

INTEGRATED CIRCUITS

DATA SHEET

SAA2013 Adaptive allocation and scaling for PASC coding in DCC systems

Preliminary specification
File under Integrated Circuits, IC01

May 1994

Philips Semiconductors

PHILIPS

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

FEATURES

- Wide operating voltage range: 2.7 to 5.5 V
- Low power consumption: 13 mW; 3.0 V
- Low power decode mode: 1 mW; 5.0 V
- Sleep mode for low power and low Electromagnetic Interference (EMI)
- Sophisticated allocation algorithm
- Optimum sound quality
- Three-wire L3 bus microcontroller interface
- Stereo or 2-channel mono recording
- Small surface mounted package (QFP; SOT307).

GENERAL DESCRIPTION

The SAA2013 performs the adaptive allocation and scaling function in the Precision Adaptive Sub-band Coding (PASC) system. It is not required in playback only applications, and is only used during recording. To complete the PASC processor, a SAA2003 stereo filter and codec is required.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
SAA2013H	44	QFP ⁽¹⁾	plastic	SOT307-2

Note

1. When using reflow soldering it is recommended that the Dry Packing instructions in the "Quality Reference Pocketbook" are followed. The pocketbook can be ordered using the code 9398 510 34011.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

BLOCK DIAGRAM

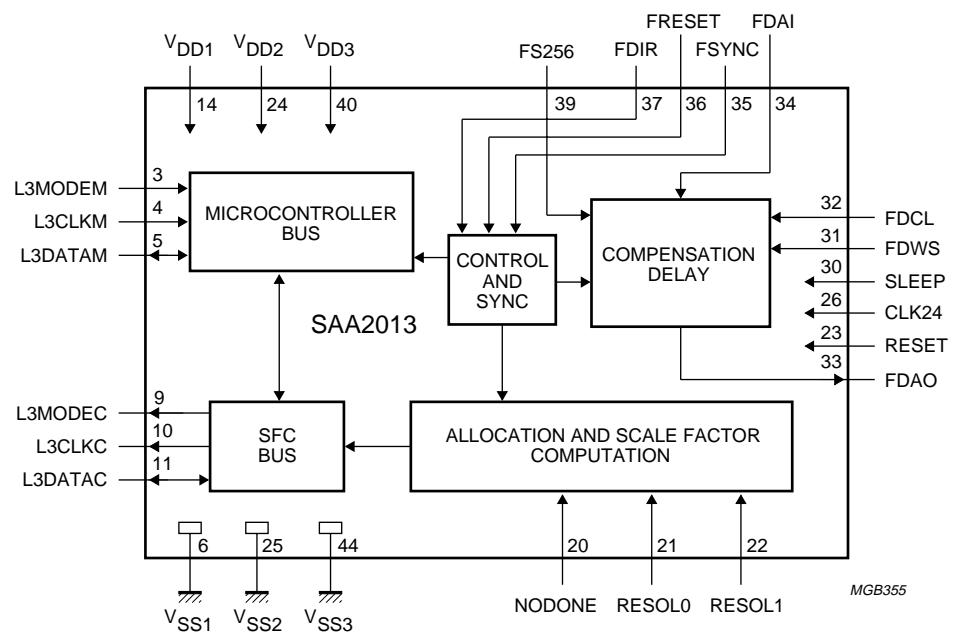


Fig.1 Block diagram.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

PINNING

SYMBOL	PIN	DESCRIPTION	TYPE
TEST10	1	test input; connect to V _{SS}	I
TEST11	2	test input; connect to V _{SS}	I
L3MODEM	3	microcontroller interface mode input	I
L3CLKM	4	microcontroller interface clock input	I
L3DATAM	5	microcontroller interface data 3-state input/output	I/O
V _{SS1}	6	supply ground	-
TEST12	7	test output; do not connect	O
TEST13	8	test output; do not connect	O
L3MODEC	9	codec interface mode output	O
L3CLKC	10	codec interface clock output	O
L3DATAAC	11	codec interface data 3-state input/output	I/O
TEST1	12	test output; do not connect	O
TEST2	13	test output; do not connect	O
V _{DD1}	14	supply voltage	-
TEST3	15	test mode input; connect to V _{DD}	I
TEST4	16	test mode input; connect to V _{DD}	I
TEST5	17	test input; connect to V _{SS}	I
TEST6	18	test input; connect to V _{SS}	I
TEST7	19	test input; connect to V _{SS}	I
NODONE	20	nodone state selection input; connect to V _{DD}	I
RESOL0	21	resolution selection 0 input	I
RESOL1	22	resolution selection 1 input	I
RESET	23	reset input; active HIGH	I
V _{DD2}	24	supply voltage	-
V _{SS2}	25	supply ground	-
CLK24	26	24.576 MHz clock input	I
LOWPWR	27	low power decode select input	I
POR	28	power on reset input	I
TEST8	29	test input; connect to V _{SS}	I
SLEEP	30	sleep mode select input	I
FDWS	31	filtered data word select	I
FDCL	32	filtered data clock	I
FDAO	33	filtered data output	O
FDAI	34	filtered data input	I
FSYNC	35	sub-band synchronization on filtered I ² S bus	I
FRESET	36	reset signal input from SAA2003	I
FDIR	37	filtered data direction input	I
TEST9	38	test input; connect to V _{SS}	I
FS256	39	system clock input; 256 × sample frequency (f _s)	I
V _{DD3}	40	supply voltage	-

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

SYMBOL	PIN	DESCRIPTION	TYPE
n.c.	41	not connected	—
n.c.	42	not connected	—
n.c.	43	not connected	—
V _{SS3}	44	supply ground	—

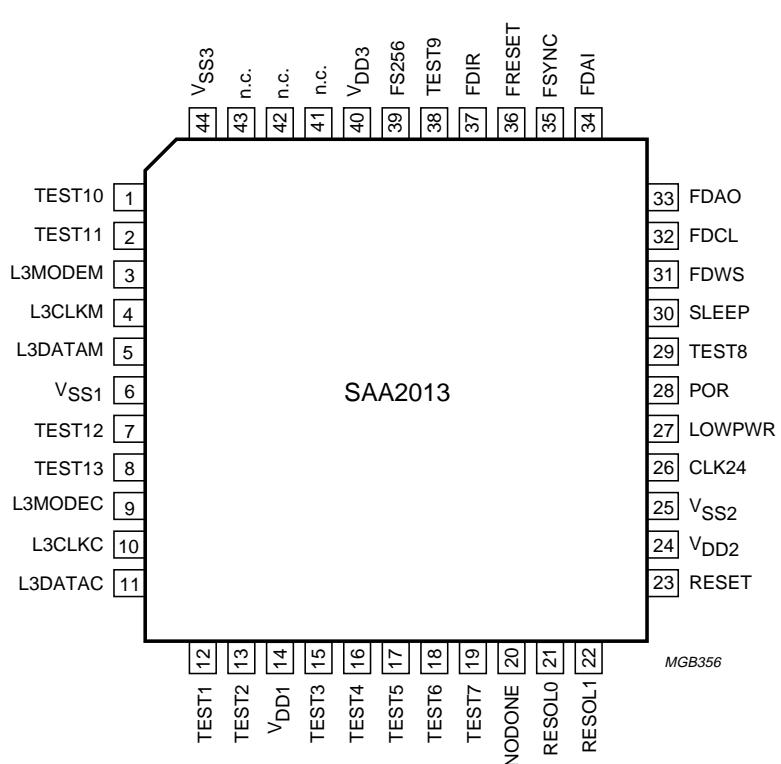


Fig.2 Pin configuration.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

FUNCTIONAL DESCRIPTION

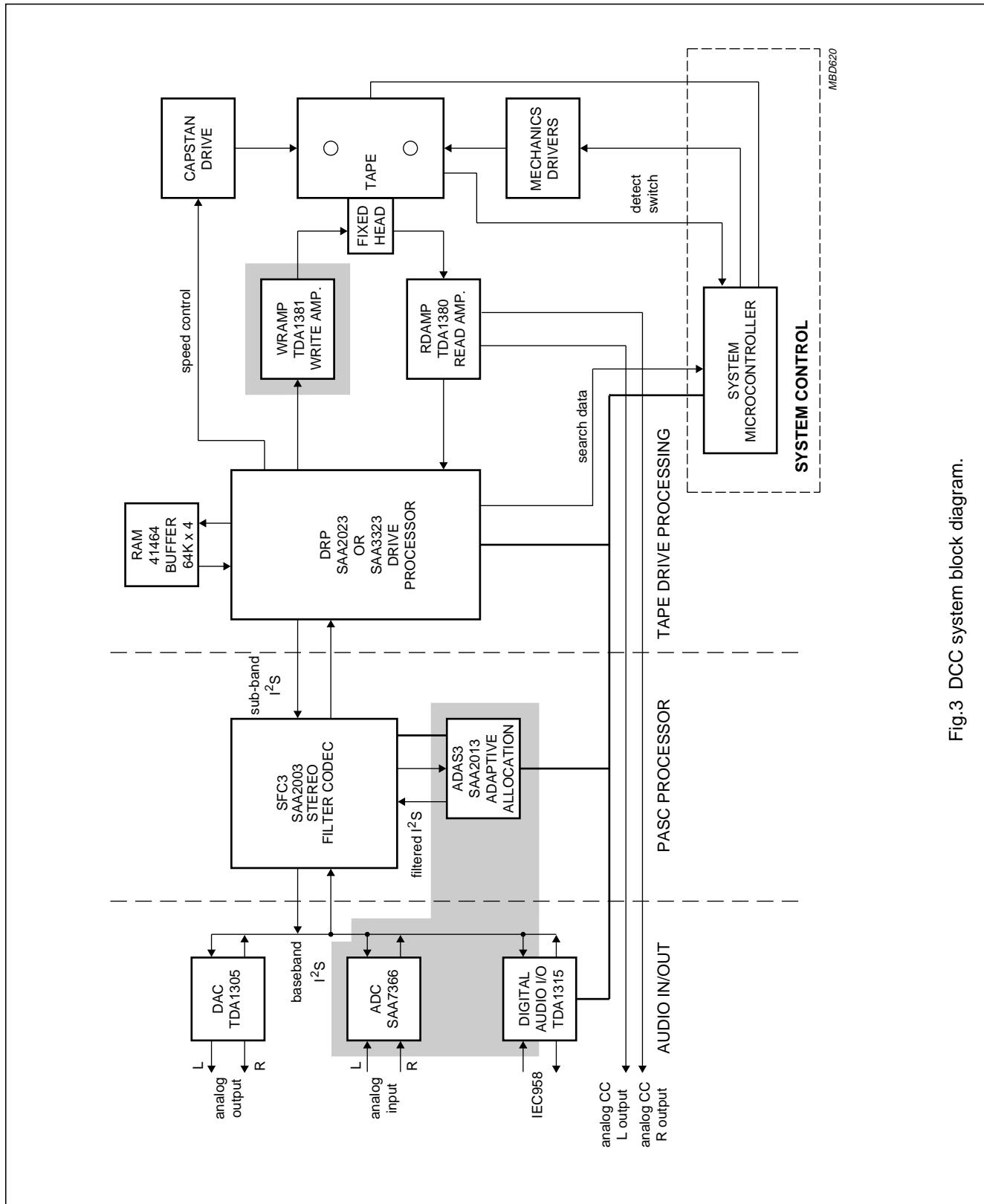


Fig.3 DCC system block diagram.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

PASC processor

The PASC processor is a dedicated Digital Signal Processor (DSP) engine which efficiently codes digital audio data at a bit rate of 384 kbits/s without affecting the sound quality. This is achieved using an efficient adaptive data notation and by only encoding the audio information which can be heard by the human ear.

The audio data is split into 32 equal sub-bands during encoding. For each of the sub-bands a masking threshold is calculated. The samples from each of the sub-bands are included in the PASC data with an accuracy that is determined by the available bit-pool and by the difference between the signal power and the masking threshold for that sub-band. In decode, the sub-band signals are reconstructed into the full bandwidth audio signal.

The stereo filter codec performs the splitting (encoding) and reconstruction (decoding), including the necessary formatting functions. During encoding, the adaptive allocation and scaling circuit calculates the required accuracy (bit allocation) and scale factors of the sub-band samples.

Decode/encode control

Selection of decode or encode is controlled using FRESET and FDIR. FRESET causes a general reset. The FDIR signal is sampled at the falling edge of the FRESET signal

to determine the operation mode. When FDIR is HIGH, SAA2013 is in decode mode. When FDIR is LOW the SAA2013 is in encode mode. See Fig.4.

Reset

When used with low-power mode disabled (LOWPWR = V_{SS}), and with the SLEEP input LOW, SAA2013 is reset if the RESET pin is held HIGH for at least 5 periods of the CLK24 clock, see Fig.5. SAA2013 defaults to decode mode. When in low-power mode, the RESET pin is disabled.

Sleep mode

Sleep mode is entered by taking the SLEEP input HIGH with the LOWPWR pin connected to V_{SS}; CLK24 and FS256 are stopped internally to the SAA2013, the 3-state buffers will have a high impedance, and outputs will freeze in the same state as just before the sleep mode became active (clocks stopped). To come out of sleep mode, the SLEEP input must be taken LOW again. To clear data present from before sleep was entered, this should be followed by a reset, see Fig.5.

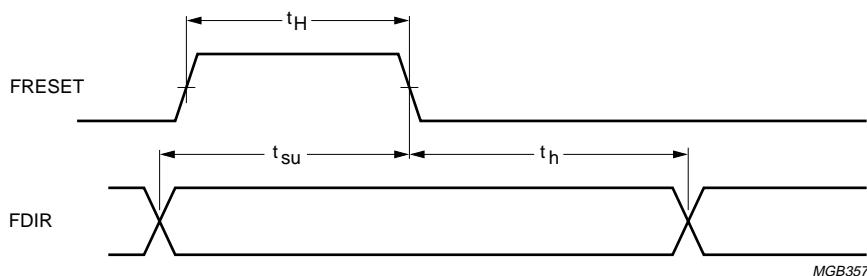


Fig.4 FDIR and FRESET timing.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

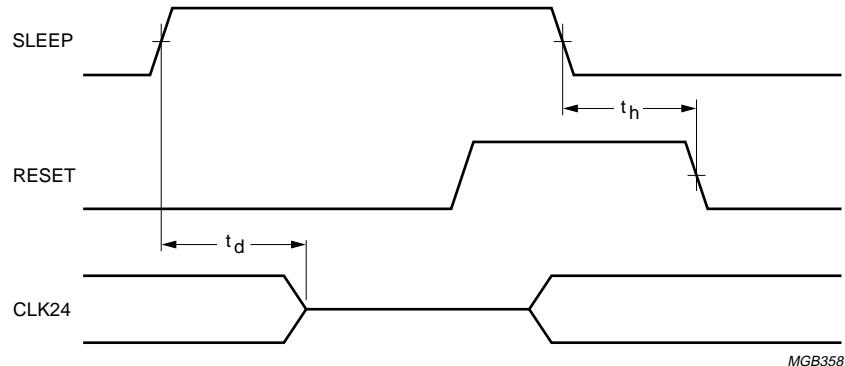


Fig.5 SLEEP and RESET timing.

Low-power decode mode

Low-power decode mode is made available by connecting the LOWPWR pin to V_{DD} . With $LOWPWR = V_{DD}$, low-power decode mode is entered 9 cycles of CLK24 after the SLEEP input is taken HIGH. In low-power decode mode, the L3 bus connections are connected straight through the SAA2013, which is effectively bypassed. The compensation delay connection between pins FDAI and FDAO is no longer needed by the SAA2003, and CLK24 and FS256 are stopped internally to the SAA2013.

To get out of low-power decode mode, it is necessary to take SLEEP LOW, FDIR LOW, and FRESET HIGH (in a normal application taking FDIR LOW and FRESET HIGH can be achieved by setting SAA2003 into encode mode), SAA2013 then performs an internal reset, and defaults to normal decode mode. The RESET pin does not reset the circuit from low-power decode mode.

Power-On Reset (POR)

When low-power decode mode is enabled ($LOWPWR = V_{DD}$), a power-on reset circuit is required to ensure that the internal clocks are connected correctly at power-on. A suitable circuit is shown in Fig.6. This circuit will correctly reset the internal clock connection provided that the nominal value of the V_{DD} supply is reached within 40 ms at power-on.

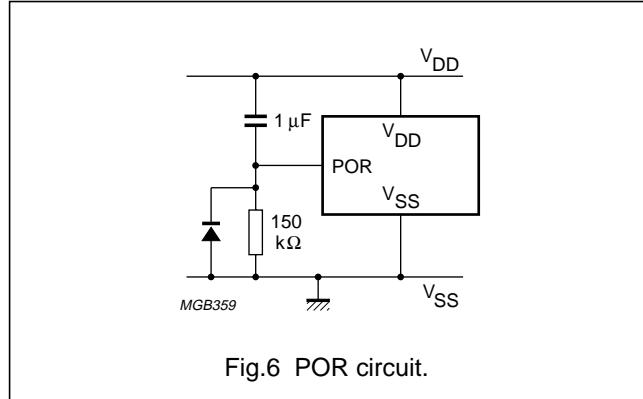


Fig.6 POR circuit.

Encode mode

In encode mode the SAA2013 receives sub-band filtered samples from SAA2003 on the FDAI pin. The SAA2013 has to collect a complete frame of sub-band data before the allocation and scale factor information can be calculated. So that the allocation and scale factor information is available in the same time frame as the audio samples at the output, the sub-band filtered samples are delayed by 480 FDWS periods.

One FDWS period is equal to $\frac{1}{f_s}$ where f_s is the audio sample rate of 32, 44.1 or 48 kHz. The delayed samples are passed to the codec part of SAA2003 on the FDAO pin.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

For each sub-band frame, SAA2013 calculates the allocation and scale factor index information required by the SAA2003. In order to synchronize the codec part of SAA2003, SAA2013 frequently requests status information from the codec. It monitors sample frequency, emphasis information and stereo mode, and uses the ready-to-receive bit of the codec to determine when to transfer information.

Decode mode

In decode the SAA2003 will transfer samples from FDAI to FDAO with a delay of 480 FDWS periods. Settings and status information can be sent to SAA2003 via SAA2013, but the SAA2013 does not itself act on this information. Transfer of this information is automatically synchronized to the ready-to-receive bit of SAA2003 by SAA2013.

Audio sample resolution section

The SAA2013 is designed for operation with audio input sources of 14, 15, 16 or 18-bit resolution.

For optimum audio performance the bit allocation algorithm of the SAA2013 can be varied to suit the bit resolution of the audio source. This is done with the pins RESOL0 and RESOL1 as shown in Table 1.

Table 1 Resolution set by pins RESOL0 and RESOL1.

RESOLUTION	RESOL0	RESOL1
16 bits	0	0
18 bits	0	1
14 bits	1	0
15 bits	1	1

Filtered data interface

The filtered data interface signals are given in Table 2.

Table 2 Filtered data interface signals.

PIN	INPUT/OUTPUT	FUNCTION	FREQUENCY
FDWS	input	filtered data interface word select	f_s
FDCL	input	filtered data interface bit clock	$64f_s$
FDAI	input	filtered data input	—
FDAO	output	filtered data output	—
FSYNC	input	filtered data sub-band synchronization	—

The filtered data interface transfers sub-band filtered samples between the stereo filter codec SAA2003 and SAA2013. The interface is similar to a normal I²S interface, consisting of clock (FDCL), data (FDAI/FDAO) and word select lines (FDWS), except that the samples sent represent signals divided into 32 sub-bands. One frame of data consists of 12 samples from 32 sub-bands for both left and right channels, i.e.: 768 audio samples. Each audio sub-band sample is represented by a 24-bit two's complement number.

The order in which the samples are sent is shown in Table 3.

For two channel mono, the order is the same, but with Channel 1 samples in the place of left and Channel 2 samples in place of right.

Table 3 Order of samples.

SUB-BAND	0	0	1	1	2	2	...	31	31
Channel	L	R	L	R	L	R	...	L	R
Sample	0	0	0	0	0	0	...	0	0
	1	1	1	1	1	1	...	1	1
	2	2	2	2	2	2	...	2	2

	11	11	11	11	11	11	...	11	11

The signal FSYNC is used between each PASC frame to indicate the sending of samples for sub-band 0 (Fig.7).

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

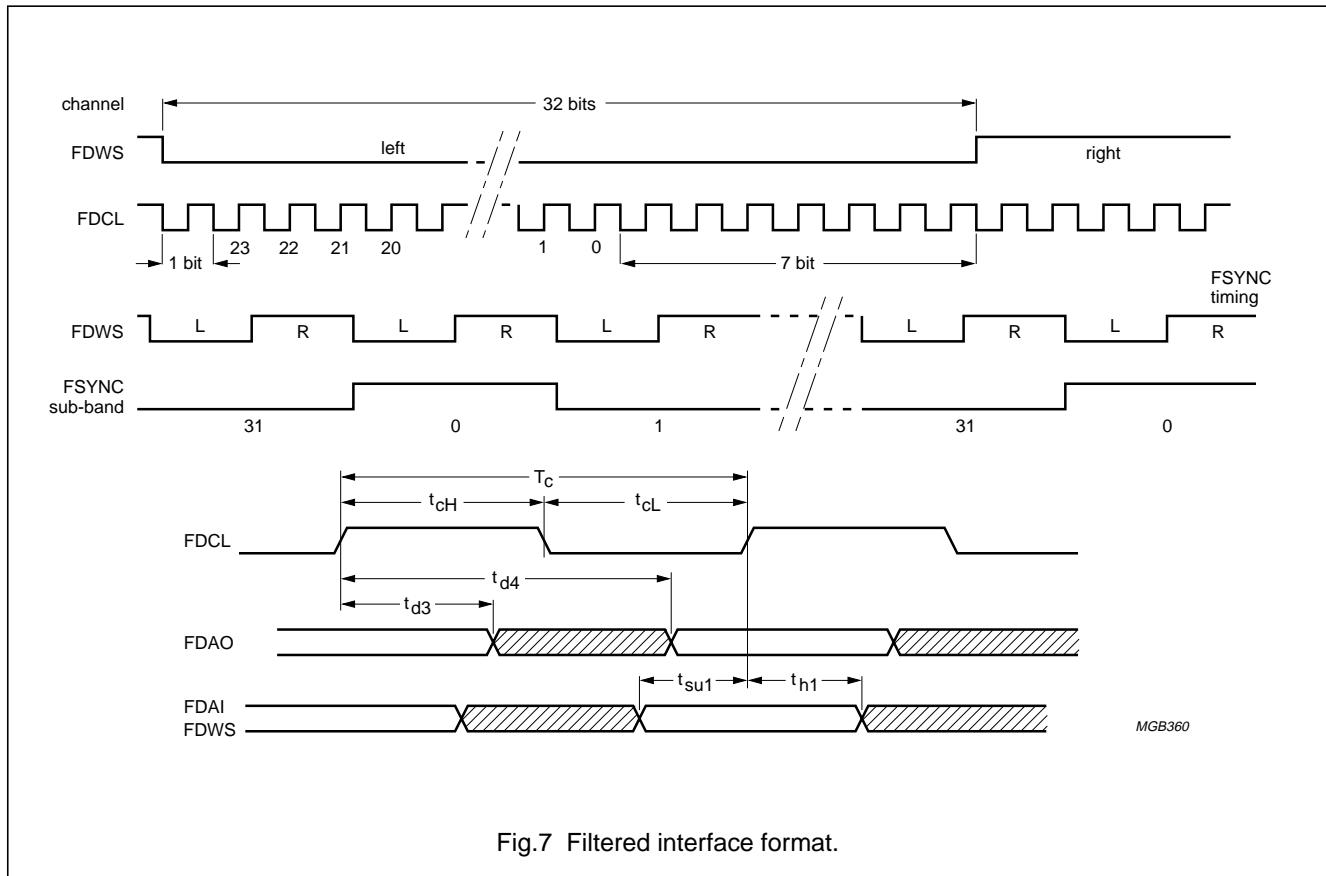


Fig.7 Filtered interface format.

Control interfaces

Two 3-wire control interfaces are provided (referred to as 'L3' interfaces). One is connected to the system microcontroller (L3MODEM, L3CLKM, L3DATAM where 'M' represents microcontroller), the other to SAA2003 (L3MODEC, L3CLKC, L3DATAC where 'C' represents codec). In general, control data is passed between SAA2003 and the microcontroller via SAA2013. This ensures that the microcontroller is buffered from the time-critical SAA2013 to SAA2003 interface during encode.

The SAA2013 does not interpret the data from the microcontroller interface.

Status information from the codec is interpreted to ensure that SAA2013 quickly acts upon the status of SAA2003.

The L3 bus operation is shown in Fig.8. There are three modes:

1. Address.
2. Data.
3. Halt.

Each interface operates as either a master or a slave, where the master provides L3CLK and L3MODE. For the microcontroller to SAA2013 interface, the microcontroller is the master. For the SAA2013 to SAA2003 interface, SAA2013 is the master.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

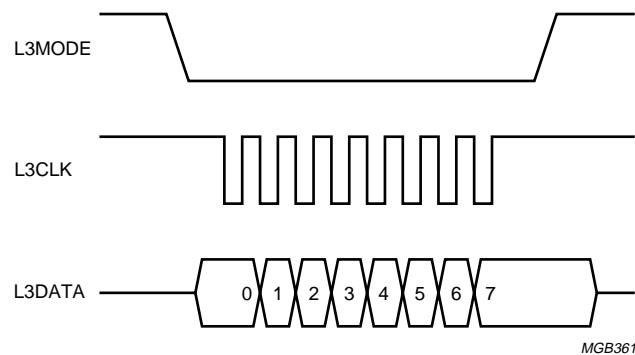


Fig.8 L3 bus operation; address mode.

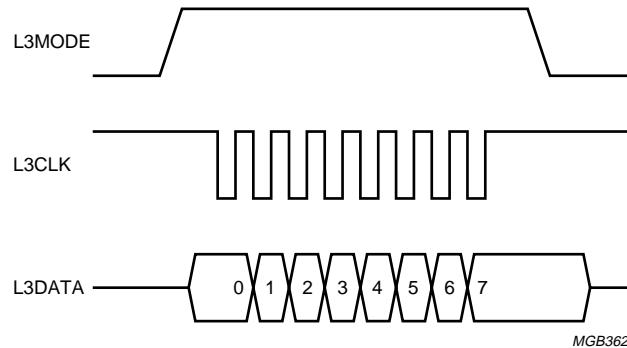


Fig.9 L3 single byte transfer.

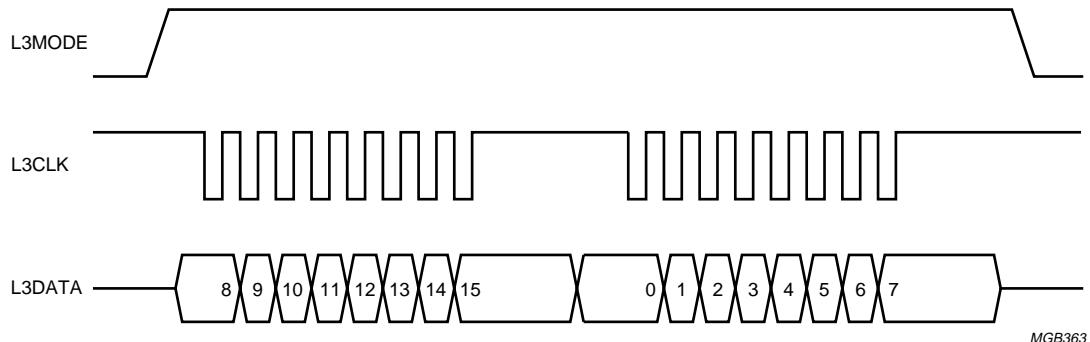


Fig.10 L3 bus two byte transfer.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

ADDRESS MODE

Address mode is entered by the master pulling L3MODE LOW. This causes the L3DATA line to act as an input on the slave, and 8 bits of address data are clocked into the slave. If the slave recognizes the address, it will set-up its internal state based on the 2 Least Significant Bits (LSBs) of the address. The slave then expects to send status data or receive control data.

The addresses for SAA2013 are shown in Table 4.

Table 4 SAA2013 addresses.

MSB	LSB	L3 OPERATION MODE	FUNCTION
0010	0000	WDAT	extended settings
0010	0001	RDAT	allocation information
0010	0010	WCMD	settings
0010	0011	RSTAT	status/peak read

The interface may be reset by sending an address of all zeros ('00000000'). This may be used to allow inter-operation with other devices sharing the L3CLK and L3DATA lines (e.g. SAA7345 CD decoder).

DATA MODE

In data mode, bytes of data are clocked into (e.g. control) or out of (e.g. status) the slave. A single byte transfer is shown in Fig.9. A two byte transfer is shown in Fig.10, between bytes there must be a pause during which the clock remains HIGH.

HALT MODE

Halt mode consists of pulling L3MODE LOW after sending data. It is used for marking the end of a data transfer mode which does not have an internal bit counter.

SAA2013 interface modes

The SAA2013 may be used to read and write from or to SAA2003. Information is transferred via a set of transit registers within SAA2013.

DECODE OPERATION

During decode, the SAA2013 does not perform allocation. Therefore no allocation and scale factor indices are sent to SAA2003. Settings and extended settings may still be sent to SAA2003, and SAA2013 monitors the status of the codec by reading status from it after every occurrence of FSYNC. Peak level data can also be transferred from SAA2003.

ENCODE OPERATION

In encode, the same information may be sent as for decode, and in addition, allocation/scale factor indices are sent to the codec by SAA2013.

The interface modes are shown in Table 5.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

Table 5 Interface modes.

MODE	ADDRESS		INTERFACE MODE	LENGTH (BITS)	DIRECTION
	BIT 1	BIT 0			
Decode	0	0	extended settings	8	microcontroller to SAA2003
	0	1	–	–	–
	1	0	settings	16	microcontroller to SAA2003
	1	1	status/peak	16 or 48	SAA2003 to microcontroller
Encode	0	0	extended settings	8	microcontroller to SAA2003
	0	1	allocation/scale	48 × 16	SAA2013 to SAA2003
	1	0	settings	16	microcontroller to SAA2003
	1	1	status/peak	16 or 48	SAA2003 to microcontroller

PRIORITY

Each type of transfer has a priority. The priorities are:

1. Allocation/scale/settings (highest priority).
2. Status read.
3. Peak read.
4. Extended settings (lowest priority).

ALLOCATION AND SCALE FACTOR TRANSFER

The allocation and scale factor information sent from SAA2013 to SAA2003 during encode has the highest priority. The other types of transfer interleaved with the allocation/scale information.

SETTINGS TRANSFER

This is a 16-bit transfer. The microcontroller sends settings to SAA2003. SAA2013 only transfers these without taking notice of the contents. In encode, the settings are held in

the transit registers, and sent next time that allocation is being sent. In decode, settings are sent as soon as possible subject to the RTRC flag from SAA2003.

Before sending settings the microcontroller should read the status of SAA2013 to examine the Ready-To-Receive bit Settings (RTS). After the settings have been received by SAA2013, RTS will be made logic 0, until the settings have been sent to SAA2003. Only after RTS is logic 1 again may the microcontroller send new settings.

STATUS READ

Status and peak information may be read from SAA2003 by the microcontroller. The status bits are defined in Table 6.

Table 6 Status bits.

BIT	NAME	FUNCTION	VALID IN
B15 to B12	bit rate index	bit rate indication	encode/decode
B11 and B10	sample frequency indication	44.1, 48, 32 kHz indication	encode/decode
B9	RTRS (settings)	1 = ready; 0 = not ready	encode/decode
B8	RTRE (external settings)	1 = ready; 0 = not ready	encode/decode
B7 and B6	MODE	sub-band signal mode identification	encode/decode
B5	SYNC	synchronization indication	encode/decode
B4	CLKOK	1 = OK; 0 = not OK	encode/decode
B3 and B2	Tr0 and Tr1	transparent bits	encode/decode
B1 and B0	EMPHASIS	emphasis indication	encode/decode

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

Since the two bytes of status information are sampled separately, the bytes may result from different sub-band frames.

The only valid bit rate code for the SAA2013 is 1100.

The sample frequency indication is shown in Table 7.

Table 7 Sample frequency indication.

BIT 11	BIT 10	SAMPLE FREQUENCY
0	0	44.1 kHz; default
0	1	48.0 kHz
1	0	32.0 kHz
1	1	do not use

Ready-to-receive S or E indicates whether the SAA2013 is ready-to-receive new settings or extended settings from the microcontroller. This should be checked before sending new information.

For details of the MODE, SYNC, CLKOK and transparent bits, refer to the "SAA2003 data sheet".

The emphasis indication can be used to apply the correct de-emphasis. In encode SAA2013 will correct the calculated allocation if $50/15$ μ s emphasis is applied. When "CCITT J.17" emphasis is applied, the bit allocation remains the same as when no emphasis is applied.

The 2 bytes of the status are 'sampled' at different moments. So the information may not result from the same sub-band frame.

When making repeated status reads (for instance reading the RTRS/RTRE flags before sending settings or extended settings), the microcontroller **must** send an address before each status read, to ensure that the byte counter in the interface is reset to logic 0. If this is not done, then the peak data will be read. Conversely, it is important **not** to send a new address after a status read if the peak data is required.

PEAK READ

Peak information is read by clocking a further 4 bytes of data after a status read. The data format is shown in Figs 11 and 12. Bits B17 to B31 contain a 15-bit unsigned peak, LSB first, channel indicated by bit B16. Bits B33 to B47 contain a 15-bit unsigned peak, channel indicated by bit B32.

The peak data is delayed by 1 read period. If for example the microcontroller reads peak level data every 50 ms, the peak data sourced by SAA2013 will be 50 ms old. Also it

is possible that peak data may contain an additional delay of 1 column (667 μ s minimum at 48 kHz, 1 ms maximum at 32 kHz). If the microcontroller attempts to read peak level data with a delay of less than 1 column, the peak level data from the previous reading will be repeated. Normally the microcontroller should allow at least 1 ms between reads. There is also a delay required between peak data words (Fig.13).

If the SAA2013 does not have peak data available (for instance the microcontroller attempts two reads in very quick succession), it will return all peak data bits set to logic 0. The microcontroller can detect if valid peak data has been returned by inspecting bits T16 and T32. If both bits are set to logic 0 the data is not valid.

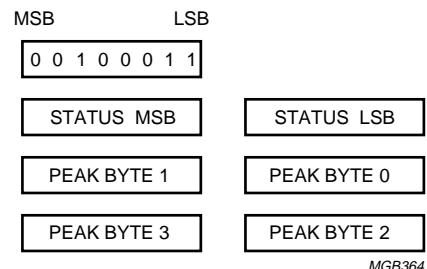


Fig.11 Peak level read format; SAA2013 to microcontroller.

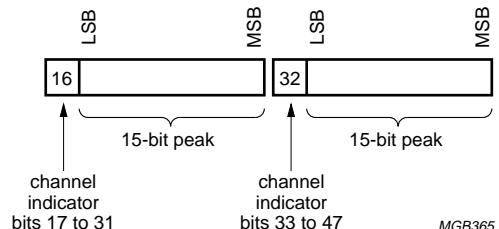


Fig.12 Peak level format.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

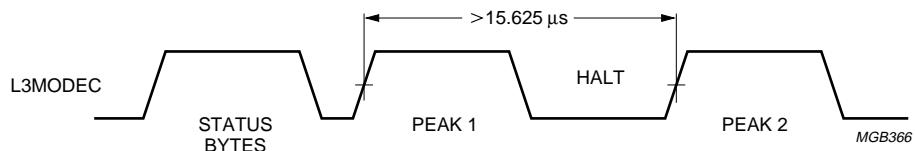


Fig.13 Peak data timing.

EXTENDED SETTINGS

This is a single byte transfer, valid during decode and encode. The sequence of operations is:

1. Microcontroller reads status from SAA2013, waiting for the flag RTRE to be set.
2. When RTRE is logic 1, the microcontroller writes address bit 0 is logic 0, bit 1 is logic 0.
3. One byte of extended settings is clocked into the transit register (SAA2013).
4. When it is possible (i.e. subject to RTRC being HIGH, and assuming that allocation or status is not waiting), the byte is transferred from the transit register to the SAA2003.

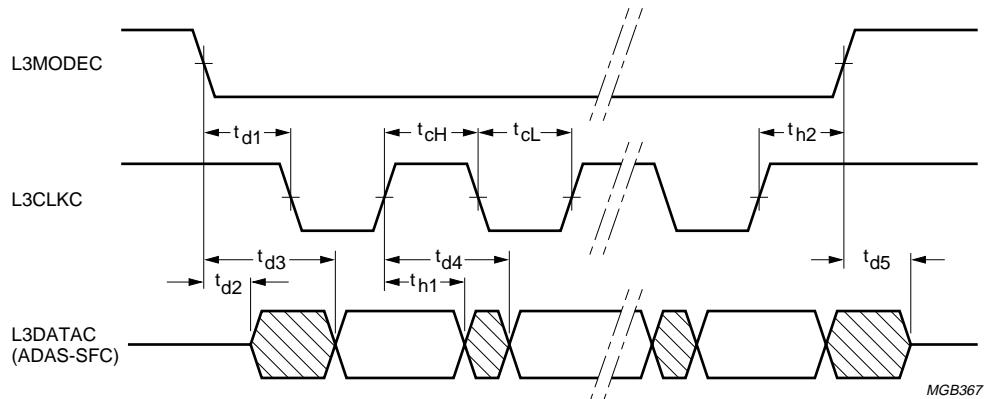


Fig.14 L3 interface timing; SAA2013 to SAA2003 (address mode).

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

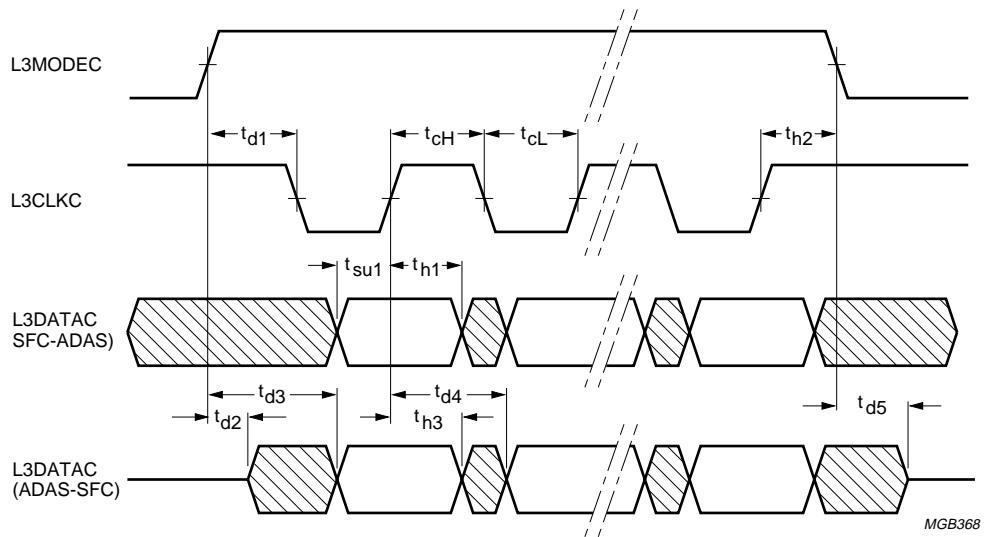


Fig.15 L3 interface timing; SAA2013 to SAA2003 (data mode).

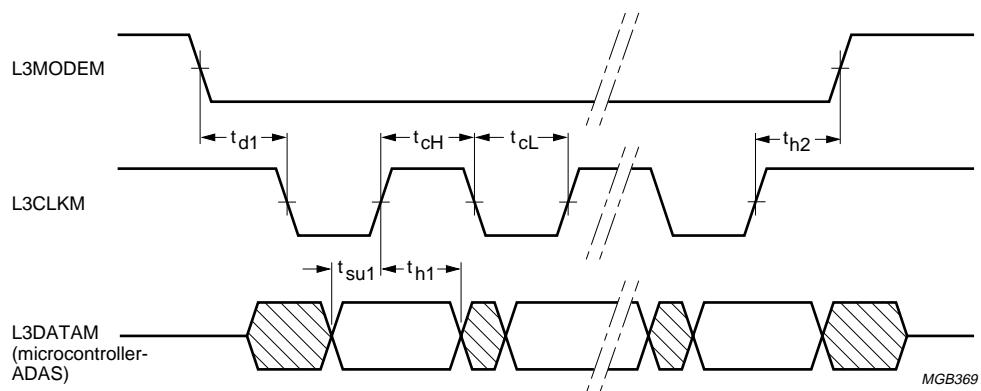


Fig.16 L3 interface timing; microcontroller to SAA2013 (address mode).

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

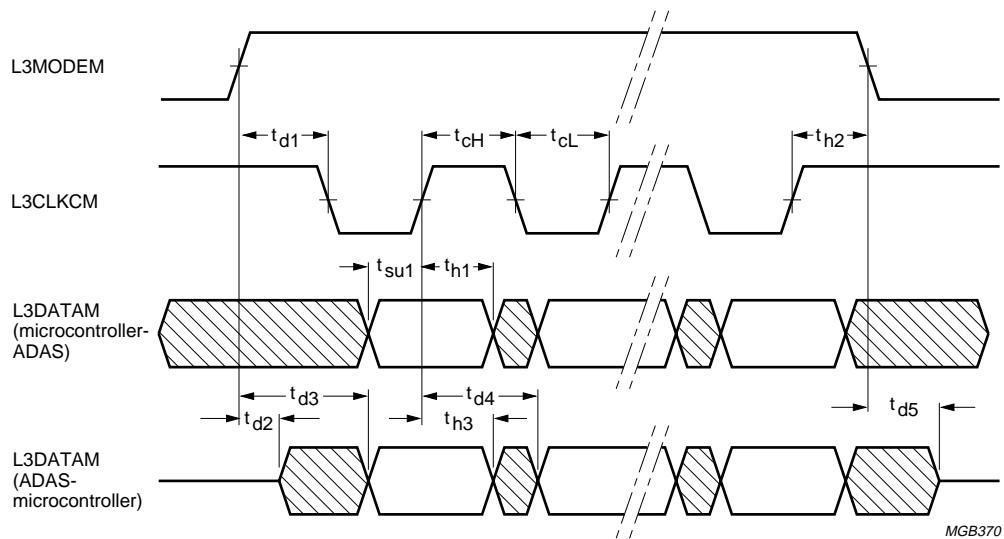


Fig.17 L3 interface timing; microcontroller to SAA2013 (data mode).

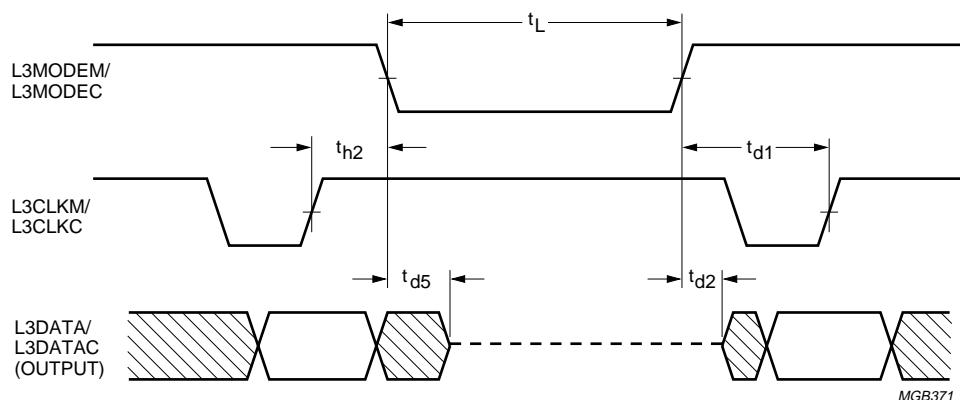


Fig.18 L3 interface timing; microcontroller to SAA2013 and SAA2013 to SAA2003 (halt mode).

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

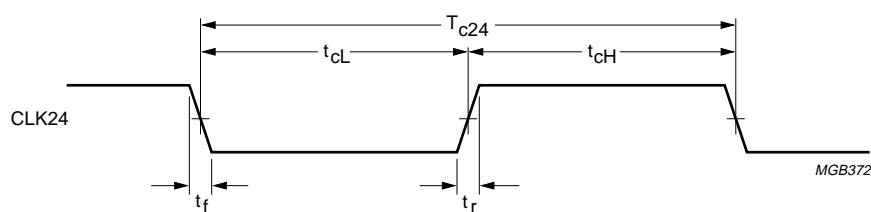


Fig.19 Input timing CLK24.

Fig.20 Input signal timing for FSYNC, FRESET, FDIR, FDWS, L3MODEM, L3CLKM, L3DATAM and L3DATAAC.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

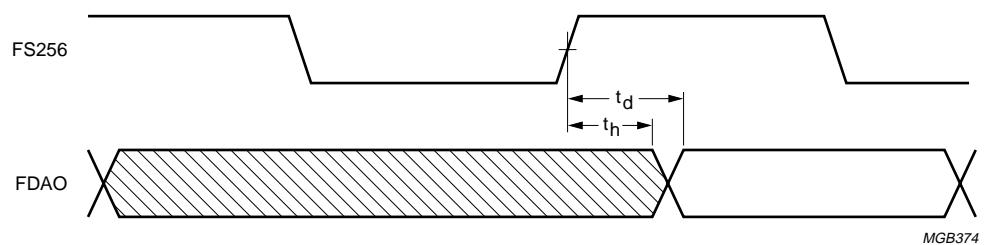
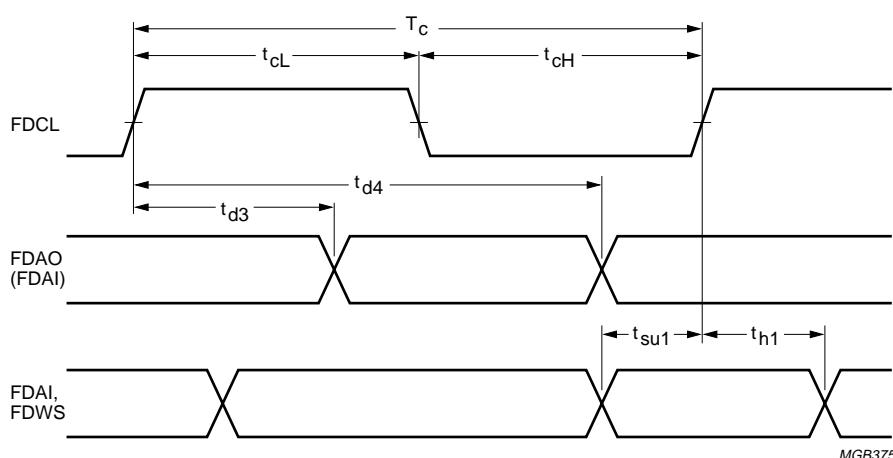
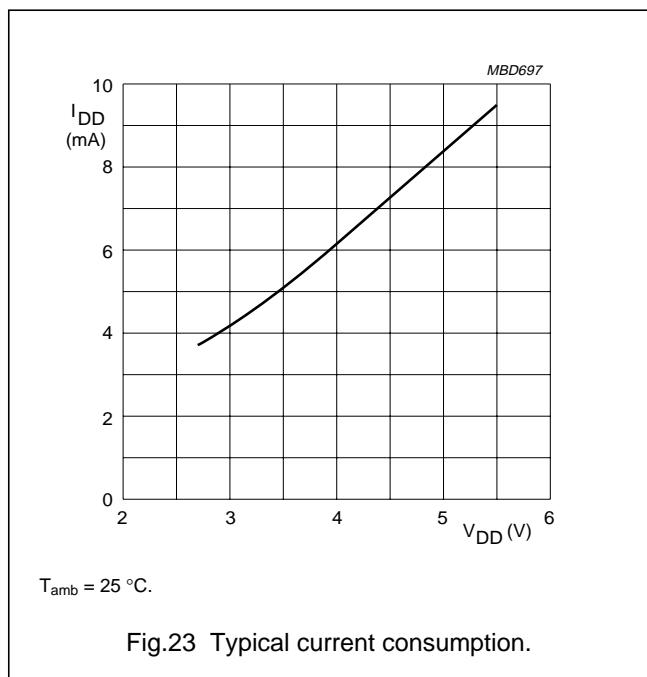


Fig.21 Output signal timing FDAC.




Fig.22 Filtered data interface timing.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

Current consumption

The typical current consumption is shown in Fig.23.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		-0.5	+6.5	V
V_I	input voltage		-0.5	$V_{DD} + 0.5$	V
I_I	input current		-	20	mA
V_O	output voltage		-0.5	+6.5	V
I_O	output current		-	20	mA
T_{stg}	storage temperature		-65	+150	$^{\circ}\text{C}$
T_{amb}	operating ambient temperature		-40	+85	$^{\circ}\text{C}$
V_{es}	electrostatic handling Human Body Model (HBM) Machine Model (MM)	note 1 note 2	-2000 -200	+2000 +200	V

Notes

1. Equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.
2. Equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

CHARACTERISTICS

$V_{DD} = 2.7$ to 5.5 V; $V_{SS} = 0$ V; $T_{amb} = -40$ to 85 °C; unless otherwise specified; I_{OL} and I_{OH} derated by 75% for $V_{DD} < 4.5$ V.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DD}	supply voltage		2.7	5.0	5.5	V
I_{DD}	supply current	$V_{DD} = 3.0$ V	4	5	6	mA
		$V_{DD} = 5.0$ V	7	10	12	mA
I_{stb}	standby current	$V_{DD} = 5.0$ V	—	—	400	µA
Inputs						
V_{IL}	LOW level input voltage		0	—	$0.3V_{DD}$	V
V_{IH}	HIGH level input voltage		$0.7V_{DD}$	—	V_{DD}	V
I_{LI}	input leakage current	$V_I = 0$ to V_{DD}	-10	—	+10	µA
C_I	input capacitance		—	—	10	pF
Outputs						
V_{OL}	LOW level output voltage	$I_{OL} = 4$ mA	0	—	0.4	V
V_{OH}	HIGH level output voltage	$I_{OH} = -4$ mA	$V_{DD} - 0.4$	—	V_{DD}	V
C_L	load capacitance		—	—	30	pF
Inputs/outputs						
V_{IL}	LOW level input voltage		0	—	$0.3V_{DD}$	V
V_{IH}	HIGH level input voltage		$0.7V_{DD}$	—	V_{DD}	V
I_{LI}	3-state leakage current	$V_I = 0$ to V_{DD}	-10	—	+10	µA
C_I	input capacitance		—	—	10	pF
V_{OL}	LOW level output voltage	$I_{OL} = 4$ mA	0	—	0.4	V
V_{OH}	HIGH level output voltage	$I_{OH} = -4$ mA	$V_{DD} - 0.4$	—	V_{DD}	V
C_L	load capacitance		—	—	30	pF
Clock input CLK24						
f_i	input frequency	see Fig.19	—	24.576	—	MHz
t_r	rise time		—	—	7	ns
t_f	fall time		—	—	7	ns
t_{cH}	HIGH time		10	—	—	ns
t_{cL}	LOW time		10	—	—	ns
Clock input FS256						
f_i	input frequency	$f_s = 48$ kHz	—	12.288	—	MHz
		$f_s = 44.1$ kHz	—	11.2896	—	MHz
		$f_s = 32$ kHz	—	8.192	—	MHz
t_r	rise time		—	—	7	ns
t_f	fall time		—	—	7	ns
t_{cH}	HIGH time		35	—	—	ns
t_{cL}	LOW time		35	—	—	ns

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Inputs FSYNC, FRESET, FDIR, FDWS, L3MODEM, L3CLKM, L3DATAM and L3DATAC; referenced to CLK24 rising edge; see Fig.20; SLEEP = RESET = POR = logic 0						
t_{su}	set-up time		15	—	—	ns
t_h	hold time		20	—	—	ns
t_r	rise time		—	—	200	ns
t_f	fall time		—	—	200	ns
Inputs FDAI, FDCL, FDWS, FRESET and FDIR; referenced to FS256 rising edge; SLEEP = RESET = POR = logic 0						
t_{su}	set-up time		15	—	—	ns
t_h	hold time		20	—	—	ns
t_r	rise time		—	—	200	ns
t_f	fall time		—	—	200	ns
Output FDAO; referenced to FS256 rising edge; see Fig.21; SLEEP = RESET = POR = logic 0						
t_h	hold time	$C_L = 7.5 \text{ pF}$	0	—	—	ns
t_d	delay time	$C_L = 30 \text{ pF}$	—	—	30	ns
t_{d3}	output delay time after FDCL HIGH	see Fig.22	$2T_{c256} - 10^{(1)}$	—	—	ns
t_{d4}	output delay time after FDCL HIGH	see Fig.22	—	—	$3T_{c256} + 60^{(1)}$	ns
Input FDCL; see Fig.22						
T_c	FDCL period		280	$4T_{c256}^{(1)}$	—	ns
t_{cH}	FDCL HIGH time		$T_{c256} + 35^{(1)}$	—	—	ns
t_{cL}	FDCL LOW time		$T_{c256} + 35^{(1)}$	—	—	ns
Inputs FDAI and FDWS; see Fig.22						
t_{su1}	set-up time before FDCL HIGH		$3T_{c256} + 60^{(1)}$	—	—	ns
t_{h1}	hold time after FDCL HIGH		$T_{c256} + 20^{(1)}$	—	—	ns
Input FRESET; see Fig.4						
t_H	FRESET HIGH time		1280	—	—	ns
t_{su}	FDIR set-up time before FRESET LOW		0	210	—	ns
t_h	FDIR hold time after FRESET LOW		$9T_{c24}^{(2)}$	370	—	ns
SLEEP and RESET timing; see Fig.5; LOWPWR = logic 1						
t_h	RESET hold time after SLEEP LOW		$5T_{c24}^{(2)}$	210	—	ns
t_d	CLK24 disable after SLEEP HIGH		$9T_{c24}^{(2)}$	370	—	ns

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
L3 interface timing; microcontroller to SAA2013						
ADDRESS MODE; SEE FIG.16						
t_{d1}	L3MODEM LOW to L3CLKM LOW		190	—	—	ns
t_{cH}	L3CLKM HIGH time		250	—	—	ns
t_{cL}	L3CLKM LOW time		250	—	—	ns
t_{su1}	L3DATAM input set-up time before L3CLKM HIGH		190	—	—	ns
t_{h1}	L3DATAM input hold time after L3CLKM HIGH		30	—	—	ns
t_{h2}	L3CLKM HIGH before L3MODEM HIGH		190	—	—	ns
DATA MODE; SEE FIG.17						
t_{d1}	L3MODEM HIGH to L3CLKM LOW delay time		190	—	—	ns
t_{cH}	L3CLKM HIGH time		250	—	—	ns
t_{cL}	L3CLKM LOW time		250	—	—	ns
t_{su1}	L3DATAM input set-up time before L3CLKM HIGH		190	—	—	ns
t_{h1}	L3DATAM input hold time after L3CLKM HIGH		30	—	—	ns
t_{h2}	L3CLKM HIGH before L3MODEM LOW		190	—	—	ns
t_{d3}	L3MODEM HIGH to L3DATAM output valid		—	—	380	ns
t_{h3}	L3DATAM output hold time after L3CLKM HIGH		120	—	—	ns
t_{d4}	L3CLKM HIGH to L3DATAM output valid delay time		—	—	360	ns
		between bits 7 and 8; no halt mode used	—	—	530	ns
t_{d2}	L3MODEM HIGH to L3DATAM output enabled delay time		0	—	50	ns
t_{d5}	L3MODEM LOW to L3DATAM output disabled delay time		0	—	50	ns

Adaptive allocation and scaling for PASC coding in DCC systems

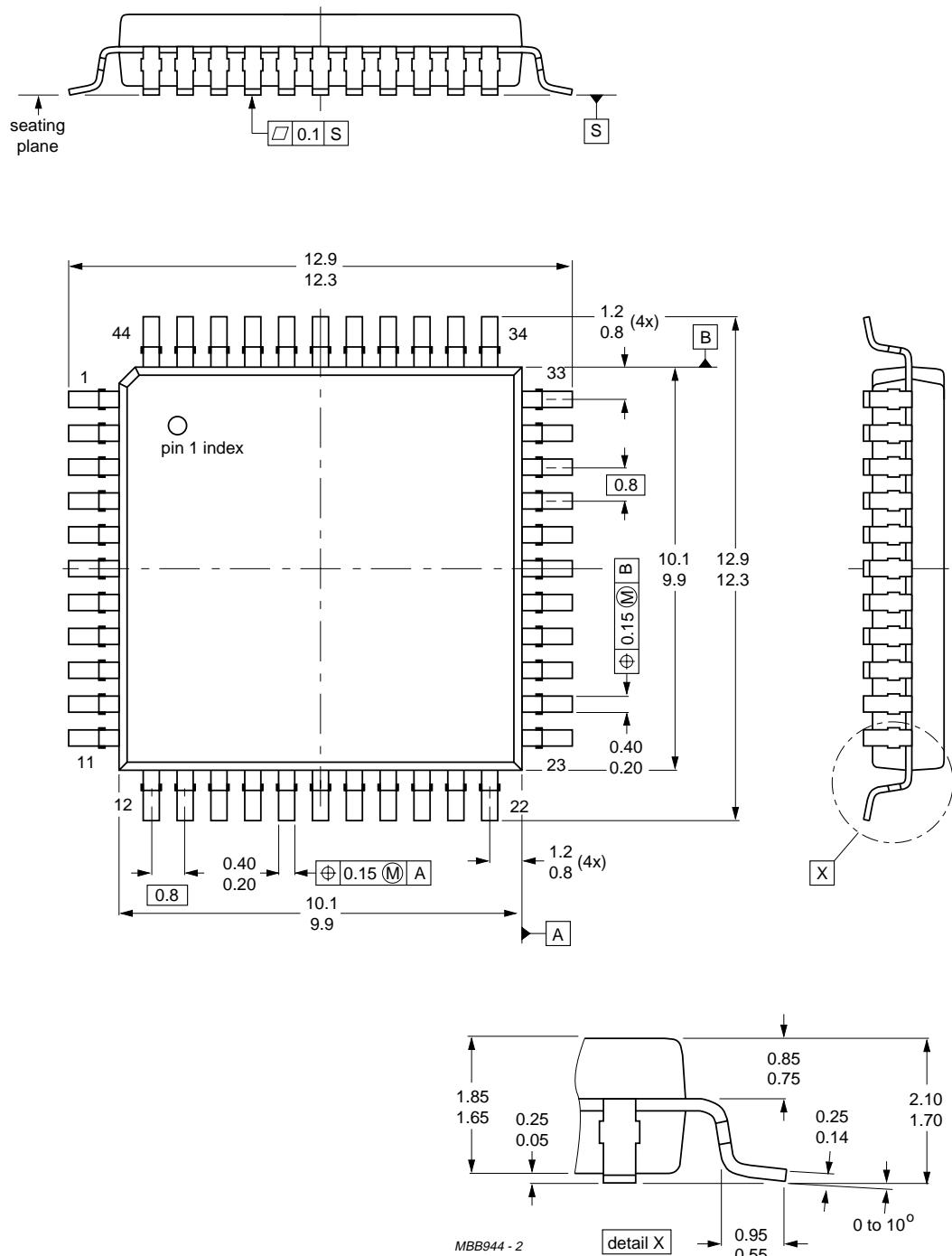
SAA2013

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
HALT MODE; SEE FIG.18						
t_L	L3MODEM LOW time		190	—	—	ns
t_{d1}	L3MODEM HIGH to L3CLKM HIGH delay time		190	—	—	ns
t_{h2}	L3CLKM HIGH before L3MODEM LOW		190	—	—	ns
t_{d2}	L3MODEM HIGH to L3DATAM output enabled delay time		0	—	50	ns
t_{d5}	L3MODEM LOW to L3DATAM output disabled delay time		0	—	50	ns
L3 interface timing; SAA2013 to SAA2003						
ADDRESS MODE; SEE FIG.14						
t_{d1}	L3MODEC LOW to L3CLKC LOW delay time		190	—	—	ns
t_{cH}	L3CLKC HIGH time		210	—	—	ns
t_{cL}	L3CLKC LOW time		210	—	—	ns
t_{h2}	L3CLKC HIGH time before L3MODEC HIGH		190	—	—	ns
t_{d3}	L3MODEC LOW to L3DATAC output valid delay time		—	—	380	ns
t_{h1}	L3DATAC output hold time after L3CLKC HIGH		120	—	—	ns
t_{d4}	L3CLKC HIGH to L3DATAC output valid delay time		—	—	360	ns
t_{d2}	L3MODEC LOW to L3DATAC output enabled delay time		0	—	50	ns
t_{d5}	L3MODEC HIGH to L3DATAC output disabled delay time		0	—	50	ns

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DATA MODE; SEE FIG.15						
t_{d1}	L3MODEC HIGH to L3CLKC LOW		190	—	—	ns
t_{cH}	L3CLKC HIGH time		210	—	—	ns
t_{cL}	L3CLKC LOW time		210	—	—	ns
t_{su1}	L3DATAC input set-up time before L3CLKC HIGH		100	—	—	ns
t_{h1}	L3DATAC input hold time after L3CLKC HIGH		30	—	—	ns
t_{h2}	L3CLKC HIGH time before L3MODEC LOW		190	—	—	ns
t_{d3}	L3MODEC HIGH to L3DATAC output valid		—	—	380	ns
t_{h3}	L3DATAC output hold time after L3CLKC HIGH		120	—	—	ns
t_{d4}	L3CLKC HIGH to L3DATAC output valid	—	—	360	ns	
		between bits 7 and 8; no halt mode used	—	—	530	ns
HALT MODE; SEE FIG.18						
t_L	L3MODEC LOW time		190	—	—	ns
t_{d1}	L3MODEC HIGH to L3CLKC HIGH delay time		190	—	—	ns
t_{h2}	L3CLKC HIGH time before L3MODEC LOW		190	—	—	ns
L3 interface delays in bypassed mode; LOWPWR = logic 1						
t_{pd1}	propagation delay from L3MODEM to L3MODEC; L3DATAM to L3DATAC; L3CLKM to L3CLKC		—	—	35	ns
t_{pd2}	propagation delay from L3DATAM to L3DATAC; L3CLKM to L3CLKC		-20	—	+4	ns
t_{pd3}	propagation delay from L3DATAM to L3DATAC; L3MODEM to L3MODEC		-20	—	+4	ns


Notes

1. T_{c256} is a clock period of FS256.
2. T_{c24} is a clock period of CLK24.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

PACKAGE OUTLINE

Dimensions in mm.

Fig.24 Plastic quad flat-pack, 44-pin (short) (QFP44SL).

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

SOLDERING

Plastic quad flat-packs

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

BY SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be

applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

Adaptive allocation and scaling for PASC coding in DCC systems

SAA2013

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

The Digital Compact Cassette logo is a registered trade mark of Philips Electronics N.V.

Adaptive allocation and scaling for PASC
coding in DCC systems

SAA2013

NOTES

Adaptive allocation and scaling for PASC
coding in DCC systems

SAA2013

NOTES

Adaptive allocation and scaling for PASC
coding in DCC systems

SAA2013

NOTES

Philips Semiconductors – a worldwide company

Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466

Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211

Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399

Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2327, Fax. (011)829-1849

Canada: INTEGRATED CIRCUITS: Tel. (800)234-7381, Fax. (708)296-8556

DISCRETE SEMICONDUCTORS: 601 Milner Ave, SCARBOROUGH, ONTARIO, M1B 1M8, Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477

Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730

Colombia: IPRELENZO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949

Finland: Siniakkiontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971

France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427

Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H., P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213.

Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240

Hong Kong: PHILIPS HONG KONG Ltd., Components Div., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729

India: Philips INDIA Ltd, Components Dept, Shivasagar Estate, A Block , Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722

Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200

Italy: PHILIPS COMPONENTS S.r.l., Viale F. Testi, 327, 20162 MILANO, Tel. (02)6752.3302, Fax. (02)6752 3300.

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580

Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880

Mexico: Philips Components, 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. (02)74 8000, Fax. (02)74 8341

Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546.

Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474

Portugal: PHILIPS PORTUGUESA, S.A., Rua dr. António Loureiro Borges 5, Arquiparque - Miraflor, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)14163160/4163333, Fax. (01)14163174/4163366.

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500

South Africa: S.A. PHILIPS Pty Ltd., Components Division, 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494.

Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 42 43

Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (08)-632 2000, Fax. (08)-632 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 77 30

Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, Taipei, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavut-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319.

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212)279 2770, Fax. (0212)269 3094

United Kingdom: Philips Semiconductors Limited, P.O. Box 65, Philips House, Torrington Place, LONDON, WC1E 7HD, Tel. (071)436 41 44, Fax. (071)323 03 42

United States: INTEGRATED CIRCUITS: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556

DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300

Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601

For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BAF-1, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825

SCD31

© Philips Electronics N.V. 1994

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

513061/1500/01/PP32

Date of release: May 1994

Document order number: 9397 731 90011

Philips Semiconductors

PHILIPS