8'h80) * 8'h0D Mode2Form2

S5L9274 regards files with extension of ".mp2" or ".mp3" as MP3 audio files by default and generates File System Table which includes information of files with those file extensions only. But files with the extension of ".mpg" may also be regarded as MP3 audio files by sending a command "8'h0F".

H_SSPINT (8'h80) *8'h0F FATmpgOK

5. Send a Command DECODE_CDFS.

H_SSPINT (8'h80) * 8'h02 is DECODE_CDFS

This causes interrupting ssp1611 for ssp1611 to know CD-ROM sectors with CDFS Table will be put into the input buffer.

- 6. Transfer CD-ROM sectors to S5L9274 in the way described in Section transferring input bit stream.
- 7. During the sector transfer in step 5, check if "Sending MSF" Interrupt has been received.

H_INT_READ (8'h51) *8'bxxx001xx : **Sending MSF Interrupt** (See section skip function)

After receiving interrupt, Micom should get next sector address by reading the registers below:

H_OUT1_LOW	(8'h01)	* S
H_OUT1_HIGH	(8'h02)	* M
H_OUT2_LOW	(8'h03)	* F

If M, S and F read are all AAh or BBh, it indicates CDFS decoding has been completed. If they are all AAh it indicates that this CD is not in a juliet format. If they are all BBh it indicates that CD is in juliet format CD. If M, S and F are not all AAh or BBh go to step 8.

- 8. Transfer CD-ROM sectors to S5L9274 in the way described in Section transferring input bit stream with the start sector address MSF.
- Repeat 6,7,8.
- 10. During step 9, When there is an error in the sector received i.g. if the file system is not in accordance with ISO9660, S5L9274 asks the sector again to the Micom. if this happens repeatedly, this means that there is a non-recoverable error in the . In this case micom sends FATnextDIR command for S5L9274 to give up decoding the file system information for the current search path and it's sub-tree. Receiving this command, S5L9274 asks Micom new sector for the next search path of the file system.

H_SSPINT (8'h80) * 8'h0E FATnextDIR

When CDFS decoding is completed successfully, decoded CDFS tables are stored in such a way described in **Section. Data Structure of CDFS Table in DRAM**. Micom can read the tables any time. In the Identifier Table, 64 words are allocated to directory or file identifiers. Because 2 bytes are required to represent 1 character Joliet format, maximum 64 characters can be stored in each 64 words of an identifier. in DOS format, because 1 character is represented by 1 byte code, maximum 128 can be stored in each 64 words of identifier. Micom should know if a CD is Joliet format or not to recognize the identifier correctly.

TAG DECODE PROCESS

ID3 TAG Version 1.xx

- 1. Boot Process
- 2. Remap: Configure Memory Map
- 3. Transfer the last sector of an MP3 file to S5L9274.
- 4. Write a sector size to registers IN1.
- 5. Issue the command DECODE_TAG.
- 6. Waits interrupt 8'bxxx001xx

```
H INT READ (8'h51) *8'bxxx001xx : DECODE TAG Acknowledge
```

- 7. Read OUT1. If the content of OUT1 is 0xDD01, it indicates there is no TAG in the sector. If the TAG information is found, the content of OUT1 is DRAM of the start of TAG information.
- 8. If TAG is found, Micom reads DRAM to decode the TAG information.

ID3 TAG Version 2.xx

- 1. Boot Process
- 2. Remap: Configure Memory Map
- 3. Transfer the first sector of an MP3 file to S5L9274.
- 4. TAG Information follows ID3 characters therefore Micom can read 3 bytes of the first to decide if there is TAG information in the MP3 file.
- 5. Micom reads DRAM to decode TAG information.

MP3 decode process

- 1. Boot Process
- 2. Remap: set memory map address for output buffer (returns memory map to MP3 mode from CDFS decode mode by writing back the default value for output buffer channel.)

H_OBR_START_L	(8'hA2)	*8'h00
H_OBR_START_M	(8'hA1)	*8'h81
H_OBR_START_H	(8'hA0)	*8'hx2
	,	
H_OBR_END_L	(8'hA5)	*8'hff
H_OBR_END_M	(8'hA4)	*8'h61
H OBR END H	(8'hA3)	*8'hf3

We must note that upper 4 bits of H_OBR_END_H should be 1111 to indicate end of map transmition.

3. Wait for Interrupt

```
H_INT_READ (8'h51) * 8'bxxx010xx that indicates remap done successfully.
```

wait for interrupt from ssp1611 that indicates CD-MP3 chip has successfully the remap sequence. When Micom reads H INT READ register the interrupt be cleared automatically.

4. Send Command DECODE_MP3.

H_SSPINT (8'h80) * 8'h03 is DECODE_MP3

5. Micom reads CDFS Table and select a music to be play.

6. Micom set Total_Sector_Number as follows. Total_Sector_Number ia a value with 20bit range.

H_IN_XTRA (8'h83) : XYZW XXXX

Y: if FF(Fast Forward) state when going to next song, set Y=1 Z: if FB(Fast Backrward) state when going to next song, set Z=1

W: if CD-ROM format is Form2, W=1 XXXX: Total_Sector_Number[19:16]

H_IN_HIGH (8'h82) : Total_Sector_Number[15:8] H_IN_LOW (8'h81) : Total_Sector_Number[7:0]

7. Transfer CD-ROM sectors to S5L9274 in the way described in Section transferring input bitstream.

 S5L9274 starts decoding of input bitstream. When audio sampling frequency information the bitstream header S5L9274 writes it to the register H_OUT1_LOW and interrupt. And then S5L9274 stops it's decoding. S5L9274 will resume it's decoding after configures audio clock frequency. When interrupted from S5L9274 for audio frequency information transfer, Micom reads the sampling frequency information in H OUT1 LOW (8'h01) and set audio clock in S5L9274.

H_INT_READ (8'h51) * 8'bxxx011xx that indicates sending audio sampling

frequency code

H_OUT1_LOW (8'h01) * frequency code

Sampling Frequency Information

000 : 44.1 kHz 001 : 48 kHz 010 : 32 kHz 011 : Not Used 100 : 22.05 kHz 101 : 24 kHz 110 : 16 kHz

After setting audio clock frequency Micom send a command (0x23) to S5L9274 to indicate clock frequency setting completed successfully.

H_SSPINT (8'h80) * 8'h23 is completion of frequency setting

9. When both of input buffer and output buffer are empty it means that end-of-song S5L9274 is in IDLE state. Micom can see when input buffer becomes empty S5L9274 interrupts Micom when input buffer state has been changed. Micom can a certain time until output buffer becomes empty when Micom can conclude that of-song reached. Therefore Micom should keep in mind the last sector has been sent S5L9274 and from that time it checks input buffer state at each interrupts.

Skip Function

- 1. Micom controls servo system to stop feeding CD data to S5L9274.
- 2. Micom send a command "Pause". (This is for the purpose of audio fade-out.)

H_SSPINT (8'h80) * 8'h07 (Pause)

3. Follow the sequence from step2 (Remap) of the "MP3 decode process" in section 8.8.

Fast Forward Function

- Micom writes "number of frame to be skipped" to H_IN_LOW, and "number of frames be decoded" to H IN HIGH.
- 2. Micom send a command FAST FORWARD.
- 3. Micom send a command REPLAY to return to normal play.

Fast Backward Function

At starting Fast Backward, Input Buffer could contain less than 10 sec of input bitstream. Input Buffer should be empty to reverse without delay caused by this input bitstream.

1. Micom send a command "Input Buffer Clear"

H SSPINT (8'h80) * 8'h06 is Input Buffer Clear

- 2. Micom determine Skip_Sector_Number and Dump_Sector_Number applied to 8-10.7. Micom writes ratio of Skip_Sector_Number and Dump_Sector_Number to H_IN_LOW (that is Skip_Sector_Number/Dump_Sector_Number) and writes 0 to H_IN_HIGH.
- 3. Micom send a command "FAST BACKWARD".

H SSPINT (8'h80) * 8'h0A is FAST BACKWARD.

4. Micom waits for interrupt

H INT READ (8'h51) *8'bxxx110xx that indicates input buffer cleared.

After receiving interrupt, Micom should get Rewinded_Sector_Number by reading the shown below:

H_OUT1_LOW (8'h01) * H_OUT1_HIGH (8'h02) *

- 5. Micom convert Rewind_Sector_Num to Rewind_MSF
- 6. Micom update Dump_Start_MSF by subtracting Dump_Curr_MSF with Rewind_MSF
- 7. Micom start to dump at Dump_Start_MSF repeating dump and skip. dump as much as Dump Sector Number and skip as much as Skip Sector Number.
- 8. Micom send a command REPLAY to return to normal play.

Get Decoding Time for Display

wait interrupt continuously during decoding process for time display.

H_INT_READ (8'h51) *8'bxxx111xx that indicates S5L9274 send Current_Decoding_Sec

S5L9274 send this interrupt about twice or three times per second. The exact period is determined by sampling frequency. but Micom doesn't need to know the period becase send Current_Decoding_Sec (in second) when interrupt. Micom only have to Current_Decoding_Sec. After receiving interrupt, Micom should get Current_Decoding_Sec (hexa value) by reading the registers shown below:

```
H_OUT1_LOW (8'h01) * 
H_OUT1_HIGH (8'h02) *
```

Micom would better display Current Decoding Sec in the format of minute: second than second.

Set Current Decoding Time with Current Sector Number

During Fast Forward or Fast Backward, S5L9274 cannot send correct decoding time of skipped frames. But Micom can update decoding time correctly by sending number currently being decoded.

- 1. Micom writes lower byte of "sector number currently decoded" to H_IN_LOW and higher byte of "sector number currently decoded" to H_IN_HIGH.
- 2. Micom send a command "Set Current Decoding Time with Sector Number".

```
H_SSPINT (8'h80) * 8'h11 is "Set Current Decoding Time with Sector Number".
```

Form that time, S5L9274 send new Current_Decoding_Sec converted from "the sector currently decoded" set by Micom.

Compute Total Time

Total_Sector_Number was set in the way described in 8-8.7, Micom can call "Compute Time" to get total play time.

1. Micom send command "Compute Total Time" whenever finishing 8-11 once.

```
H_SSPINT (8'h80) * 8'h10 (Compute Total Time)
```

2. Micom wait interrupt.

```
H_INT_READ (8'h51) *8'bxxx110xx that indicates S5L9274 send total time in second
```

After receiving interrupt, Micom should get Total Sec (hexa value) by reading the shown below:

```
H_OUT1_LOW (8'h01) * 
H_OUT1_HIGH (8'h02) *
```

Micom would better display Total_Sec in the format of minute: second than second.

Interrupt handling

There is one signal line for interrupt from BI9274X to Micom (MINT). When Micom is by BI9274X, it should read the interrupt source register in CD-MP3 (H_INT_READ 8'h51) which indicates the interrupt type to idendify which interrupt service should be done.

H_INT_READ

b7 b6	b5	b4	b3	b2	b1	b0
-------	----	----	----	----	----	----

b7 : Not Used. (always LOW.) b6-b5 : cdrUnit Interrupt Source b4-b2 : dspUnit Interrupt Source b1-b0 : memUnit Interrupt Source

cdrUnit Interrupt Source Description:

01: Header Error

When S5L9274 detects error in header of a CD-ROM sector this interrupt is set.

10: Sector Address Decoded Out of Range

Discard this in current version of S5L9274

11 : reserved for future use. dspUnit Interrupt Source Description :

001: Sending M.F.S

This interrupt bits are set when S5L9274 expects to get CD-ROM sectors which is in address from the current sector address during the CDFS decoding.

(End Of CDFS Decoding is indicated by M.F.S = all zero.)

010: End Of REMAP

011: Sending Audio Sampling Frequency Code

100: reserved

101: Sending Output Buffer Left Channel Empty Signal

110: End of Input Buffer Clear / Sending Total Time in second

111 : Sending Decoding Time for Display

memUnit Interrupt Source Description:

01 : Dump-End10 : Input Buffer State

11 : reserved for future use.

Command Set Description

Micom can send a command to S5L9274 by writing a command ID to H_SSPINT register.

_SSPINT (8'h80)

b7 b6 b	5 b4 b3	b2 b1	b0
---------	---------	-------	----

b7 - b0: Host Command ID

Command IDs

0x01 : DECODE_TAG 0x02 : DECODE_CDFS 0x03 : DECODE MP3

0x04: End of Input, indicates last data of MP3 bitstream for current music has been supplied.

0x05 : An Interrupt indicating that Micom completed audio clock frequency setting in of audio sampling frequency information which is sent to Micom by ssp1611 should wait this interrupt to continue decoding after audio frequency has been changed. In addition to this interrupt, ssp1611 also wait until the output buffer becomes empty to ensure audio DAC correctly at the boundary of different sampling frequency boundary.

0x06 : Clear Input Buffer (This command shoud be issued before Fast Backward .)

0x07 : Pause (ssp1611 stop reading by setting Flag for difUnit interrupt service routine not to read OBrChannel and send MUTE data to difUnit. When Paused ssp1611 need to fade out the audio.)

0x08 : Replay (ssp1611 clears the Flag for difUnit interrupt service routine resume to read the OBrChannel. ssp1611 need to fade in the audio.)

0x09 : Fast Forward 0x0A : Fast Backward

0x0B : Soft Mute (ssp1611 keeps enabling OBrChannel read but discard the data. Send MUTE data to difUnit. Needs to fade out.)

0x0C : Soft Mute Off 0x0D : Mode2Form2 0x0E : FATnextDir 0x0F : FATmpgOK

0x10: Compute Total Time

0x11 : Set current decoding time with sector number

DRAM Interface

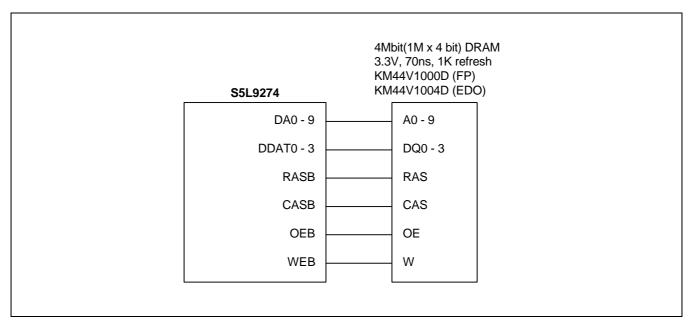


Figure 3. Interface with 1Mx4bit DRAM

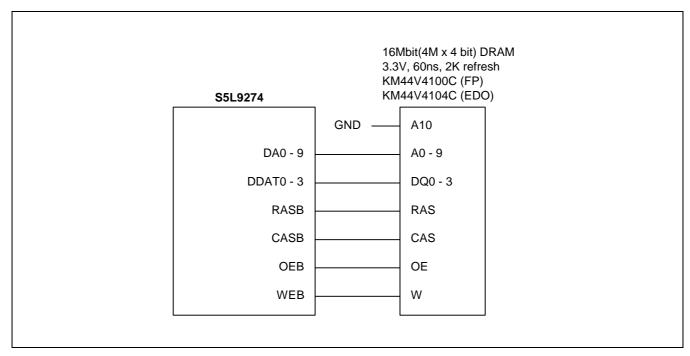


Figure 4. Interface with 4Mx4bit DRAM

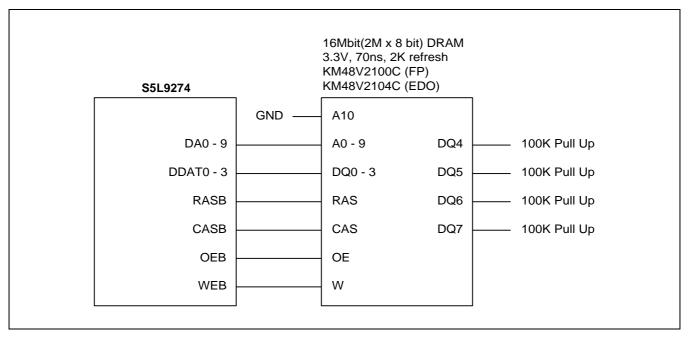


Figure 5. Interface with 2Mx8bit DRAM

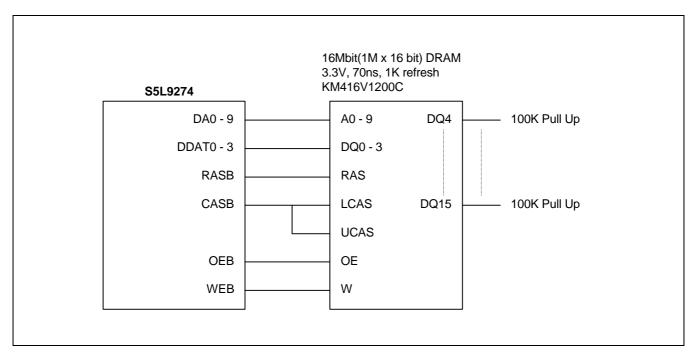


Figure 6. Interface with 1Mx16bit DRAM

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com