DATA SHEET WWW.DZSC.COM SA8026

INTEGRATED CIRCUITS

2.5GHz low voltage fractional-N dual frequency synthesizer

Product specification Supersedes data of 1999 Apr 16 1999 Nov 04

SA8026

GENERAL DESCRIPTION

The SA8026 BICMOS device integrates programmable dividers, charge pumps and a phase comparator to implement a phase-locked loop. The device is designed to operate from 3 NiCd cells, in pocket phones, with low current and nominal 3 V supplies.

The synthesizer operates at VCO input frequencies up to 2.5 GHz. The synthesizer has fully programmable main, auxiliary and reference dividers. All divider ratios are supplied via a 3-wire serial programming bus.

Separate power and ground pins are provided to the analog and digital circuits. The ground leads should be externally short-circuited to prevent large currents flowing across the die and thus causing damage. V_{DDCP} must be greater than or equal to V_{DD} .

The charge pump current (gain) is set by an external resistance at R_{SET} pin. Passive loop filters could be used; the charge pump operates within a wide voltage compliance range to provide a wider tuning range.

FEATURES

- Low phase noise
- Low power
- Fully programmable main and auxiliary dividers
- Normal & Integral charge pumps outputs
- Fast Locking Adaptive mode design
- Internal fractional spurious compensation
- Hardware and software power down
- Split supply for V_{DD} and V_{DDCP}

QUICK REFERENCE DATA

20 PON LOCK 1 TEST 2 19 STROBE 18 DATA V_{DD} 3 GND 4 17 CLOCK 16 REFin+ RFin+ 5 RFin- 6 15 REFin-14 R_{SET} GND_{CP} 7 13 V_{DDCP} PHP 8 12 AUXin PHI 9 11 PHA GND_{CP} 10 SR01649

Figure 1. Pin Configuration

APPLICATIONS

- 350 to 2500 MHz wireless equipment
- Cellular phones (all standards)
- WLAN
- Portable battery-powered radio equipment.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
V _{DD}	Supply voltage		2.7	-	5.5	V	
V _{DDCP}	Analog supply voltage	$V_{DDCP} \ge V_{DD}$	2.7	-	5.5	V	
I _{DDCP} +I _{DD}	Total supply current	Main and Aux. on	-	10	12	mA	
I _{DDCP} +I _{DD}	Total supply current in power-down mode		-	1	-	μΑ	
f _{VCO}	Input frequency		350	-	2500	MHz	
f _{AUX}	Input frequency		20	-	550	MHz	
f _{REF}	Crystal reference input frequency		5	-	40	MHz	
f _{PC}	Maximum phase comparator frequency		-		4	MHz	
T _{amb}	Operating ambient temperature		-40	-	+85	°C	

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
SA8026DH TSSOP20 Pla		Plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1

SA8026

2.5GHz low voltage fractional-N dual frequency synthesizer

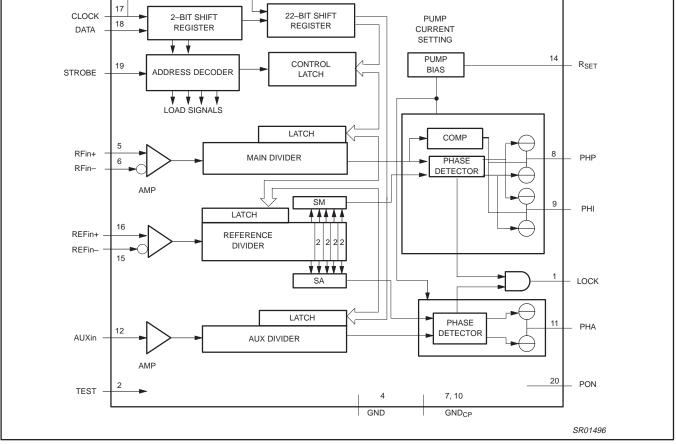


Figure 2. Block Diagram

PINNING

SYMBOL	PIN	DESCRIPTION
LOCK	1	Lock detect output
TEST	2	Test (should be either grounded or connected to V_{DD})
V _{DD}	3	Digital supply
GND	4	Digital ground
RFin+	5	RF input to main divider
RFin-	6	RF input to main divider
GND _{CP}	7	Charge pump ground
PHP	8	Main normal charge pump
PHI	9	Main integral charge pump
GND _{CP}	10	Charge pump ground

SYMBOL	PIN	DESCRIPTION
PHA	11	Auxiliary charge pump output
AUXin	12	Input to auxiliary divider
V _{DDCP}	13	Charge pump supply voltage
R _{SET} 14		External resistor from this pin to ground sets the charge pump current
REFin-	15	Reference input
REFin+	16	Reference input
CLOCK	17	Programming bus clock input
DATA	18	Programming bus data input
STROBE	19	Programming bus enable input
PON	20	Power down control

SA8026

Limiting values

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	Digital supply voltage	-0.3	+5.5	V
V _{DDCP}	Analog supply voltage	-0.3	+5.5	V
$\Delta V_{DDCP} - V_{DD}$	Difference in voltage between $V_{DDCP and} V_{DD} (V_{DDCP} \ge V_{DD})$	-0.3	+2.8	V
V _n	Voltage at pins 1, 2, 5, 6, 12, 15 to 20	-0.3	V _{DD} + 0.3	V
V _n	Voltage at pin 8, 9, 11	-0.3	V _{DDCP} + 0.3	V
ΔV_{GND}	Difference in voltage between GND_{CP} and GND (these pins should be connected together)	-0.3	+0.3	V
T _{stg}	Storage temperature	-55	+125	°C
T _{amb}	Operating ambient temperature	-40	+85	°C
Т _j	Maximum junction temperature		150	°C

Handling

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

Thermal characteristics

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j–a}	Thermal resistance from junction to ambient in free air	135	K/W

SA8026

CHARACTERISTICS

 $V_{DDCP} = V_{DD} = +3.0V$, $T_{amb} = +25^{\circ}C$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply; pir	ns 3, 13					-
V _{DD}	Digital supply voltage		2.7	-	5.5	V
V _{DDCP}	Analog supply voltage	$V_{DDCP} \ge V_{DD}$	2.7	-	5.5	V
I _{DDTotal}	Synthesizer operational total supply current	V _{DD} = +3.0V (with main and aux on)	-	10	12	mA
I _{Standby}	Total supply current in power-down mode	logic levels 0 or VDD	-	1	-	μΑ
RFin main	divider input; pins 5, 6					
f _{VCO}	VCO input frequency		350	-	2500	MHz
V _{RFin(rms)}	AC-coupled input signal level	$\begin{array}{l} R_{\text{in}} \; (\text{external}) = R_{\text{s}} = 50\Omega;\\ \text{single-ended drive;}\\ \text{max. limit is indicative}\\ @ \; 500 \; \text{to } 2500 \; \text{MHz} \end{array}$	-18	-	0	dBm
Z _{IRFin}	Input impedance (real part)	$f_{VCO} = 2.4 \text{ GHz}$	-	300	-	Ω
C _{IRFin}	Typical pin input capacitance	f _{VCO} = 2.4 GHz	-	1	-	pF
N _{main}	Main divider ratio		512	-	65535	
f _{PCmax}	Maximum loop comparison frequency	indicative, not tested	-	-	4	MHz
AUX refere	nce divider input; pin 12					
f _{AUXin}	Input frequency range		20	-	550	MHz
V	AC-coupled input signal level	R_{in} (external) = $R_S = 50\Omega$;	-18	-	0	dBm
V _{AUXin}	AC-coupled input signal level	max. limit is indicative	80	-	632	mV _{PP}
Z _{AUXin}	Input impedance (real part)	f _{VCO} = 500 MHz	-	3.9	-	kΩ
C _{AUXin}	Typical pin input capacitance	$f_{VCO} = 500 \text{ MHz}$	-	0.5	-	pF
N _{AUX}	Auxiliary division ratio		128	-	16383	
Reference	divider input; pins 15, 16					
f _{REFin}	Input frequency range from TCXO		5	-	40	MHz
V _{RFin}	AC-coupled input signal level	single-ended drive; max. limit is indicative	360	-	1300	mV _{PP}
Z _{REFin}	Input impedance (real part)	f _{REF} = 20 MHz	-	10	-	kΩ
C _{REFin}	Typical pin input capacitance	f _{REF} = 20 MHz	-	1	-	pF
R _{REF}	Reference division ratio	SA = SM = "000"	4	-	1023	
Charge pu	mp current setting resistor input; pin 14					-
R _{SET}	External resistor from pin to ground		6	7.5	15	kΩ
V _{SET}	Regulated voltage at pin	R _{SET} = 7.5 kΩ	-	1.25	-	V
Charge pu	mp outputs (including fractional compensation	n pump); pins 8, 9, 11; R _{SET} = 7	.5 kΩ, FC =	80		
I _{CP}	Charge pump current ratio to I _{SET} ¹	Current gain = I _{PH} /I _{SET}	-15		+15	%
IMATCH	Sink-to-source current matching	V _{PH} = 1/2 V _{DDCP}	-10		+10	%
IZOUT	Output current variation versus V _{PH} ²	V _{PH} in compliance range	-10		+10	%
I _{LPH}	Charge pump off leakage current	$V_{PH} = 1/2 V_{DDCP}$	-10		+10	nA
V _{PH}	Charge pump voltage compliance		0.7	- 1	V _{DDCP} -0.8	V

SA8026

CHARACTERISTICS (continued)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Phase nois	se (condition R _{SET} = 7.5 kΩ, CP = 00)				•	
	Synthesizer's contribution to close-in phase noise of 900 MHz RF signal at 1 kHz offset.	GSM f _{REF} = 13MHz, TCXO,	-	-90	-	dBc/Hz
0	Synthesizer's contribution to close-in phase noise of 1800 MHz RF signal at 1 kHz offset.	$f_{COMP} = 1MHz$ indicative, not tested	-	-83	-	dBc/Hz
£(f)	Synthesizer's contribution to close-in phase noise of 800 MHz RF signal at 1 kHz offset.	TDMA f _{REE} = 19.44MHz, TCXO,	-	-85	-	dBc/Hz
	Synthesizer's contribution to close-in phase noise of 2100 MHz RF signal at 1 kHz offset.	$f_{COMP} = 240 \text{kHz}$ indicative, not tested	-	-77	-	dBc/Hz
Interface lo	ogic input signal levels; pins 2, 17, 18, 19, 20					
V _{IH}	HIGH level input voltage		0.7*V _{DD}	_	V _{DD} +0.3	V
V _{IL}	LOW level input voltage		-0.3	_	0.3*V _{DD}	V
I _{LEAK}	Input leakage current	logic 1 or logic 0	-0.5	-	+0.5	μΑ
Lock detec	ct output signal (in push/pull mode); pin 1		•		•	
V _{OL}	LOW level output voltage	I _{sink} = 2mA	-	_	0.4	V
V _{OH}	HIGH level output voltage	I _{source} = -2mA	V _{DD} -0.4	-	-	V

NOTES:

- 1. $I_{SET} = \frac{V_{SET}}{R_{SET}}$ bias current for charge pumps.
- 2. The relative output current variation is defined as:

$$\frac{\Delta I_{OUT}}{I_{OUT}} = 2 \cdot \frac{(I_2 - I_1)}{I(I_2 + I_1)I}; \text{ with } V_1 = 0.7V, V_2 = V_{DDCP} - 0.8V \text{ (See Figure 3.)}$$

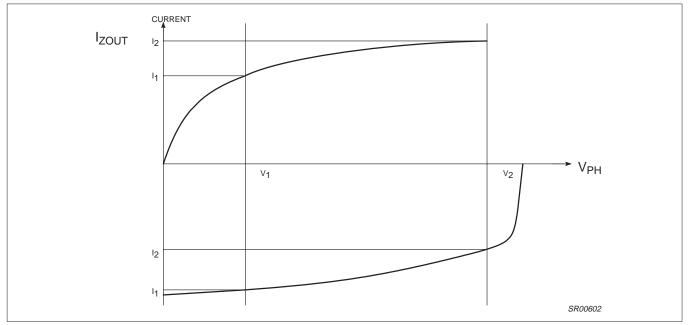


Figure 3. Relative Output Current Variation

SA8026

FUNCTIONAL DESCRIPTION

Main Fractional-N divider

The RFin inputs drive a pre-amplifier to provide the clock to the first divider stage. For single ended operation, the signal should be fed to one of the inputs while the other one is AC grounded. The pre-amplifier has a high input impedance, dominated by pin and pad capacitance. The circuit operates with signal levels from –18 dBm to 0 dBm, and at frequencies as high as 2.5 GHz. The divider consists of a fully programmable bipolar prescaler followed by a CMOS counter. Total divide ratios range from 512 to 65536.

At the completion of a main divider cycle, a main divider output pulse is generated which will drive the main phase comparator. Also, the fractional accumulator is incremented by the value of NF. The accumulator works with modulo Q set by FMOD. When the accumulator overflows, the overall division ratio N will be increased by 1 to N + 1, the average division ratio over Q main divider cycles (either 5 or 8) will be

Nfrac = N +
$$\frac{NF}{Q}$$

The output of the main divider will be modulated with a fractional phase ripple. The phase ripple is proportional to the contents of the fractional accumulator and is nulled by the fractional compensation charge pump.

The reloading of a new main divider ratio is synchronized to the state of the main divider to avoid introducing a phase disturbance.

Auxiliary divider

The AUXin input drives a pre-amplifier to provide the clock to the first divider stage. The pre-amplifier has a high input impedance, dominated by pin and pad capacitance. The circuit operates with signal levels from –18dBm to 0 dBm (80 to 636 mVpp), and at frequencies as high as 550 MHz. The divider consists of a fully programmable bipolar prescaler followed by a CMOS counter. Total divide ratios ranges from 128 to 16383.

Reference divider

The reference divider consists of a divider with programmable values between 4 and 1023 followed by a three bit binary counter. The 3 bit SM (SA) register (see figure 4) determines which of the 5 output pulses are selected as the main (auxiliary) phase detector input.

Phase detector (see Figure 5)

The reference and main (aux) divider outputs are connected to a phase/frequency detector that controls the charge pump. The pump current is set by an external resistor in conjunction with control bits CP0 and CP1 in the C-word (see Charge Pump table). The dead zone (caused by finite time taken to switch the current sources on or off) is cancelled by forcing the pumps ON for a minimum time at every cycle (backlash time) providing improved linearity.

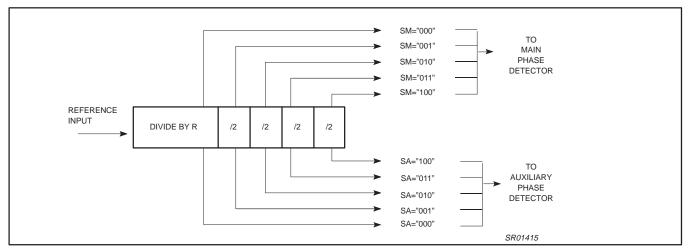


Figure 4. Reference Divider

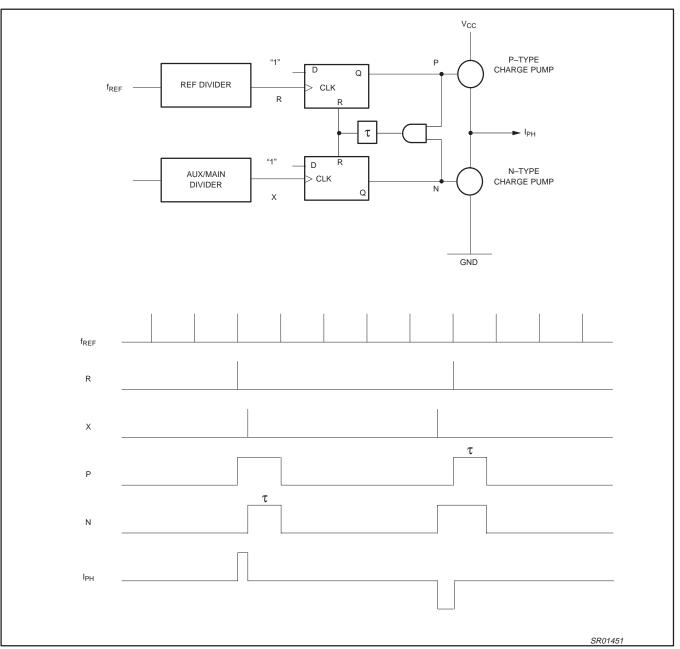


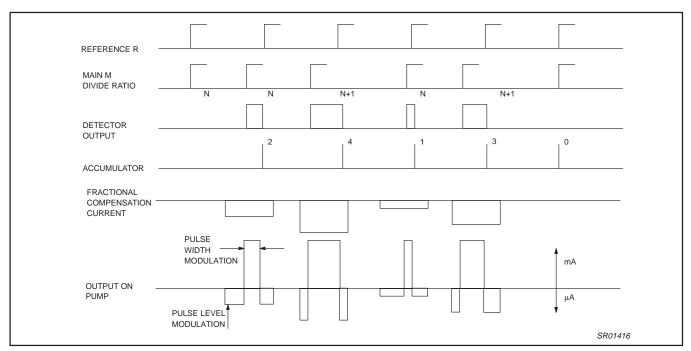
Figure 5. Phase Detector Structure with Timing

SA8026

Main Output Charge Pumps and Fractional Compensation Currents (see Figure 6)

The main charge pumps on pins PHP and PHI are driven by the main phase detector and the charge pump current values are determined by the current at pin R_{SET} in conjunction with bits CP0, CP1 in the C-word (see table of charge pump ratios). The fractional compensation is derived from the current at R_{SET} , the contents of the fractional accumulator FRD and by the program value of the FDAC. The timing for the fractional compensation is derived from the main divider. The main charge pumps will enter speed up mode after the A-word is set and strobe goes High. When strobe goes Low, charge pump will exit speed up mode.

Principle of Fractional Compensation


The fractional compensation is designed into the circuit as a means of reducing or eliminating fractional spurs that are caused by the fractional phase ripple of the main divider. If I_{COMP} is the compensation current and I_{PUMP} is the pump current, then for each charge pump:

The compensation is done by sourcing a small current, I_{COMP} , see Figure 7, that is proportional to the fractional error phase. For proper fractional compensation, the area of the fractional compensation current pulse must be equal to the area of the fractional charge pump ripple. The width of the fractional compensation pulse is fixed to 128 VCO cycles, the amplitude is proportional to the fractional accumulator value and is adjusted by FDAC values (bits FC7–0 in the B-word). The fractional compensation current is derived from the main charge pump in that it follows all the current scaling through external resistor setting, R_{SET} , programming or speed-up operation. For a given charge pump,

I_{COMP} = (I_{PUMP} / 128) * (FDAC / 5*128) * FRD

FRD is the fractional accumulator value.

The target values for FDAC are: 128 for FMOD = 1 (modulo 5) and 80 for FMOD = 0 (modulo 8).

 $I_{PUMP}_{TOTAL} = I_{PUMP} + I_{COMP}$

NOTE: For a proper fractional compensation, the area of the fractional compensation current pulse must be equal to the area of the charge pump ripple output. Figure 6. Waveforms for NF = 2 Modulo $5 \rightarrow \text{fraction} = \frac{2}{5}$

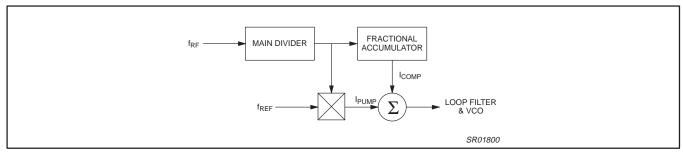


Figure 7. Current Injection Concept

Auxiliary Output Charge Pumps

The auxiliary charge pump on pin PHA are driven by the auxiliary phase detector and PHP, PHI are driven by the main phase detector. The current value is determined by the external resistor attached to pin R_{SET}.

Main and auxiliary charge pump currents

CP1	CP0	I _{PHA}	I _{PHP}	I _{PHP-SU}	I _{PHI}
0	0	1.5xl _{SET}	3xI _{SET}	15xl _{SET}	36xI _{SET}
0	1	0.5xl _{SET}	1xl _{SET}	5xl _{SET}	12xl _{SET}
1	0	1.5xl _{SET}	3xI _{SET}	15xl _{SET}	0
1	1	0.5xl _{SET}	1xl _{SET}	5xl _{SET}	0

NOTES

1. $I_{SET} = V_{SET}/R_{SET}$: bias current for charge pumps.

2. CP1 is used to disable the PHI pump, I_{PHP-SU} is the total current at pin PHP during speed up condition.

Lock Detect

The output LOCK maintains a logic '1' when the auxiliary phase detector ANDed with the main phase detector indicates a lock condition. The lock condition for the main and auxiliary synthesizers is defined as a phase difference of less than ± 1 period of the frequency at the input REF_{in+, -}. One counter can fulfill the lock condition when the other counter is powered down. Out of lock (logic '0') is indicated when both counters are powered down.

Power-down mode

The power-down signal can be either hardware (PON) or software (PD). The PON signal is exclusively ORed with the PD bits in B-word. If PON = 0, then the part is powered up when PD = 1. PON can be used to invert the polarity of the software bit PD. When the synthesizer is reactivated after power-down, the main and reference dividers are synchronized to avoid possibility of random phase errors on power-up.

Serial programming bus

2.5GHz low voltage fractional-N dual frequency synthesizer

data is latched into different working registers or temporary registers. In order to fully program the synthesizer, 3 words must be sent: C, B, and A. Table 1 shows the format and the contents of each word. The D word is normally used for testing purposes. When sending the B-word, data bits FC7–0 for the fractional compensation DAC are not loaded immediately. Instead they are stored in temporary registers. Only when the A-word is loaded, these temporary registers are loaded together with the main divider ratio.

register remains unchanged. Depending on the address bits, the

Serial bus timing characteristics. See Figure 8.

The serial input is a 3-wire input (CLOCK, STROBE, DATA) to

program all counter divide ratios, fractional compensation DAC,

24 bit words; each word includes 2 or 3 address bits. Figure 8

shows the timing diagram of the serial input. When the STROBE

goes active HIGH, the clock is disabled and the data in the shift

selection and enable bits. The programming data is structured into

 $V_{DD} = V_{DDCP} = +3.0V$; $T_{amb} = +25^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT						
Serial programmi	ng clock; CLK										
t _r	Input rise time	-	10	40	ns						
t _f	Input fall time	-	10	40	ns						
T _{cy}	Clock period	100	-	-	ns						
Enable programn	Enable programming; STROBE										
t _{START}	Delay to rising clock edge	40	-	-	ns						
t _W	Minimum inactive pulse width	1/f _{COMP}	-	-	ns						
t _{SU;E}	Enable set-up time to next clock edge	20	-	-	ns						
Register serial in	put data; DATA										
t _{SU;DAT}	Input data to clock set-up time	20	-	-	ns						
t _{HD;DAT}	Input data to clock hold time	20	-	-	ns						

Application information

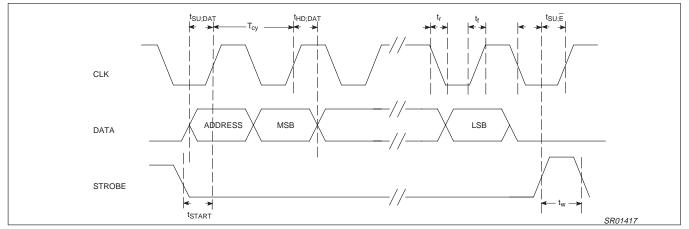


Figure 8. Serial Bus Timing Diagram

Data format

Table 1. Format of programmed data

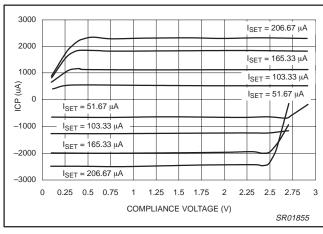
Γ	Last In		MSB		Serial Programming Format						
Γ	p23	p22	p21	p20	/	/	p1	p0			

Table 2. A word, length 24 bits

Last	In					MSB L LSB F								Fir	First In									
Last						MOD															200	11130111		
Addre	ess	fmod	Frac	tional	-N	Main D	ivider	ratio	_			_	_		_		_					Spare		
0	0	FM	NF2	NF1	NF0	N15	N14	N13	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1	N0	SK1	SK2	
Defa	ault	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	
A wor	rd sele	ect			Fixed	to 00.																		
Fracti	ional I	Modulus	sele	ct	FM 0	= modu	lo 8, 1	= mo	odulo	5.														
Fracti	ional-l	N Increr	nent		NF2	0 Fraction	onal N	Incre	ement	value	es 000	to 11	1.											
N-Div	N-Divider N0N15, Main divider values 512 to 65535 allowed for divider ratio.																							

Table 3. B word, length 24 bits

Addr	Address		Reference Divider										ock	P	D	Fractional Compensation DAC							
0	1	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	L1	L0	Main	Aux	FC7	FC6	FC5	FC4	FC3	FC2	FC1	FC0
Default		0	0	0	1	0	1	0	0	0	1	0	0	1	1	0	1	0	1	0	0	0	0
B word select					Fixed to 01																		
R-Divider					R0R9, Reference divider values 4 to 1023 allowed for divider ration.																		
Lock d	etect o	output			 L1 L0 0 0 Combined main, aux. lock detect signal present at the LOCK pin (push/pull). 0 1 Combined main, aux, lock detect signal present at the LOCK pin (open drain). 1 0 Main lock detect signal present at the LOCK pin (push/pull). 1 1 Auxiliary loop lock detect signal present at the LOCK pin (push/pull). When auxiliary loop and main loop are in power down mode, the lock indicator is low. 																		
Power down			Main = 1: power to N-divider, reference divider, main charge pumps, Main = 0 to power down. Aux = 1: power to Aux divider, reference divider, aux charge pump, Aux = 0 to power down.																				
Fractional Compensation FC70 Fractional G						onal Compensation charge pump current DAC, values 0 to 255.																	


Table 4. C word, length 24 bits

Address				Auxiliary Divider									СР		SM		SA						
1	1 0 A13 A12 A11				A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	CP1	CP0	SM2	SM1	SM0	SA2	SA1	SA0
Defa	ault	0	0	0	0	0	1	1	1	0	0	1	0	1	0	1	1	0	0	0	0	0	0
C word	C word select				Fixed to 10																		
A-Divi	der				A0A13, Auxiliary divider values 128 to 16383 allowed for divider ratio.																		
Charg	e pum	p curre	ent Ra	tio	CP1, CP0: Charge pump current ratio, see table of charge pump currents.																		
Main c	Main comparison select					SM comparison divider select for main phase detector.																	
Aux co	ompari	son se	elect		SA Comparison divider select for auxiliary phase detector.																		

Table 5. D word, length 24 bits

4	Address 1 1 0 Default			Sy	nthes	izer T	est Bi	its			Synthesizer Test Bits													
1	1		0	-	-	-	-	-	Tspu	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Defa	ault		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tsp	Tspu: Speed up = 1 NOTE: All													ne.										

SA8026

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. PHI Charge Pump vs. I_{SET} (CP = 01; Temp = 25°C)

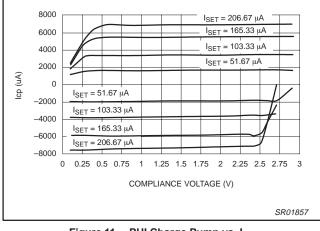


Figure 11. PHI Charge Pump vs. I_{SET} (CP = 00; TEMP = 25°C)

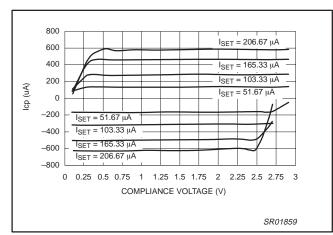


Figure 13. PHP Charge Pump Output vs. I_{SET} (CP = 10; Temp = 25°C)

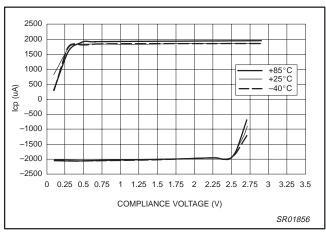


Figure 10. PHI Charge Pump Output vs. Temperature (CP = 01; V_{DD} = 3.0 V; I_{SET} = 165.33 $\mu A)$

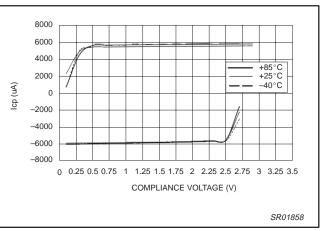


Figure 12. PHI Charge Pump Output vs. Temperature (CP = 00; V_{DD} = 3.0 V; I_{SET} = 165.33 μ A)

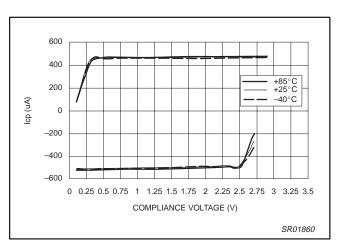
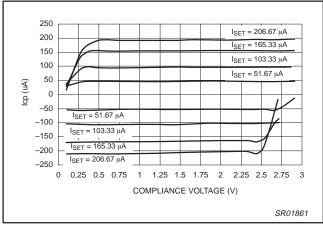



Figure 14. PHP Charge Pump Output vs. Temperature (CP = 10; V_{DD} = 3.0 V; I_{SET} = 165.33 μ A)

SA8026

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 15. PHP Charge Pump Output vs. I_{SET} (CP = 11; Temp = 25°C)

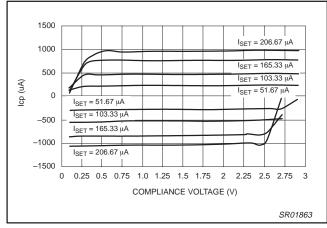


Figure 17. PHP–SU Charge Pump Output vs. I_{SET} (CP = 01; Temp = 25°C)

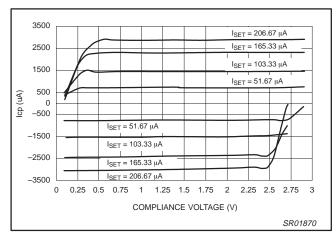


Figure 19. PHP–SU Charge Pump Output vs. I_{SET} (CP = 00; Temp = 25°C)

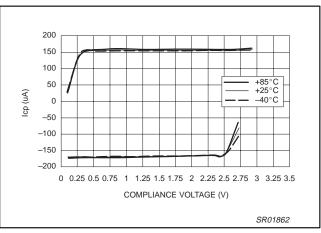


Figure 16. PHP Charge Pump Output vs. Temperature (CP = 11; V_{DD} = 3.0 V; I_{SET} = 165.33 μ A)

Figure 18. PHP–SU Charge Pump Output vs. Temperature (CP = 01; V_{DD} = 3.0 V; I_{SET} = 165.33 μ A)

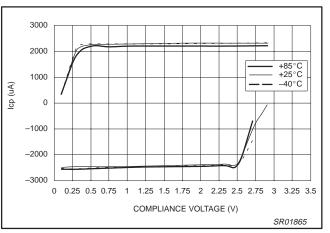


Figure 20. PHP–SU Charge Pump Output vs. Temperature (CP = 00; V_{DD} = 3.0 V; I_{SET} = 165.33 μ A)

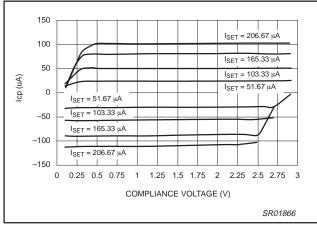
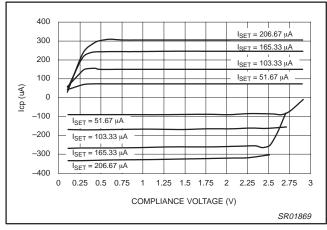



Figure 21. PHA Charge Pump Output vs. ISET (CP = 11; Temp = 25°C)

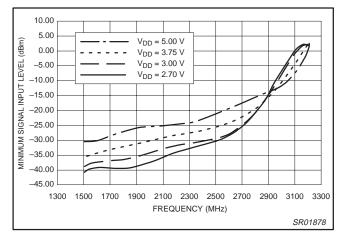


Figure 25. Main Divider Input Sensitivity vs. **Frequency and Supply Voltage** $(\text{Temp} = 25^{\circ}\text{C})$

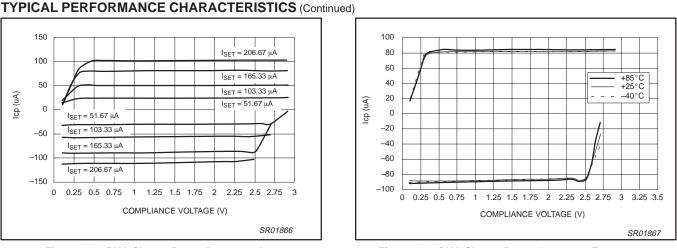


Figure 22. PHA Charge Pump Output vs. Temperature (CP = 11; V_{DD} = 3.0 V; I_{SET} = 165.33 μ A)

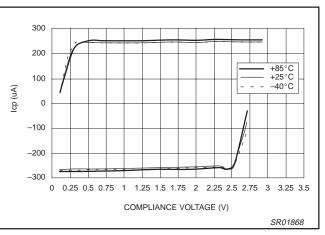


Figure 24. PHA Charge Pump Output vs. Temperature (CP = 10; V_{DD} = 3.0 V; I_{SET} = 165.33 μA)

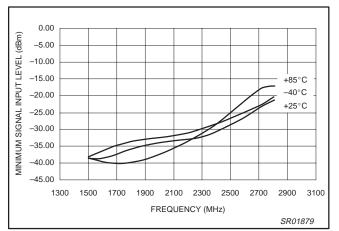
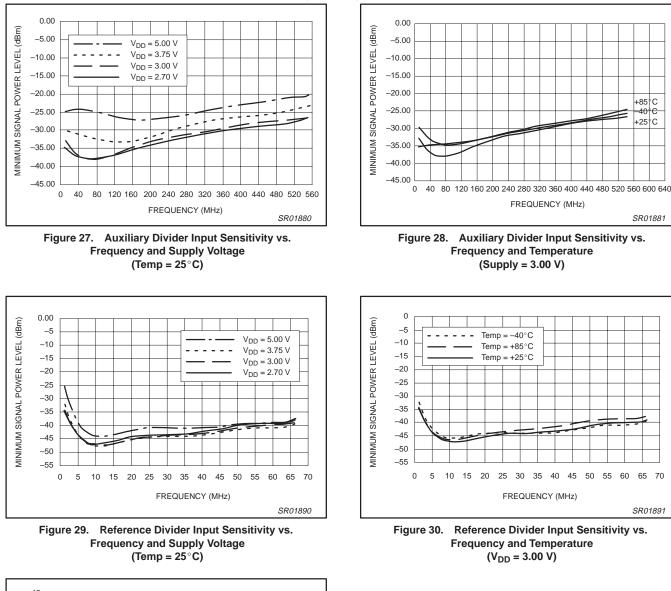



Figure 26. Main Divider Input Sensitivity vs. **Frequency and Temperature** $(V_{DD} = 3.00 V)$

SA8026

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

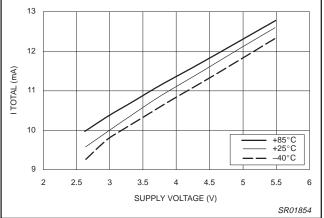
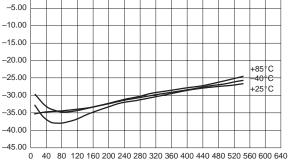
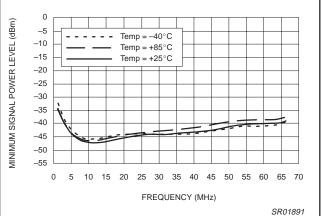
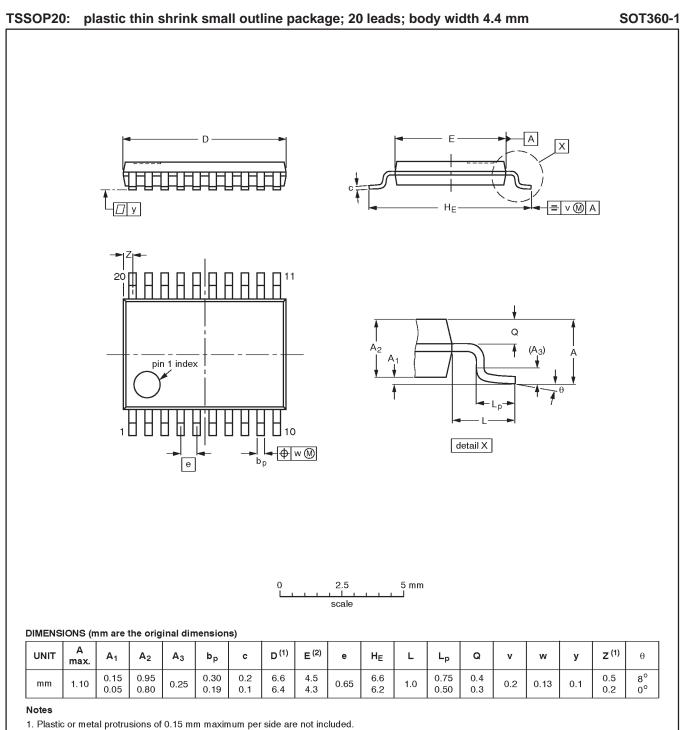





Figure 31. Current Supply Over V_{DD}

2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT360-1		MO-153AC			-93-06-16 95-02-04

SA8026

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1999 All rights reserved. Printed in U.S.A.

Document order number:

Date of release: 11-99 9397 750 06567

Let's make things better.

