
INTEGRATED CIRCUITS

Herein Herein 11 RCB video input 8.51 Memory interface and de-interfacer unit 1.2 YUV video input 8.51 Memory interface limitations 1.3 Video processing 8.53 Frame and field memory 1.4 On screen display 8.54 Frame recovery 1.5 Video output 8.6 Scaling 1.6 Memory interface 8.61 Downscaling 1.7 Miscellaneous 8.63 Upscaler transition function 2 GENERAL DESCRIPTION 8.63 Upscaler transition function 3 QUICK REFERENCE DATA 8.8 Overlay port 4 ORDERING INFORMATION 8.8.1 Overlay insertion 5 BLOCK DIAGRAM 8.8.2 Synce generation 6 PINNING INFORMATION 8.8.4 OVCLK gating 7.1 FUNCTIONAL DESCRIPTION 8.9 Colour correction 7.2.2 System clock (VCLK) 8.11 On screen display 7.2.1 Input interface clock (VCLK) 8.11 OSD dearacter matrix 7.2.2 System clock (VCLK) 8.13 Output interface 7.2.3 IPC-bus interface clock (VCLK) 8.13 Output interface 7.2.4 <td< th=""><th>CONTEN</th><th>тѕ</th><th>8.4</th><th>Video mode and synchronization signal</th></td<>	CONTEN	тѕ	8.4	Video mode and synchronization signal
1.1 RGB video input 8.5.1 Memory interface limitations 1.2 YUV video input 8.5.2 Initialization of external memory 1.3 Video processing 8.5.3 Frame and field memory 1.4 On screen display 8.5.4 Frame nor video memory 1.5 Video output 8.6 Scaling 1.6 Memory interface 8.6.1 Downscaling 1.7 Miscellaneous 8.6.2 Upscaler transition function 2 GENERAL DESCRIPTION 8.6.3 Upscaler transition function 3 QUICK REFERENCE DATA 8.7 Panning unit 5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.1 Overlay port 7 FUNCTIONAL DESCRIPTION 8.9 Colour space matrix 7.1 Data path 8.10 Colour space matrix 7.2.1 Input interface clock (VCLK) 8.11.1 OB spensition 7.2.2 Memory interface clock (VCLK) 8.11.2 Obstracter matrix 7.2.3 RC-bus interface clock (VCLK) 8.13 Output interface 7.3 RGB input port 8.13 Output interface 7.4 YU input port 8.13.2 Frame gen	1	FEATURES	85	
1.2 VUV video injout 8.5.2 Initialization of external memory 1.3 Video processing 8.5.3 Frame and field memory 1.4 On screen display 8.5.4 Frame recovery 1.5 Video output 8.6 Scaling 1.6 Memory interface 8.6.1 Downscaling 1.7 Miscellaneous 8.6.2 Upscaler transition function 2 GENERAL DESCRIPTION 8.7 Panning unit 3 QUICK REFERENCE DATA 8.8 Overlay port 4 ORDERING INFORMATION 8.8.1 Overlay port 5 BLOCK DIAGRAM 8.8.2 Syng generation 6 PINNING INFORMATION 8.4 OVCLK gating 7.1 Data path 8.10 Colour space matrix 7.2.1 Input interface clock (VCLK) 8.11 On Screen display 7.2.2 Memory interface clock (VCLK) 8.11.2 OSD enharcter matrix 7.2.2 Agement clock (CLK) 8.11.2 OSD enharcter matrix 7.2.3 <i>i</i> C-bus interface clock (VCLK) 8.13 Output interface 7.3 RGB input port 8.13.2 Frame generation 7.4 YUV input port 8.13.3 General <t< td=""><td></td><td></td><td></td><td>-</td></t<>				-
1.3 Video processing 8.5.3 Frame and field memory 1.4 On screen display 8.5.4 Frame recovery 1.5 Video output 8.6 Scaling 1.6 Memory interface 8.6.1 Downscaling 2 GENERAL DESCRIPTION 8.6.3 Upscaling 3 QUICK REFERENCE DATA 8.6 Upscaling 4 ORDERING INFORMATION 8.8.1 Overlay port 5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.4 OVCLK gaing 7.1 Data path 8.10 Colour space matrix 7.2 System clocks 8.11 On screen display 7.1.1 Data path 8.10 Colour space matrix 7.2.2 Memory interface clock (MCLKI) 8.11.1 OSD character matrix 7.2.3 réC-bus interface clock (MCLKI) 8.11.3 OSD character matrix 7.2.4 System clock (CLK) 8.13 Character matrix 7.3 RGB input port 8.13 Itame rate controller) 7.2.5 TFT panel clock (MCLKI) 8.13 Output interface clock (MCLKI) 7.3 RGB input port 8.13 General 7.4 YUV in		•		•
1.4 On screen display 8.5.4 Frame recovery 1.5 Video output 8.6 Scaling 1.6 Memory interface 8.6 Scaling 2 GENERAL DESCRIPTION 8.6.2 Upscaler transition function 3 QUICK REFERENCE DATA 8.8 Overlay port 4 ORDERING INFORMATION 8.8.1 Overlay port 5 BLOCK DAGRAM 8.8.2 Spregeneration 6 PINNING INFORMATION 8.8.1 Overlay port 7.1 Data sampling Oat as ampling 7.1 Data path 8.10 Colour space matrix 7.1.1 Data path 8.10 Colour space matrix 7.2.2 System clocks 8.11 On screen display 7.2.3 PC-bus interface clock (VCLK) 8.11.2 OSD generatis 7.2.4 System clock (CLK) 8.12 Temporal dithering (rame rate controller) 7.2.3 PC-bus interface clock (SCL) 8.13 Output interface 7.3 RGB input port 8.13 General 7.4 YUV input port 8.13 General 7.5 TFT panel clock (PCLK) 8.13 Output interface 7.5 TFT output port 8.13		-		
1.5 Video output 8.6 Scaling 1.6 Memory interface 8.6.1 Downscaling 2 GENERAL DESCRIPTION 8.6.3 Upscaling 3 QUICK REFERENCE DATA 8.8 Overlay port 4 ORDERING INFORMATION 8.8.1 Overlay insertion 5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.1 Overlay insertion 7 FUNCTIONAL DESCRIPTION 8.9 Colour space matrix 7.1 Data path 8.10 Oclour correction 7.2 System clocks 8.11 On screen display 7.2.1 Input interface clock (MCLKI) 8.11.1 OSD character matrix 7.2.3 IPC-bus interface clock (MCLKI) 8.11.3 OSD character matrix 7.2.4 System clock (CLK) 8.13 Output interface 7.3 RGB input port 8.13.1 General 7.5 TFT panel clock (MCLKI) 8.13 Output interface 7.5.4 YW input port 8.13.3 Timing reference signals 7.5.1 Single pixel mode 9 LIMITING VALUES 7.5.2 Duble pixel mode 9 LIMITING VALUES 7.5.2 SORA				
1.6 Memory interface 8.6.1 Downscaling 1.7 Miscellaneous 8.6.2 Upscaler transition function 2 GENERAL DESCRIPTION 8.7 Panning unit 3 QUICK REFERENCE DATA 8.8 Overlay port 4 ORDERING INFORMATION 8.8.1 Overlay insertion 5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.4 OVCLK gating 7.1 Data path 8.10 Colour space matrix 7.1 Data path 8.10 Colour pace matrix 7.2.1 Input interface clock (VCLK) 8.11.1 OSD window 7.2.2 Kerney interface clock (SCL) 8.11.3 OSD character matrix 7.2.4 System clock (CLK) 8.12 Temporal dithering (frame rate controller) 7.2.5 TFT panel clock (PCLK) 8.13 Output interface 7.4 YUV input port 8.13.3 Timing reference signals 7.5.1 Single pixel mode 9 LIMITING VALUES 7.5.2 Double pixel mode 9 LIMITING VALUES 7.6 Memory port 11 TIMING CHARACTERISTICS 7.6 Memory port 12 APPLICATION INFORMATION <t< td=""><td></td><td></td><td>8.6</td><td>-</td></t<>			8.6	-
2 GENERAL DESCRIPTION 8.6.3 Upscaler transition function 3 QUICK REFERENCE DATA 8.7 Panning unit 4 ORDERING INFORMATION 8.8.1 Overlay port 5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.3 Data sampling 6 PINNING INFORMATION 8.9 Colour correction 7.1 Data path 8.10 Colour correction 7.2 System clocks 8.11 On screen display 7.2.1 Input interface clock (WCLK) 8.11.1 OSD generals 7.2.2 Memory interface clock (WCLK) 8.11.1 OSD entracter matrix 7.2.3 I?C-bus interface clock (WCLK) 8.11 OSD character matrix 7.2.4 System clock (CLK) 8.13 Output interface 7.3 RGB input port 8.13 Output interface 7.4 YUV input port 8.13 Output interface 7.5 TFT panel clock (PCLK) 8.13 Output interface 7.4 YUV input port 8.13 Timing reference signals 7.5.1 Single pixel mode 9 LIMITING VALUES 7.5 TFT output port 8.13.3 Timing reference signals	1.6	-		Downscaling
2 GENERAL DESCRIPTION 8.7 Panning unit 3 QUICK REFERENCE DATA 8.8 Overlay port 4 ORDERING INFORMATION 8.8.1 Overlay port 5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.4 OVELK gating 7 FUNCTIONAL DESCRIPTION 8.9 Colour space matrix 7.1 Data path 8.10 Colour correction 7.2 System clocks 8.11 On screen display 7.2.1 Input interface clock (VCLK) 8.11.2 OSD window 7.2.2 Wemory interface clock (WCLK) 8.11.3 OSD character matrix 7.2.3 IPC-bus interface clock (WCLK) 8.11.3 OSD character matrix 7.2.4 System clock (CLK) 8.13 Output interface 7.3 RGB input port 8.13.0 Output interface 7.4 YUV input port 8.13.3 Timing reference signals 7.5 TFT output port 8.13.3 Timing reference signals 7.5.1 Single pixel mode 9 LIMITING VALUES 7.5.2 Double pixel mode 10 CHARACTERISTICS 7.6.2 SGRAM memory configuration 11 TIMING CHARACTERISTICS	1.7	Miscellaneous		
3 QUICK REFERENCE DATA 8.7 Panning unit 4 ORDERING INFORMATION 8.8.1 Overlay port 5 BLOCK DIAGRAM 8.8.1 Overlay insertion 6 PINNING INFORMATION 8.8.1 Overlay insertion 7 FUNCTIONAL DESCRIPTION 8.9 Colour space matrix 7.1 Data path 8.10 Colour correction 7.2 System clock 8.11 On screen display 7.2.1 Input interface clock (VCLK) 8.11.1 OSD generals 7.2.2 Memory interface clock (NCLKI) 8.11.2 OSD window 7.2.3 I ² C-bus interface clock (NCLK) 8.13 Output interface 7.4 YUV input port 8.13 Output interface 7.5.1 Single pixel mode 9 UIMTING VALUES 7.5.2 TFT output port 8.13.3 Timing reference signals 7.5.1 Single pixel mode 9 UIMTING VALUES 7.5.2 Duble pixel mode 10 CHARACTERISTICS 7.6 Memory configuration 11 TIMING CHARACTERISTICS 7.6.1 SDRAM memory configuration 12 APPLICATION INFORMATION 7.6.2 SGRAM memory configuration 14 SOLDERING <td>2</td> <td>GENERAL DESCRIPTION</td> <td></td> <td>•</td>	2	GENERAL DESCRIPTION		•
4 ORDERING INFORMATION 8.8.1 Overlay point 5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.3 Data sampling 6 PINNING INFORMATION 8.8.4 OVELK gating 7 FUNCTIONAL DESCRIPTION 8.9 Colour space matrix 7.1 Data path 8.10 Colour correction 7.2 System clocks 8.11 On screen display 7.2.1 Input interface clock (VCLK) 8.11.1 OSD generals 7.2.2 Wemory interface clock (WCLK) 8.11.2 OSD vindow 7.2.3 I ² C-bus interface clock (WCLK) 8.11.3 OSD character matrix 7.2.4 System clock (CLK) 8.13 Output interface 7.3 RGB input port 8.13.1 General 7.4 YUV input port 8.13.1 General 7.5 TF output port 8.13.3 Timing reference signals 7.5.1 Single pixel mode 9 LIMITING VALUES 7.5.2 Double pixel mode 9 LIMITING VALUES 7.6.1 SDRAM memory configuration 11 TIMING CHARACTERISTICS 7.6.2 SGRAM memory configuration 12 APPLICATION INFORMATION		QUICK REFERENCE DATA		
5 BLOCK DIAGRAM 8.8.2 Sync generation 6 PINNING INFORMATION 8.8.4 OVCLK gating 7 FUNCTIONAL DESCRIPTION 8.9 Colour space matrix 7.1 Data path 8.10 Colour space matrix 7.2 System clocks 8.11 On Screen display 7.2.1 Input interface clock (VCLK) 8.11.1 OSD generals 7.2.2 Memory interface clock (MCLKI) 8.11.1 OSD dynadow 7.2.3 I ² C-bus interface clock (SCL) 8.11.3 OSD character matrix 7.2.4 System clock (CLK) 8.13 Output interface 7.3 RGB input port 8.13.1 General 7.4 YUV input port 8.13.2 Frame generation 7.5.1 TFT output port 8.13.3 Timing reference signals 7.5.2 Double pixel mode 9 LIMITING VALUES 7.5.2 Double pixel mode 10 CHARACTERISTICS 7.6.1 SDRAM memory configuration 11 TIMING CHARACTERISTICS 7.6.2 SGRAM memory configuration 12 APPLICATION INFORMATION 7.7 I ² C-bus interface 13 PACKAGE OUTLINE 7.8.3 Temporal filtering 14.1 Introductio				
5 Data sampling 6 PINNING INFORMATION 8.8.3 Data sampling 6 PINNING INFORMATION 8.8.4 OVCLK gating 7.1 Data path 8.10 Colour space matrix 7.1 Data path 8.10 Colour space matrix 7.2 System clock 8.11 OSD generals 7.2.1 Input interface clock (VCLK) 8.11.1 OSD generals 7.2.2 Memory interface clock (SCL) 8.11.1 OSD character matrix 7.2.3 IPC-bus interface clock (SCL) 8.13 Output interface 7.2.4 System clock (CLK) 8.13 Output interface 7.3 RGB input port 8.13.1 General 7.4 YUV input port 8.13.2 Frame generation 7.5.5 TFT output port 8.13.3 Timing reference signals 7.5.6 Memory port 10 CHARACTERISTICS 7.6.1 SDRAM memory configuration 11 TIMING CHARACTERISTICS 7.6.2 SGRAM memory configuration 12 APPLICATION INFORMATION 7.7 IPC-bus interface 13 PACKAGE OUTLINE 7.8.1 Static mesh mode 14 SOLDERING 7.8.2 Spatial filtering				
7FUNCTIONAL DESCRIPTION8.9Colcur space matrix7.1Data path8.10Colour correction7.2System clocks8.11On screen display7.2.1Input interface clock (VCLK)8.11.1OSD generals7.2.2Memory interface clock (MCLKI)8.11.2OSD window7.2.3I ² C-bus interface clock (SCL)8.11.3OSD character matrix7.2.4System clock (CLK)8.13Output interface7.3RGB input port8.13.1General7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.2Frame generation7.5Single pixel mode9LIMITING VALUES7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.1SDRAM memory configuration12APPLICATION INFORMATION7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.6.1SDRAM memory configuration14SOLDERING7.8.1Static mesh mode14.1Introduction to soldering surface mount7.8.2Spatial filtering14.1Manual soldering7.8.3Temporal filtering14.3Wave soldering7.9.4Upscaling14.4Manual soldering7.9.5Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.4Manual soldering7.9.2Downscaling14.4Manual soldering8.3Clock management15DEFINITIONS <t< td=""><td></td><td></td><td></td><td></td></t<>				
7.1 Data path 8.10 Colour correction 7.2 System clocks 8.11 On screen display 7.2.1 Input interface clock (VCLK) 8.11.1 OSD generals 7.2.2 Memory interface clock (MCLK) 8.11.2 OSD window 7.2.3 I ² C-bus interface clock (SCL) 8.11.3 OSD character matrix 7.2.4 System clock (PCLK) 8.13 Output interface 7.3 ROB input port 8.13.1 General 7.4 YUV input port 8.13.3 Timing reference signals 7.5 TFT output port 8.13.3 Timing reference signals 7.5.1 Single pixel mode 9 LIMITING VALUES 7.5.2 Double pixel mode 10 CHARACTERISTICS 7.6.1 SDRAM memory configuration 11 TIMING CHARACTERISTICS 7.6.2 SGRAM memory configuration 12 APPLICATION INFORMATION 7.7 I ² C-bus interface 13 PACKAGE OUTLINE 7.8.1 Static mesh mode 14 SOLDERING 7.8.2 Spatial filtering 14.1 Introduction to soldering				OVCLK gating
7.2System clocks8.11On screen display7.2.1Input interface clock (VCLK)8.11.1OSD generals7.2.2Memory interface clock (MCLKI)8.11.2OSD character matrix7.2.3I?C-bus interface clock (SCL)8.11.3OSD character matrix7.2.4System clock (CLK)8.12Temporal dithering (frame rate controller)7.2.5TFT panel clock (PCLK)8.13Output interface7.3RGB input port8.13.2Frame generation7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.3Timing reference signals7.6.1Single pixel mode9LIMITING VALUES7.6.2SGRAM memory configuration11TIMING CHARACTERISTICS7.6.3SGRAM memory configuration12APPLICATION INFORMATION7.7I?C-bus interface13PACKAGE OUTLINE7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3.3Clamp pulse generation16LIFE SUPPORT APPLICATIONS8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I²C COMPO	7	FUNCTIONAL DESCRIPTION		
7.2.1Input interface clock (VCLK)8.11.1OSD generals7.2.2Memory interface clock (MCLKI)8.11.2OSD window7.2.3I²C-bus interface clock (SCL)8.11.3OSD character matrix7.2.4System clock (CLK)8.13Temporal dithering (frame rate controller)7.2.5TFT panel clock (PCLK)8.13Output interface7.4YUV input port8.13.1General7.5TFT output port8.13.3Timing reference signals7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I²C-bus interface13PACKAGE OUTLINE7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.4Manual soldering8.1System DESCRIPTION15DEFINITIONS8.1Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3.3Clamp pulse generation17PURCHASE OF PHILIPS I²C COMPONENTS8.3.4Gain correction pulse generation33.4Gain correction pulse generation	7.1	Data path		
7.2.2Memory interface clock (MCLKI)8.11.2OSD window7.2.3I²C-bus interface clock (SCL)8.11.3OSD character matrix7.2.4System clock (CLK)8.12Temporal dithering (frame rate controller)7.2.5TFT panel clock (PCLK)8.13Output interface7.3RGB input port8.13.1General7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.6Memory port10CHARACTERISTICS7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I²C-bus interface13PACKAGE OUTLINE7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount7.8.3Temporal filtering14.3Wave soldering7.9.4Upscaling14.3Wave soldering7.9.1Upscaling14.3Wave soldering8SYSTEM DESCRIPTION15DEFINITIONS8.2.4Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3.3Clamp pulse generation17PURCHASE OF PHILIPS I²C COMPONENTS8.3.4Gain correction pulse generation16LIFE SUPPORT APPLICATIONS8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I²C COMPONENTS <td></td> <td>System clocks</td> <td></td> <td></td>		System clocks		
12.1IPC-bus interface clock (SCL)8.11.3OSD character matrix7.2.3IPC-bus interface clock (SCL)8.12Temporal dithering (frame rate controller)7.2.4System clock (CLK)8.12Temporal dithering (frame rate controller)7.2.5TFT panel clock (PCLK)8.13Output interface7.3RGB input port8.13.1General7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.6Memory port10CHARACTERISTICS7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7IPC-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering7.9Scaling algorithm14.3Wave soldering7.9.1Upscaling14.4Manual soldering8.1Programming registers15DEFINITIONS8.2.1Clock divider17PURCHASE OF PHILIPS IP2 COMPONENTS8.3.2RGB data sampling16LIFE SUPPORT APPLICATIONS8.3.3Clamp pulse generation17PURCHASE OF PHILIPS IP2 COMPONENTS8.3.4Gain correction pulse generation17 <td< td=""><td></td><td></td><td></td><td>-</td></td<>				-
1.1.11.1.2System clock (CLK)8.12Temporal dithering (frame rate controller)7.2.4System clock (CLK)8.13Output interface7.3RGB input port8.13.1General7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I²C-bus interface13PACKAGE OUTLINE7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount7.8.3Temporal filtering14.2Reflow soldering7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.4Manual soldering8SYSTEM DESCRIPTION15DEFINITIONS8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.3.1Sampling mode17PURCHASE OF PHILIPS I²C COMPONENTS8.3.2RGB/YUV input interface17PURCHASE OF PHILIPS I²C COMPONENTS8.3.4Gain correction pulse generation16LIFE SUPPORT APPLICATIONS8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I²C COMPONENTS				
7.2.5TFT panel clock (PCLK)8.13Output interface7.3RGB input port8.13.1General7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.6.2Double pixel mode10CHARACTERISTICS7.6Memory port11TIMING CHARACTERISTICS7.6SGRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I ² C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount7.8.3Temporal filtering14.2Reflow soldering7.9Scaling algorithm14.2Reflow soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.1Clock divider17PURCHASE OF PHILIPS I ² C COMPONENTS8.3.1Sampling mode17PURCHASE OF PHILIPS I ² C COMPONENTS8.3.2RGB data sampling16LIFE SUPPORT APPLICATIONS8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I ² C COMPONENTS				
7.3RGB input port8.13.1General7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.5.2Double pixel mode10CHARACTERISTICS7.6Memory port11TIMING CHARACTERISTICS7.6.1SDRAM memory configuration12APPLICATION INFORMATION7.7I ² C-bus interface13PACKAGE OUTLINE7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount7.8.3Temporal filtering14.3Wave soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.2Clock deneration and multiplexing16LIFE SUPPORT APPLICATIONS8.3.2RGB data sampling17PURCHASE OF PHILIPS I ² C COMPONENTS8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I ² C COMPONENTS		•		
7.4YUV input port8.13.2Frame generation7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.5.2Double pixel mode10CHARACTERISTICS7.6Memory port11TIMING CHARACTERISTICS7.6.1SDRAM memory configuration12APPLICATION INFORMATION7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I ² C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode3.3Clamp pulse generation8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I2C COMPONENTS				•
7.5TFT output port8.13.3Timing reference signals7.5.1Single pixel mode9LIMITING VALUES7.5.2Double pixel mode10CHARACTERISTICS7.6Memory port11TIMING CHARACTERISTICS7.6.1SDRAM memory configuration12APPLICATION INFORMATION7.7I ² C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3.2RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.2RGB data sampling8.3.1Sampling mode8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I2C COMPONENTS				
7.5.1Single pixel mode9LIMITING VALUES7.5.2Double pixel mode10CHARACTERISTICS7.6Memory port11TIMING CHARACTERISTICS7.6.1SDRAM memory configuration12APPLICATION INFORMATION7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I²C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.2Clock management15DEFINITIONS8.3.1Sampling mode17PURCHASE OF PHILIPS I²C COMPONENTS8.3.3RGB/YUV input interface17PURCHASE OF PHILIPS I²C COMPONENTS8.3.4Gain correction pulse generation3.4Gain correction pulse generation				÷
7.5.2Double pixel mode10CHARACTERISTICS7.6Memory port11TIMING CHARACTERISTICS7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I²C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I²C COMPONENTS8.3.1Sampling mode13Sampling mode8.3.2RGB data sampling6ain correction pulse generation8.3.4Gain correction pulse generationFillen and and and and and and and and and an				• •
7.6Memory port10CHARACTERISTICS7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I²C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3.3Clamp pulse generation3.3Clamp pulse generation8.3.4Gain correction pulse generation17PURCHASE OF PHILIPS I²C COMPONENTS		•		
7.6.1SDRAM memory configuration11TIMING CHARACTERISTICS7.6.2SGRAM memory configuration12APPLICATION INFORMATION7.7I²C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14.1Introduction to soldering surface mount7.8.2Spatial filtering14.1Introduction to soldering surface mount7.8.3Temporal filtering14.2Reflow soldering7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3.1Sampling mode8.3.2RGB data sampling8.3.3Clamp pulse generation6ain correction pulse generation		•	10	CHARACTERISTICS
7.7I²C-bus interface13PACKAGE OUTLINE7.8De-interlacing algorithms14SOLDERING7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.8.3Temporal filtering14.2Reflow soldering7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2.2Clock management15DEFINITIONS8.2.2Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3.1Sampling mode13Sampling mode8.3.2RGB data sampling6ain correction pulse generation178.3.4Gain correction pulse generation17Suitability of sufface			11	TIMING CHARACTERISTICS
7.8De-interlacing algorithms13FACINGE COTEINE7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.8.3Temporal filtering14.1Introduction to soldering7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode3.3Clamp pulse generation8.3.4Gain correction pulse generation5SUPPORT APPLICATIONS			12	APPLICATION INFORMATION
7.8.1Static mesh mode14SOLDERING7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.8.3Temporal filtering14.1Introduction to soldering7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode3.3Clamp pulse generation8.3.4Gain correction pulse generation17			13	PACKAGE OUTLINE
7.8.2Spatial filtering14.1Introduction to soldering surface mount packages7.8.3Temporal filtering14.2Reflow soldering7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I²C COMPONENTS8.3.1Sampling mode14.3Sampling mode8.3.2RGB data sampling14Sampling mode8.3.3Clamp pulse generation17PURCHASE OF PHILIPS I²C COMPONENTS8.3.4Gain correction pulse generation17			14	SOLDERING
7.8.3Temporal filteringpackages7.8.3Temporal filteringpackages7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode13Clamp pulse generation8.3.3Clamp pulse generation48.3.4Gain correction pulse generation			14.1	Introduction to soldering surface mount
7.9Scaling algorithm14.2Reflow soldering7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode5Sampling mode8.3.2RGB data sampling558.3.3Clamp pulse generation558.3.4Gain correction pulse generation5				
7.9.1Upscaling14.3Wave soldering7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.2RGB data sampling6178.3.3Clamp pulse generation168.3.4Gain correction pulse generation17			14.2	
7.9.2Downscaling14.4Manual soldering8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode17Sampling mode8.3.2RGB data sampling14148.3.3Clamp pulse generation158.3.4Gain correction pulse generation14			14.3	Wave soldering
8SYSTEM DESCRIPTION14.5Suitability of surface mount IC packages for wave and reflow soldering methods8.1Programming registers15DEFINITIONS8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode17Sampling mode8.3.2RGB data sampling14.5178.3.3Clamp pulse generation14.58.3.4Gain correction pulse generation14.5			14.4	Manual soldering
8.2Clock management15DEFINITIONS8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode17Sampling mode8.3.2RGB data sampling16178.3.3Clamp pulse generation178.3.4Gain correction pulse generation			14.5	
8.2.1Clock generation and multiplexing16LIFE SUPPORT APPLICATIONS8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode17Sampling mode8.3.2RGB data sampling16178.3.3Clamp pulse generation178.3.4Gain correction pulse generation			15	DEFINITIONS
8.2.2Clock divider17PURCHASE OF PHILIPS I2C COMPONENTS8.3RGB/YUV input interface17PURCHASE OF PHILIPS I2C COMPONENTS8.3.1Sampling mode17Sampling mode8.3.2RGB data sampling17RGB data sampling8.3.3Clamp pulse generation17Sampling mode8.3.4Gain correction pulse generation17Sampling		-	16	LIFE SUPPORT APPLICATIONS
 8.3 RGB/YUV input interface 8.3.1 Sampling mode 8.3.2 RGB data sampling 8.3.3 Clamp pulse generation 8.3.4 Gain correction pulse generation 		• • •		
 8.3.1 Sampling mode 8.3.2 RGB data sampling 8.3.3 Clamp pulse generation 8.3.4 Gain correction pulse generation 			17	PURCHASE OF PHILIPS PC COMPONENTS
 8.3.2 RGB data sampling 8.3.3 Clamp pulse generation 8.3.4 Gain correction pulse generation 		•		
8.3.3 Clamp pulse generation8.3.4 Gain correction pulse generation				
8.3.4 Gain correction pulse generation				
· •				
	8.3.5	YUV data sampling		

1 FEATURES

1.1 RGB video input

- Digital single (24-bit) or dual (48-bit) channel RGB input
- Data input of sampled RGB data with a pixel frequency of maximum 150 MHz
- Free definable data acquisition offsets and vertical window size in single pixel increments, horizontal window size in double pixel increments
- Programmable pulses for ADC clamping and ADC gain correction
- Detection of presence of sync signals, and of their polarities
- Support for auto-adjustment functions for sample clock frequency, phase, vertical and horizontal sample offset, as well as colour adjustment
- Maximum supported resolution of 1280 × 1024 dots Super Extended Graphics Adapter (SXGA)
- Support for detection of the applied graphics mode (multi-sync).

1.2 YUV video input

- · Pin sharing between YUV and RGB input port
- YUV 4 : 4 : 4, YUV 4 : 2 : 2, YUV 4 : 2 : 2 with CCIR 656 codes, YUV 4 : 1 : 1 input of interlaced and non-interlaced digital video data
- Maximum picture resolution of 1024×1024 pixels for interlaced or non-interlaced video
- Input of video data at maximum 75 MHz
- Free definable data acquisition offsets and window in double pixel or single line increments
- YUV to RGB colour space conversion.

1.3 Video processing

- Colour correction Look-Up Table (LUT)
- · Phase correct up and downscaling of the RGB data
- Fully programmable scaling ratios
- · Independent horizontal and vertical scaling engine
- Free definable position of the scaled input picture inside the output picture with programmable border colour
- De-interlacing unit for digital YUV video data
- Zoom up to full-screen resolution of the de-interlaced YUV video stream via the main scaler.

1.4 On screen display

- Character based internal On Screen Display (OSD)
- Programmable character matrix sizes of either 24 × 24 pixels (42 characters available) or 12 × 16 pixels (128 characters available)
- Programmable width and height of the OSD window, built from maximum 1152 characters
- 8 different colours for foreground and background inclusive transparent colours
- Overlay port for external OSD controller.

1.5 Video output

- Single pixel/clock (24-bit) or double pixel/clock (48-bit) digital RGB output
- Generation of synchronization and validation signals for the Thin Film Transistor (TFT) display
- Frame rate control (temporal dithering) for displaying true colour graphics on high colour displays
- Free programmable timing for displays of several manufacturers.

1.6 Memory interface

- Support of both 1M \times 16 SDRAM, 256k \times 32 SGRAM or 128k \times 32 SGRAM devices
- Maximum memory clock frequency of 125 MHz
- Scalable memory size built of either 2, 3 or 4 SDRAM, or of 1 or 2 SGRAM devices
- Special mode for operation without external memory.

1.7 Miscellaneous

- Internal Phase-Locked Loop (PLL) for memory and panel clock generation from the system clock
- I²C-bus interface with 2 selectable addresses
- Boundary scan test circuit and Joint Test Action Group (JTAG) test controller.

Preliminary specification

SAA6721E

2 GENERAL DESCRIPTION

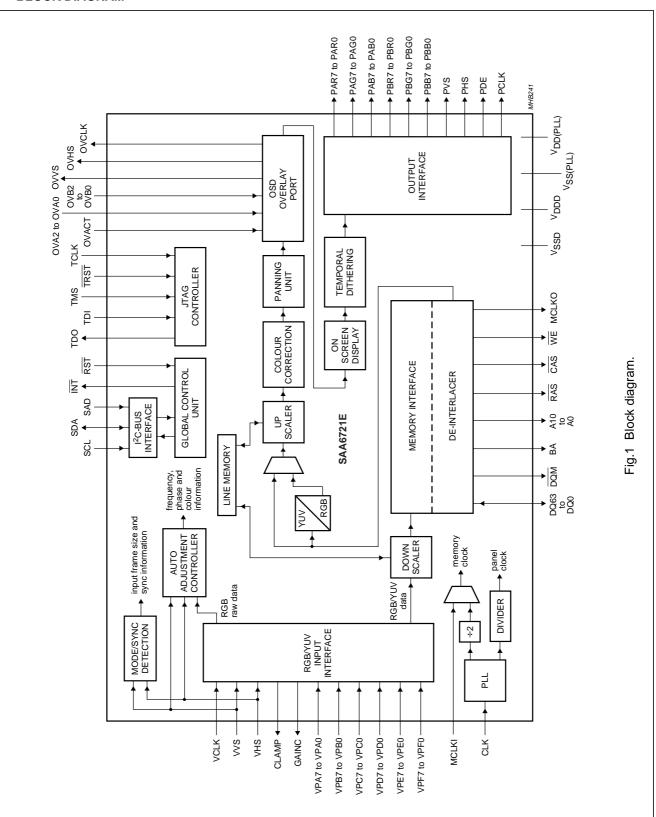
The SAA6721E is a graphics engine, which converts digital RGB or YUV data into video signals suitable for TFT displays. It supports SXGA input resolution as well as true colour. Independent horizontal and vertical up and downscaling can display the input data arbitrarily on the connected TFT display. Multi-sync capability allows the applied graphics mode to be detected.

Overlay signals can be generated either by an internal OSD generator or supplied via the overlay port from an external OSD controller.

The SAA6721E must be embedded into a system containing a microcontroller with an I²C-bus serial interface. For multi-sync capabilities a frame buffer built from SGRAM or SDRAM is needed. The size of this frame buffer depends on the maximum resolution and bandwidth needed for the application. For converting the analog RGB stream into a digital data stream one or two ADCs with 3 channels each for R, G and B are needed. If the YUV input is used, a video front-end chip such as the SAA7113 must be used in front of the YUV port.

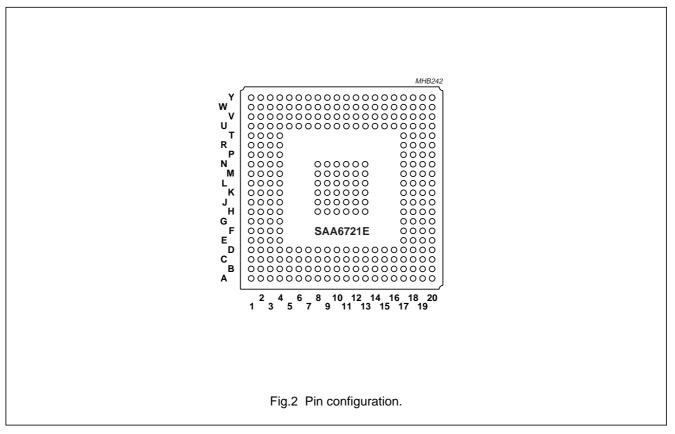
3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT		
V _{DDD}	digital supply voltage	3.0	3.3	3.6	V		
I _{DDD}	digital supply current	-	600	840	mA		
Vi	input voltages		LVTTL compatible				
Vo	output voltages memory port		LVTTL compatible				
	output voltages TFT port	CMOS compatible					
T _{amb}	ambient temperature	0	-	70	°C		


4 ORDERING INFORMATION

		PACKAGE	
	NAME	DESCRIPTION	VERSION
SAA6721E	BGA292	plastic ball grid array package; 292 balls; body 27 \times 27 \times 1.75 mm	SOT489-1

I


SXGA RGB to TFT graphics engine

5 BLOCK DIAGRAM

SAA6721E

6 PINNING INFORMATION

Table 1

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION
VCLK	N1	RGB/YUV input	input	RGB/YUV sample clock
VVS	M3	RGB/YUV input	input	RGB/YUV vertical sync
VHS	M2	RGB/YUV input	input	RGB/YUV horizontal sync
VPA7	C7	RGB/YUV input	input	video input port A;
VPA6	A6	RGB/YUV input	input	RGB port 0 red channel or YUV port luminance
VPA5	B6	RGB/YUV input	input	
VPA4	C6	RGB/YUV input	input	
VPA3	A5	RGB/YUV input	input	
VPA2	D5	RGB/YUV input	input	
VPA1	B5	RGB/YUV input	input	
VPA0	C5	RGB/YUV input	input	

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION
VPB7	A4	RGB/YUV input	input	video input port B;
VPB6	B4	RGB/YUV input	input	RGB port 0 green channel or YUV port chrominance
VPB5	C4	RGB/YUV input	input	
VPB4	A3	RGB/YUV input	input	
VPB3	B3	RGB/YUV input	input	
VPB2	C3	RGB/YUV input	input	
VPB1	A2	RGB/YUV input	input	
VPB0	B2	RGB/YUV input	input	
VPC7	B1	RGB/YUV input	input	video input port C;
VPC6	C2	RGB/YUV input	input	RGB port 0 blue channel or YUV port chrominance
VPC5	C1	RGB/YUV input	input	
VPC4	D3	RGB/YUV input	input	
VPC3	D2	RGB/YUV input	input	
VPC2	D1	RGB/YUV input	input	
VPC1	E3	RGB/YUV input	input	
VPC0	E2	RGB/YUV input	input	
VPD7	E4	RGB/YUV input	input	video input port D;
VPD6	E1	RGB/YUV input	input	RGB port 1 red channel or YUV data qualifier port
VPD5	F3	RGB/YUV input	input	(VPD7 = CREF clock gating signal; VPD6 = HPEF active borizontal video)
VPD4	F2	RGB/YUV input	input	VPD6 = HREF active horizontal video)
VPD3	F1	RGB/YUV input	input	
VPD2	G3	RGB/YUV input	input	
VPD1	G2	RGB/YUV input	input	
VPD0	G4	RGB/YUV input	input	
VPE7	G1	RGB/YUV input	input	video input port E; RGB port 1 green channel
VPE6	H3	RGB/YUV input	input	
VPE5	H2	RGB/YUV input	input	
VPE4	H1	RGB/YUV input	input	
VPE3	J2	RGB/YUV input	input	
VPE2	J4	RGB/YUV input	input	
VPE1	J1	RGB/YUV input	input	
VPE0	K3	RGB/YUV input	input	
VPF7	K2	RGB/YUV input	input	video input port F; RGB port 1 blue channel
VPF6	K1	RGB/YUV input	input	
VPF5	L1	RGB/YUV input	input	
VPF4	L4	RGB/YUV input	input	
VPF3	L2	RGB/YUV input	input	1
VPF2	L3	RGB/YUV input	input	1
VPF1	M1	RGB/YUV input	input	1
VPF0	M4	RGB/YUV input	input	

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION				
CLAMP	N2	RGB/YUV input	output	clamp pulse for analog-to-digital converter				
GAINC	N3	RGB/YUV input	output	gain correction pulse for analog-to-digital converter				
PCLK	Y13	panel interface	output	panel clock				
PVS	V12	panel interface	output	panel vertical sync				
PHS	W12	panel interface	output	panel horizontal sync				
PDE	U12	panel interface	output	panel data enable				
PAR7	P1	panel interface	output	panel port A red channel				
PAR6	P4	panel interface	output					
PAR5	P2	panel interface	output					
PAR4	P3	panel interface	output					
PAR3	R1	panel interface	output					
PAR2	R2	panel interface	output					
PAR1	R3	panel interface	output					
PAR0	T1	panel interface	output					
PAG7	T4	panel interface	output	panel port A green channel				
PAG6	T2	panel interface	output					
PAG5	T3	panel interface	output					
PAG4	U1	panel interface	output					
PAG3	U2	panel interface	output					
PAG2	V1	panel interface	output					
PAG1	V2	panel interface	output					
PAG0	W1	panel interface	output					
PAB7	Y1	panel interface	output	panel port A blue channel				
PAB6	W2	panel interface	output					
PAB5	Y2	panel interface	output					
PAB4	V3	panel interface	output					
PAB3	W3	panel interface	output					
PAB2	Y3	panel interface	output					
PAB1	V4	panel interface	output					
PAB0	Y4	panel interface	output					
PBR7	V5	panel interface	output	panel port B red channel				
PBR6	W5	panel interface	output					
PBR5	Y5	panel interface	output					
PBR4	V6	panel interface	output					
PBR3	W6	panel interface	output					
PBR2	Y6	panel interface	output					
PBR1	V7	panel interface	output					
PBR0	W7	panel interface	output					

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION
PBG7	Y7	panel interface	output	panel port B green channel
PBG6	V8	panel interface	output	
PBG5	W8	panel interface	output	
PBG4	Y8	panel interface	output	
PBG3	V9	panel interface	output	
PBG2	W9	panel interface	output	
PBG1	U9	panel interface	output	
PBG0	Y9	panel interface	output	
PBB7	V10	panel interface	output	panel port B blue channel
PBB6	W10	panel interface	output	
PBB5	Y10	panel interface	output	
PBB4	Y11	panel interface	output	
PBB3	U11	panel interface	output	
PBB2	W11	panel interface	output	
PBB1	V11	panel interface	output	
PBB0	Y12	panel interface	output	
SCL	V18	I ² C-bus interface	input	I ² C-bus interface clock line
SDA	W18		input/output	I ² C-bus interface data line
SAD	Y17		input	I ² C-bus address select: $0 = 74H$, $1 = 76H$
OVCLK	Y16	overlay	output	overlay port clock
OVVS	W16	overlay	output	overlay port vertical sync
OVHS	V15	overlay	output	overlay port horizontal sync
OVACT	V16	overlay	input	overlay port pixel active
OVA0	Y14	overlay	input	overlay port input pixel A
OVA1	V13	overlay	input	
OVA2	W13	overlay	input	
OVB0	Y15	overlay	input	overlay port input pixel B
OVB1	V14	overlay	input	
OVB2	W14	overlay	input	
MCLKO	A17	memory interface	output	memory clock output
RAS	A18	memory interface	output	memory Row Address Strobe (RAS) signal (active LOW)
CAS	C17	memory interface	output	memory Column Address Strobe (CAS) signal (active LOW)
WE	D16	memory interface	output	memory Write Enable (WE) signal (active LOW)
DQM	T17	memory interface	output	memory data mask (active LOW)

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION
A0	A20	memory interface	output	memory address bus
A1	C20	memory interface	output	
A2	D20	memory interface	output	
A3	E19	memory interface	output	
A4	F18	memory interface	output	
A5	E17	memory interface	output	
A6	E18	memory interface	output	
A7	C19	memory interface	output	
A8	C18	memory interface	output	
A9	D18	memory interface	output	
A10	B19	memory interface	output	
BA	A19	memory interface	output	memory bank select
DQ0	M20	memory interface	input/output	memory data bus
DQ1	M19	memory interface	input/output	
DQ2	N20	memory interface	input/output	
DQ3	N19	memory interface	input/output	
DQ4	P19	memory interface	input/output	
DQ5	R19	memory interface	input/output	
DQ6	T20	memory interface	input/output	
DQ7	T19	memory interface	input/output	
DQ8	T18	memory interface	input/output	
DQ9	R18	memory interface	input/output	
DQ10	P18	memory interface	input/output	
DQ11	P17	memory interface	input/output	
DQ12	N18	memory interface	input/output	
DQ13	M18	memory interface	input/output	
DQ14	M17	memory interface	input/output	
DQ15	L19	memory interface	input/output	
DQ16	E20	memory interface	input/output	
DQ17	F20	memory interface	input/output	
DQ18	G20	memory interface	input/output	
DQ19	H20	memory interface	input/output	
DQ20	J20	memory interface	input/output	
DQ21	K19	memory interface	input/output]
DQ22	K20	memory interface	input/output]
DQ23	L20	memory interface	input/output]
DQ24	K17	memory interface	input/output]
DQ25	K18	memory interface	input/output]
DQ26	J19	memory interface	input/output]
DQ27	J18	memory interface	input/output]
DQ28	H19	memory interface	input/output	

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION
DQ29	H18	memory interface	input/output	memory data bus
DQ30	G18	memory interface	input/output	
DQ31	F19	memory interface	input/output	
DQ32	A12	memory interface	input/output	
DQ33	B12	memory interface	input/output	
DQ34	A13	memory interface	input/output	
DQ35	B13	memory interface	input/output	
DQ36	A14	memory interface	input/output	
DQ37	B14	memory interface	input/output	
DQ38	A15	memory interface	input/output	
DQ39	B15	memory interface	input/output	
DQ40	A16	memory interface	input/output	
DQ41	C15	memory interface	input/output]
DQ42	C14	memory interface	input/output	
DQ43	D14	memory interface	input/output	
DQ44	C13	memory interface	input/output	
DQ45	C12	memory interface	input/output	
DQ46	D12	memory interface	input/output	
DQ47	C11	memory interface	input/output	
DQ48	B7	memory interface	input/output	
DQ49	A7	memory interface	input/output	
DQ50	B8	memory interface	input/output	
DQ51	A8	memory interface	input/output	
DQ52	B9	memory interface	input/output	
DQ53	A9	memory interface	input/output	
DQ54	B10	memory interface	input/output	
DQ55	A10	memory interface	input/output	
DQ56	B11	memory interface	input/output	
DQ57	A11	memory interface	input/output	
DQ58	D10	memory interface	input/output]
DQ59	C10	memory interface	input/output	
DQ60	D9	memory interface	input/output	
DQ61	C9	memory interface	input/output	
DQ62	C8	memory interface	input/output	
DQ63	D7	memory interface	input/output	
TCLK	U19	JTAG test controller	input	JTAG test controller clock; note 2
TRST	W17		input	JTAG test controller reset (active LOW); note 2
TDI	U18		input	JTAG test data input; note 2
TMS	V19		input	JTAG test mode select; note 2
TDO	W19		output	JTAG test data output

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION
CLK	Y19	miscellaneous	input	system and panel clock
RST	Y20		input	system reset (active LOW)
INT	Y18		output	mode detection interrupt (active LOW)
MCLKI	W20		input	memory clock input
V _{SSD}	A1	_	-	digital ground supply
	D4			
	D8			
	D13			
	D17			
	H4			
	H17			
	N4			
	N17			
	U4			
	U8			
	U13			
	U17			
V _{DDD}	D6	_	-	digital supply voltage
	D11			
	D15			
	F4			
	F17			
	K4			
	L17			
	R4			
	R17			
	U6			
	U10			
	U15			
V _{SS(PLL)}	V17	_	-	ground supply for internal PLL circuitry
V _{DD(PLL)}	U16	-	-	supply voltage for internal PLL circuitry
n.c.	B16	-	-	not connected
n.c.	B17	-	_	not connected
n.c.	B18	-	_	not connected
n.c.	B20	-	_	not connected
n.c.	C16	-	_	not connected
n.c.	D19	-	_	not connected
n.c.	G17	-	_	not connected
n.c.	G19	-	_	not connected
n.c.	J3	-	_	not connected
n.c.	J17	-	-	not connected

SAA6721E

SYMBOL	PIN	PORT	I/O ⁽¹⁾	DESCRIPTION
n.c.	L18	-	-	not connected
n.c.	P20	-	-	not connected
n.c.	R20	-	-	not connected
n.c.	U3	-	-	not connected
n.c.	U5	-	-	not connected
n.c.	U7	-	-	not connected
n.c.	U14	-	-	not connected
n.c.	U20	-	-	not connected
n.c.	V20	-	-	not connected
n.c.	W4	-	-	not connected
n.c.	W15	-	-	not connected

Notes

- 1. Generally all inputs are 5 V tolerant TTL inputs. All outputs are CMOS, except the memory interface ports, which are LVTTL compatible.
- 2. Connect to ground when not using the JTAG controller.

7 FUNCTIONAL DESCRIPTION

7.1 Data path

Input video data is sampled either as RGB data in single pixels from only one ADC or in double pixels in interleaved format from two ADCs. Alternatively the input interface can sample interlaced or non-interlaced YUV data. The clock for sampling the data will always be provided from external circuitry. The video stream will be adapted from the input frame rate to the output frame rate needed by the panel. Therefore a frame buffer built of SDRAMs or SGRAMs is used. If the panel supports the incoming frame rate from the RGB port, the adaption can be done without external memory. If the video stream is in interlaced format the memory interface activates its de-interlacing unit.

If zooming must be performed the upscaler behind the memory interface will be enabled. For downscaling the downscaler in front of the memory interface in the data path will be used. A colour correction can be done via a look-up table. The resulting video stream can now be positioned elsewhere in the output data stream by the panning unit. If an external OSD controller is embedded into the system, its OSD window will be put into the video stream by the OSD overlay port. Additionally the internal OSD will be inserted in the next stage. The temporal dithering allows true colour pictures to be displayed on high colour panels. The output interface provides the timing and control signals necessary for the connected panel.

7.2 System clocks

7.2.1 INPUT INTERFACE CLOCK (VCLK)

This clock is used for sampling the incoming RGB or YUV data stream. In RGB mode this clock varies from 25 to 150 MHz in single ADC mode. If two ADCs are used the RGB input clock is between 12.5 and 75 MHz. In YUV mode the clock lies in the range of approximately 30 MHz. The clocks are generated from external devices.

The RGB clock can be generated by the external ADCs or an external video PLL. The YUV clock must be generated by the video decoder which also provides the YUV video data.

7.2.2 MEMORY INTERFACE CLOCK (MCLKI)

The memory clock is the synchronous clock for the external frame buffer. Depending on the bandwidth needed by the application, and the connected SDRAM or SGRAM devices, the clock varies from 83 to 125 MHz. It can be generated internally by the PLL from the system clock (CLK), or by an external quartz oscillator.

If the internal PLL is used, the memory clock frequency can be derived from the following formula:

$$f_{memory} = \frac{f_{system}}{N} \times 16$$

Where N = pre-divider ratio and $f_system = clock$ at pin CLK.

SAA6721E

7.2.3 I²C-BUS INTERFACE CLOCK (SCL)

This clock drives the interface to the external microcontroller. Its frequency range is from 100 kHz to 1 MHz.

7.2.4 SYSTEM CLOCK (CLK)

This clock is used to drive the internal PLL. The frequency range is from 24 to 50 MHz.

7.2.5 TFT PANEL CLOCK (PCLK)

This clock is the timing reference for the panel. The frequency is the same as the system clock, or it can be generated from the internal PLL by using the following formula:

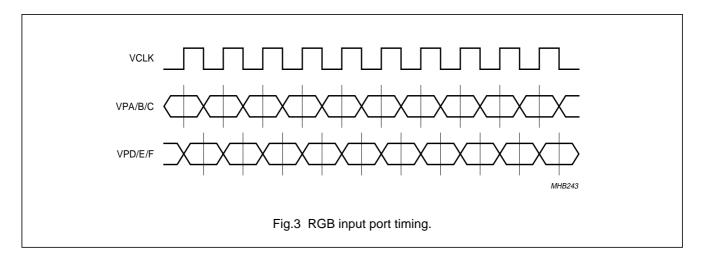
$$f_tft = \frac{f_system}{N} \times \frac{32}{M}$$

Where N = pre-divider ratio and M = post-divider ratio.

7.3 RGB input port

The RGB input port can operate in two modes; single pixel mode (24 bits) and double pixel mode (48 bits). For single pixel mode only ports VPA7 to VPA0, VPB7 to VPB0, and VPC7 to VPC0 are internally sampled. For double pixel mode two pixels must be provided at the RGB input port.

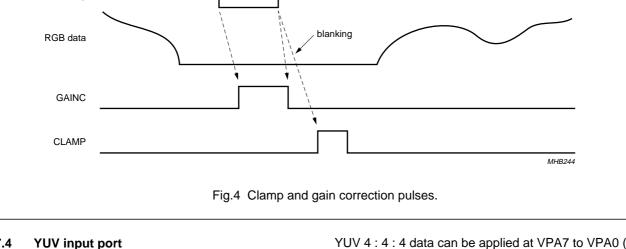
Therefore ports VPD7 to VPD0, VPE7 to VPE0, and VPF7 to VPF0 are also needed.


The VPA/B/C ports are sampled on the rising edge of the RGB input clock (VCLK), and the VPD/E/F ports on the falling edge (see Fig.3).

The synchronization pulses from the graphics card are used to identify the frame outline. The vertical synchronization pulse is connected to pin VVS, and the horizontal synchronization pulse is connected to pin VHS.

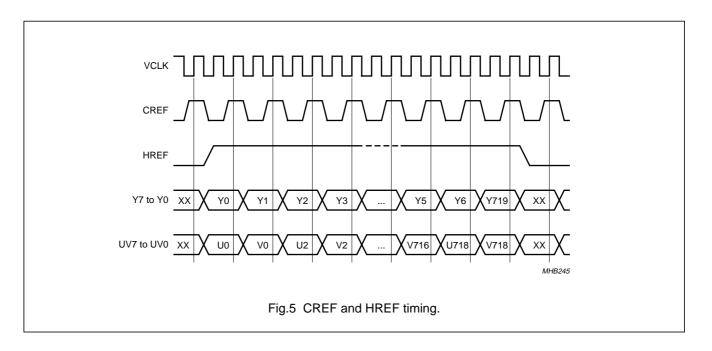
For calibrating the connected Analog-to-Digital Converter (ADC) the SAA6721E delivers a clamp pulse at pin CLAMP, and a gain correction pulse at pin GAINC (see Fig.4).

The sample window of the RGB input port is controlled by four counters; horizontal and vertical offset, and horizontal and vertical window size.


The offset counters start at the inactive or second edge of their corresponding synchronization signal.

VHS

Philips Semiconductors

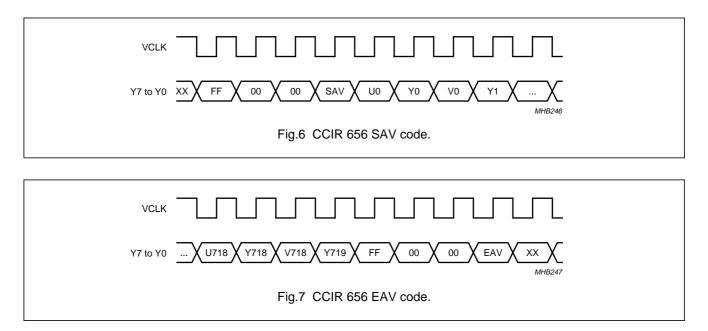

7.4

The YUV input port supports interlaced video streams and provides an easy connection to most common decoder ICs. It consists of the luminance port VPA7 to VPA0, the chrominance port VPB7 to VPB0, and eventually VPC7 to VPC0, which are CCIR 601 level compatible (Y: 16 to 235, and UV: 16 to 240).

Supported at this port are the formats YUV 4:1:1, YUV 4 : 2 : 2 and YUV 4 : 2 : 2 with CCIR 656 codes (see Table 2).

YUV 4 : 4 : 4 data can be applied at VPA7 to VPA0 (Y), VPB7 to VPB0 (U), and VPC7 to VPC0 (V). Input data is sampled with respect to the clock at pin VCLK if pin VPD7 (CREF) is asserted.

The start of active video data in a line is marked by the rising edge at pin VPD6 (HREF) and the end of valid video data is marked by the falling edge at pin VPD6. Figure 5 illustrates this at a YUV 4 : 2 : 2 example.


SAA6721E

SIGNAL		4:1:1	FORMAT		4:2:2	FORMAT	CCIR 656			
Y7	Y07	Y17	Y27	Y37	Y07	Y17	U07	Y07	V07	Y17
Y6	Y06	Y16	Y26	Y36	Y06	Y16	U06	Y06	V06	Y16
Y5	Y05	Y15	Y25	Y35	Y05	Y15	U05	Y05	V05	Y15
Y4	Y04	Y14	Y24	Y34	Y04	Y14	U04	Y04	V04	Y14
Y3	Y03	Y13	Y23	Y33	Y03	Y13	U03	Y03	V03	Y13
Y2	Y02	Y12	Y22	Y32	Y02	Y12	U02	Y02	V02	Y12
Y1	Y01	Y11	Y21	Y31	Y01	Y11	U01	Y01	V01	Y11
Y0	Y00	Y10	Y20	Y30	Y00	Y10	U00	Y00	V00	Y10
UV7	U07	U05	U03	U01	U07	V07	Х	Х	Х	Х
UV6	U06	U04	U02	U00	U06	V06	Х	Х	Х	Х
UV5	V07	V05	V03	V01	U05	V05	Х	Х	Х	Х
UV4	V06	V04	V02	V00	U04	V04	Х	Х	Х	Х
UV3	Х	Х	Х	Х	U03	V03	Х	Х	Х	Х
UV2	Х	Х	Х	Х	U02	V02	Х	Х	Х	Х
UV1	Х	Х	Х	Х	U01	V01	Х	Х	Х	Х
UV0	Х	Х	Х	Х	U00	V00	Х	Х	Х	Х
Data frequency		1/2V	CLK		1/2V	CLK		VC	LK	

Table 2 YUV input formats

For YUV 4 : 4 : 4 the Y, U, and V components are available in parallel.

If non-interlaced video data is applied, it is treated as odd fields. Interlaced video data is sampled odd field, even field, odd field, even field, etc. If there are equal subsequent frames, only the first of these frames will be sampled. The decoding of odd and even fields is done with HREF. In CCIR 656 data streams the included codes are used for identifying even and odd frames, blanking and active video data. The codes start with the byte sequence FF 00 00, followed by the reference code byte; see Figs 6 and 7.

SAA6721E

SXGA RGB to TFT graphics engine

The CCIR 656 code byte contains vertical and horizontal blanking as well as odd and even field information, the protection bits P3 to P0 are ignored.

Table 3CCIR 656 code byte

MSB							LSB
7	6	5	4	3	2	1	0
1	F ⁽¹⁾	V ⁽²⁾	H ⁽³⁾	P3	P2	P1	P0

Notes

1. F = 0: odd field (field 1); F = 1: even field (field 2).

2. V = 0: in active field lines; V = 1: in field blanking.

H = 0: SAV (Start of Active Video);
 H = 1: EAV (End of Active Video).

The sample window of the YUV input port is controlled by four counters; horizontal and vertical offset, and horizontal and vertical window size. The vertical offset counter starts counting from the inactive or second edge of its corresponding reference signal. The horizontal offset counter starts with the active edge of the HREF signal.

7.5 TFT output port

The TFT output port consists of two pixel ports (A and B), each containing red, green and blue colour information with a resolution of 8 bits per colour. The first pixel port is mapped to PAR7 to PAR0, PAG7 to PAG0, and PAB7 to PAB0. The second port is mapped to PBR7 to PBR0, PBG7 to PBG0, and PBB7 to PBB0.

The vertical and horizontal synchronization signals are mapped to pins PVS and PHS. A data validation signal framing visible pixels is available at pin PDE.

All of the above mentioned signals are synchronized to the output clock at pin PCLK. The active edge of this clock is programmable.

7.5.1 SINGLE PIXEL MODE

The single pixel mode is designed to support TFT panels with single pixel input, and for direct connection of panel link transmitters. Only the first pixel port PAR7 to PAR0, PAG7 to PAG0, and PAB7 to PAB0 is used. The data is applied at double the frequency in comparison to the double pixel output mode.

7.5.2 DOUBLE PIXEL MODE

The double pixel mode is used for direct connection of TFT panels with double pixel input. Both output ports are used. The first pixel is applied at port A, and the second at port B.

7.6 Memory port

The memory port connects the SAA6721E to the external frame buffer. This frame memory can be built from either $1M \times 16$ SDRAM or $256k \times 32$ SGRAM devices. Supported are RAM devices with clock frequencies up to 125 MHz. This clock can be provided either by the internal PLL, or externally be applied to pin MCLKI.

The memory data bus is split into 4 ports: port 0 (DQ0 to DQ15), port 1 (DQ16 to DQ31), port 2 (DQ32 to DQ47) and port 3 (DQ48 to DQ63).

To adapt the external memory to the needs of the application by means of memory size and bandwidth, it is possible to scale the external memory by using only the number of subsequent ports needed to build up the frame buffer and to achieve the memory bandwidth. As a second step for bandwidth optimization several speed grades of memory devices can be used.

7.6.1 SDRAM MEMORY CONFIGURATION

SDRAMs are available in sizes from 16 Mbits. For this application a wide data bus is required, so that at least $1M \times 16$ devices must be used. To achieve the desired bandwidth, 2 to 4 devices must be used in parallel, which results in a frame buffer size of 4 to 8 Mbytes. But only half of this memory will be used by the SAA6721E.

The memory port of the SAA6721E can be divided into 4 SDRAM channels. Each channel is 16 bits wide, and provides in High Speed Channel (HSC) mode with a 125 MHz memory clock and an effective bandwidth of 228 Mbits/s. A Medium Speed Channel (MSC) with a 100 MHz memory clock gives an effective bandwidth of 182 Mbits/s, 91% effective bandwidth assumed.

Table 4 gives the channel configuration for several input and panel resolutions.

SAA6721E

Table 4 SDRAM channel configurations

INPUT	SVGA (8	00 × 600)	XGA (10	24 × 768)	SXGA (12	80 × 1024)
RESOLUTION	60 Hz	75 Hz	60 Hz	75 Hz	60 Hz	75 Hz
Panel	2 Mbits frame buffer needed		3 Mbits frame b	uffer needed	4 Mbits frame b	uffer needed
XGA ⁽¹⁾	288 Mbits/s bandwidth; 2 × HSC or 2 × MSC	319 Mbits/s bandwidth; 2 × HSC or 2 × MSC	411 Mbits/s bandwidth; 2 × HSC or 3 × MSC	452 Mbits/s bandwidth; $2 \times HSC$ or $3 \times MSC$	475 Mbits/s bandwidth; 3 × HSC or 3 × MSC	540 Mbits/s bandwidth; $3 \times HSC$ or $3 \times MSC$
SXGA ⁽²⁾	307 Mbits/s bandwidth; 2 × HSC or 2 × MSC	337 Mbits/s bandwidth; 2 × HSC or 2 × MSC	435 Mbits/s bandwidth; 2 × HSC or 3 × MSC	476 Mbits/s bandwidth; $3 \times HSC$ or $3 \times MSC$	624 Mbits/s bandwidth; $3 \times$ HSC or $4 \times$ MSC	705 Mbits/s bandwidth; $4 \times HSC$ or $4 \times MSC$

Notes

- 1. 36 MHz clock frequency.
- 2. 50 MHz clock frequency.

7.6.2 SGRAM MEMORY CONFIGURATION

SGRAM devices organized to $256k \times 32$ bits are available, and feature the wide data bus for high speed applications. With these devices a frame buffer can be built, without wasting memory because of bandwidth. In case of SGRAM usage, the memory data bus of the SAA6721E can be split into 2 channels of 32 bits each. Each channel gives, in HSC mode with 125 MHz clock frequency, an effective bandwidth of 456 Mbits/s; and in MSC mode, with 100 MHz clock speed, an effective bandwidth of 364 Mbits/s.

Table 5 gives the channel configuration for several input and panel resolutions.

INPUT	SVGA (8	00 × 600)	XGA (10	24 × 768)	SXGA (12	80 × 1024)
RESOLUTION	60 Hz	75 Hz	60 Hz	75 Hz	60 Hz	75 Hz
Panel	2 Mbits frame b	uffer needed	3 Mbits frame b	uffer needed	4 Mbits frame b	uffer needed
XGA ⁽¹⁾	288 Mbits/s bandwidth; 1 × HSC or 1 × MSC	319 Mbits/s bandwidth; 1 × HSC or 1 × MSC	411 Mbits/s bandwidth; 1 × HSC or 2 × MSC	452 Mbits/s bandwidth; $1 \times HSC$ or $2 \times MSC$	475 Mbits/s bandwidth; $2 \times HSC$ or $2 \times MSC$	540 Mbits/s bandwidth; $2 \times HSC$ or $2 \times MSC$
SXGA ⁽²⁾	307 Mbits/s bandwidth; $1 \times HSC$ or $1 \times MSC$	337 Mbits/s bandwidth; 1 × HSC or 1 × MSC	435 Mbits/s bandwidth; $1 \times HSC \text{ or}$ $2 \times MSC$	476 Mbits/s bandwidth; $2 \times HSC$ or $2 \times MSC$	624 Mbits/s bandwidth; $2 \times HSC$ or $2 \times MSC$	705 Mbits/s bandwidth; 2 × HSC or 2 × MSC

าร
ſ

Notes

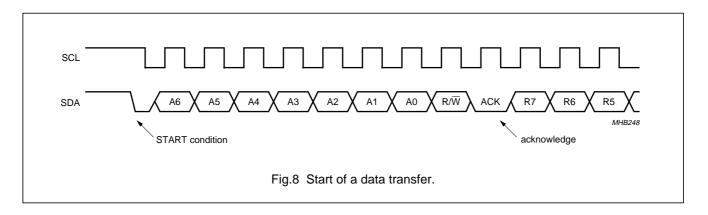
- 1. 36 MHz clock frequency.
- 2. 50 MHz clock frequency.

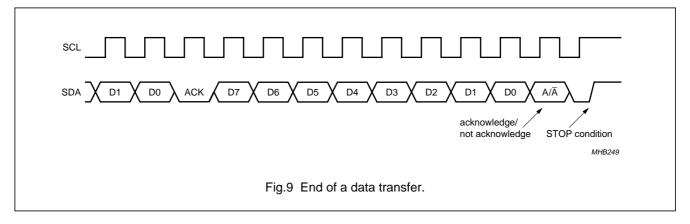
SAA6721E

7.7 I²C-bus interface

This serial interface consists of only two signals, the serial clock line (SCL) and the serial data line (SDA). The maximum supported frequency on this bus is 1 MHz. Spikes with a maximum pulse length of 50 ns are suppressed by the internal input filter.

The SAA6721E operates as a slave and cannot initiate any data transfer, so the clock line is always input. Via the data line, data is transmitted and received, so this pin must be input/output. The SCL and SDA lines are driven by open-drain stages and pull-up resistors. When a logic 0 is applied, the bus is set to ground level via the output buffers. When a logic 1 is applied, the output buffer switches to 3-state and the pull-up resistors pull the bus up to +5 V.


Data transfer changes on SDA are allowed only when SCL is LOW. Data is sampled on the positive edge of SCL. In Idle state the output buffers are in 3-state, and the bus is HIGH. A data transfer must be initiated by an I²C-bus master device. This is done by sending a START condition when SDA changes from HIGH to LOW when SCL is HIGH (see Fig.8).


The device address of the SAA6721E must then be sent with the desired I/O direction.

If the SAA6721E reads its device address, it acknowledges this by sending a single bit ACK to the master. If write mode was selected, the master sends the register address to be written and then the data bytes. If read mode was selected, the SAA6721E sends the data bytes starting from the last address accessed either by write command or the next address at a read command.

All byte transfers are acknowledged from the receiving device. The data transfer is aborted by sending a STOP condition, when SDA changes from LOW to HIGH when SCL is HIGH (see Fig.9).

If a new address has to be read or written, it is possible to send a new START condition without a preceding STOP condition. In this case the bus is still occupied by the master, and it can initiate a new data transfer. This is useful for read activities, where at first the register address must be sent in write mode and after that a read command will be sent to read data from this and following addresses.

SAA6721E

If the data transfer was a read transfer and the master was receiver, the master must not generate an acknowledge before the STOP condition.

7.8 De-interlacing algorithms

The SAA6721E features several de-interlacing algorithms for processing interlaced video data. Depending on the algorithm different memory bandwidths and field memories are needed.

7.8.1 STATIC MESH MODE

This mode allows de-interlacing without any image processing and filtering. A field store for 2 fields is necessary. De-interlacing is achieved by simply putting lines together in the right order from the odd and even fields in the field store and generating the output frame.

7.8.2 SPATIAL FILTERING

The spatial filtering mode requires 2 field memories, but only one memory is used at a time. For the calculation of the whole frame from an odd field, the missing even lines are interpolated from the odd lines before and after. Processing of the even field is done in the same way.

7.8.3 TEMPORAL FILTERING

The filtering algorithm needs 4 field memories and will be applied temporally to subsequent fields.

The missing even line in an odd frame will be calculated by interpolation from the corresponding even lines in the even fields before and after. The odd line handling is done in the same way.

7.9 Scaling algorithm

The SAA6721E features different scaling engines for up and downscaling, for both horizontal and vertical processing. The horizontal scaling engines are independent from each other. The vertical scaling engines share the line buffer, so they cannot operate in parallel.

7.9.1 UPSCALING

The upscaling engine is used for enlarging the incoming video frames. It can be used for zooming both RGB and YUV video data. The magnification can be programmed individually for horizontal and vertical scaling. The maximum scaling factor for both directions is 64.

The implemented filter algorithm (see Fig.10) uses interpolation with pixel enhancement, based on a free programmable transition function. It is therefore possible to define the transition between two calculated pixels to obtain different sharpness characteristics. This transition function must be defined in the 7 bits \times 64 look-up table, with a number ranging from 0 to 64. Different functions can be programmed for horizontal and vertical scaling.

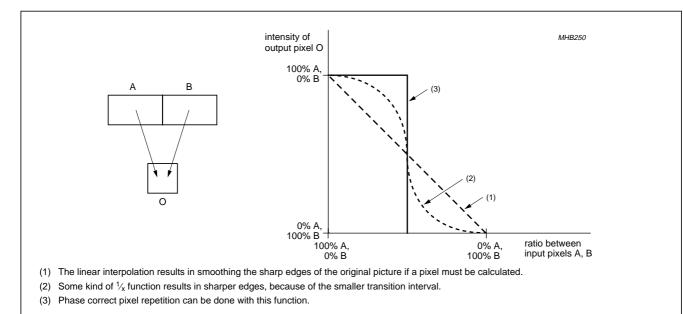


Fig.10 Interpolation function definition.

SAA6721E

7.9.2 DOWNSCALING

The downscaling engine is used for reducing the incoming RGB data stream, i.e. for displaying high resolution input frames on panels with a smaller resolution. The scaling ratio can be programmed independently for both horizontal and vertical downscaling units. The algorithm uses pixel accumulation, achieving a minimum scaling factor of $\frac{1}{64}$.

8 SYSTEM DESCRIPTION

8.1 Programming registers

The SAA6721E is a highly integrated device with many features. To get the desired functionality and performance it must be programmed correctly. In general, before programming, the device must be switched to the internal reset state to prevent unwanted functions while changing the registers.

After writing to all registers the internal reset can be released. There are some registers (mainly offset counters) that can be changed during data processing without an internal reset. All accesses to the on screen display can be done during data processing.

 Table 6
 I²C-bus device address

MSB							LSB
0	1	1	1	0	1	SAD	R/W

Bit SAD = 0 the address is 74H, while bit SAD = 1 the address is 76H.

D2

D1

D0

intr

no_ hsync

Table 7 shows the programming model.

D3

State							
0	R	reserved					
1	R	reserved					
2	R/W	iic_test_reg	jister[7 to 0]				
3	R						
RGB mode	detec	tion					
4	R				pos_	pos_	no_
					vsync	hsync	vsync
5	R	v_lines[7 to	0]				
6	R					v_lines[10 t	to 8]
7	R	h_clocks[7	to 0]				
8	R				h_clocks[11	l to 8]	
RGB auto-a	adjusti	ment					
9	W	ref_line[7 to	o 0]				
10	W					ref_line[10	to 8]
11	W	ref_pixel[7	to 0]				
12	W				ref_pixel[11	to 8]	
13	W	ref_colour[7	7 to 0]				
14	R	ref_pixel_re	ed[7 to 0]				
15	R	ref_pixel_g	reen[7 to 0]				

D5

D4

Table 7 Programming register overview

D7

ref_pixel_blue[7 to 0]

black_lines[7 to 0]

black_pixels[7 to 0]

D6

R/W

ADDRESS

16

17

18

R

R

R

ADDRESS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
19	R								black_ pixels[8]
20	R	non_black_	lines[7 to 0]						
21	R						non_black_	lines[10 to 8	3]
22	R	non_black_	_pixels[7 to 0)]					
23	R					non_black_	pixels[11 to	8]	
General co	nfigur	ation	-			-			
24	W		intr_clear	single_ adc_mode	no_ memory_ mode	memory_ init	reset_ input_path	reset_ memory_ path	reset_ proc_path
25	W				yuv_clk_ mux	csm_ bypass	frc_on	blank_ screen	power_ down
Clock distri	ibutio	n							
26	W	por_mclk	pre_div_ enable	post_div_ enable	pre_div_ half_clock	post_div_ half_clock	pll_enable	pll_pclk	pll_mclk
27	W	pre_div_clo	bck_p_high[3	3 to 0]		pre_div_clo	bck_p_low[3	to 0]	1
28	W	pre_div_clo	ock_n_high[3	3 to 0]		pre_div_clo	ock_n_low[3	to 0]	
29	W					pre_div_clo	ock_n_offs[3	to 0]	
30	W	post_div_cl	- lock_p_high	[3 to 0]		post_div_cl	ock_p_low[3	to 0]	
31	W	post_div_cl	lock_n_high	[3 to 0]		post_div_cl	ock_n_low[3	to 0]	
32	W					post_div_cl	ock_n_offs[3	3 to 0]	
Input interfa	ace								
33	W	rgb_interl_ on	in_form_ on	rgb_proc_ on	adc_ sample_ seq	gainc_pol	clamp_pol	vs_pol	hs_pol
34	W		field_	yuv_field_n	node	yuv_input_	mode	yuv_href_	yuv_cref_
			reverse	[1 and 0]		[1 and 0]		pol	pol
35	W	v_offset[7 t	0 0]		1		1		
36	W						v_offset[10	to 8]	
37	W	h_offset[7 t	io 0]	1	1	1			
38	W					h_offset[11	to 8]		
39	W	v_length[7	to 0]		1	1	1		
40	W						v_length[10) to 8]	
41	W	h_length[7	to 0]	1	1	1			
42	W					h_length[11	to 8]		
43	W	clamp_on[7	7 to 0]						
44	W	clamp_off[7	-						
45	W	-	delay[7 to 0]						
46	W	gainc_off_c	delay[7 to 0]						

ADDRESS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
Colour corr	ectior	ו							
47	W					red_prog	green_ prog	blue_prog	colour_ correction _on
48	W	colour_inde	ex[7 to 0]						
49	W ⁽¹⁾	colour_valu	ie[7 to 0]						
Memory int	erface	e/de-interlac	ing unit						
50	W				yuv422_ mode	data_width	[1 and 0]	deint_mode	e[1 and 0]
51	W					burst_seq_	length[3 to 0]	
52	W		SDRAM_b	urst_length_c	code[2 to 0]	SDRAM_bu	urst_length[3	to 0]	
53	W		CAS_laten	cy[2 to 0]		t_RCD[3 to	0]		
54	W	t_RRD[3 to	0]			t_RP[3 to 0]		
55	W	t_WR[3 to (0]			t_RC[3 to 0]		
56	W	field1_row[7 to 0]			1			
57	W						field1_row[10 to 8]	
58	W	field1_colu	mn[7 to 0]	1	1		1		
59	W	field2_row[7 to 0]						
60	W						field2_row[10 to 8]	
61	W	field2_colu	mn[7 to 0]	1	1		1		
62	W	field3_row[7 to 0]						
63	W						field3_row[10 to 8]	
64	w	field3_colu							
65	W	field4_row[7 to 0]						
66	W						field4_row[10 to 8]	
67	w	field4_colu							
68	W	frame_leng	th[7 to 0]						
69	W						frame_leng	th[10 to 8]	
70	w	line_length	[7 to 0]						
71	W					line_length	[11 to 8]		
72	W	blank_colo	ur_red[7 to 0]					
73	w	blank_colo	ur_green[7 to	- D 0]					
74	W	blank_colo	ur_blue[7 to	0]					
Scaler	1		-						
75	W		down_v_ scaler_ mem	up_v_ coeff_prog	up_h_ coeff_prog	up_v_ scaler_on	up_h_ scaler_on	down_v_ scaler_on	down_h_ scaler_on
76	W	up_v_incr[7	' to 0]						•
77	W					up_v_incr[1	1 to 8]		
78	W		up_v_corr[6	5 to 0]					
79	W	up_h_incr[7	-						

ADDRESS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
80	W					up_h_incr['	11 to 8]		
81	W		up_h_corr[6 to 0]					
82	W			down_v_ind	cr[5 to 0]				
83	W		down_v_cc	orr[6 to 0]					
84	W			down_h_in	cr[5 to 0]				
85	W		down_h_co	orr[6 to 0]					
86	W			coeff_index	[5 to 0]				
87	W ⁽¹⁾		coeff_value	e[6 to 0]					
Panning un	it								
88	W	pic_v_offse	t[7 to 0]						
89	W						pic_v_offse	et[10 to 8]	
90	W	pic_h_offse	t[7 to 0]				•		
91	W					pic_h_offse	et[11 to 8]		
92	W	out_v_size[7 to 0]						
93	W						out_v_size	[10 to 8]	
94	W	out_h_size[7 to 1]	•			•		0
95	W					out_h_size	[11 to 8]		·
96	W	border_colo	our_red[7 to	0]					
97	W	border_colo	our_green[7	to 0]					
98	W	border_colo	our_blue[7 to	0]					
OSD overla	y port								
99	W	ovl_clk_ pol	ovl_act_ pol	ovl_vs_ pol	ovl_hs_ pol	clk_ gating_on	sample_ edge	ovl_ syncs_ active	ovl_ insert_ active
100	W	ovl_hs_star	t[7 to 0]						•
101	W						ovl_hs_sta	rt[10 to 8]	
102	W	ovl_hs_len@	gth[7 to 0]	•			•		
103	W						ovl_hs_len	gth[10 to 8]	
104	W	ovl_hs_late	ncy[7 to 0]						
105	W	ovl_h_lengt	h[7 to 0]						
106	W						ovl_h_leng	th[10 to 8]	
107	W	ovl_v_offse	t[7 to 0]						
108	W						ovl_v_offse	et[10 to 8]	
109	W	ovl_v_lengt	h[7 to 0]						
110	W						ovl_v_leng	th[10 to 8]	
111	W	ovl_vs_star	t[7 to 0]						
112	W						ovl_vs_sta	rt[10 to 8]	
113	W	ovl_colour0	_red[7 to 0]						
114	W	ovl_colour0	_green[7 to	0]					
115	W	ovl colour0	_blue[7 to 0	1					

ADDRESS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
116	W	ovl_colour1	red[7 to 0]						
117	W		green[7 to	0]					
118	W		blue[7 to 0]						
119	W	ovl_colour2	_red[7 to 0]	-					
120	W	ovl_colour2	_green[7 to	0]					
121	W	ovl_colour2	_blue[7 to 0]]					
122	W	ovl_colour3	_red[7 to 0]						
123	W	ovl_colour3	_green[7 to	0]					
124	W	ovl_colour3	_blue[7 to 0]					
125	W	ovl_colour4	_red[7 to 0]						
126	W	ovl_colour4	_green[7 to	0]					
127	W	ovl_colour4	_blue[7 to 0]					
128	W	ovl_colour5	_red[7 to 0]						
129	W	ovl_colour5	_green[7 to	0]					
130	W	ovl_colour5	_blue[7 to 0]					
131	W	ovl_colour6	_red[7 to 0]						
132	W	ovl_colour6	_green[7 to	0]					
133	W	ovl_colour6	_blue[7 to 0]					
134	W	ovl_colour7	_red[7 to 0]						
135	W	ovl_colour7	_green[7 to	0]					
136	W	ovl_colour7	_blue[7 to 0]					
On screen	displa	у							
137	W						zoom2	char_size	osd_
								_	active
138	W	osd_v_offse	et[7 to 0]	•	•	•	•	•	•
139	W						osd_v_offs	et[10 to 8]	
140	W	osd_h_offse	et[7 to 0]	4	•				
141	W					osd_h_offs	set[11 to 8]		
142	W			osd_v_size	e[5 to 0]	•			
143	W			osd_h_size	e[5 to 0]				
144	W	osd_fg_cold	our0_red[7 to	o 0]					
145	W	osd_fg_cold	our0_green[7	7 to 0]					
146	W	osd_fg_cold	our0_blue[7	to 0]					
147	W	osd_fg_cold	our1_red[7 to	o 0]					
148	W	osd_fg_colo	our1_green[]	7 to 0]					
149	W	osd_fg_colo	our1_blue[7	to 0]					
150	W	osd_fg_cold	our2_red[7 to	o 0]					
151	W	osd_fg_cold	our2_green[7	7 to 0]					
152	W	osd_fg_colo	our2_blue[7	to 0]					
153	W	osd_fg_cold	our3_red[7 to	o 0]					

ADDRESS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
154	W	osd_fg_cold	our3_green[]	7 to 0]	•				
155	W	osd_fg_cold	our3_blue[7	to 0]					
156	W	osd_fg_cold	our4_red[7 to	o 0]					
157	W	osd_fg_cold	our4_green[]	7 to 0]					
158	W	osd_fg_cold	our4_blue[7	to 0]					
159	W	osd_fg_cold	our5_red[7 to	o 0]					
160	W	osd_fg_cold	our5_green[7	7 to 0]					
161	W	osd_fg_cold	our5_blue[7	to 0]					
162	W	osd_fg_cold	our6_red[7 to	o 0]					
163	W	osd_fg_cold	our6_green[]	7 to 0]					
164	W	osd_fg_cold	our6_blue[7	to 0]					
165	W	osd_fg_cold	our7_red[7 to	o 0]					
166	W	osd_fg_cold	our7_green[]	7 to 0]					
167	W	osd_fg_cold	our7_blue[7	to 0]					
168	W	osd_bg_col	our0_red[7 t	to 0]					
169	W	osd_bg_col	our0_green	[7 to 0]					
170	W	osd_bg_col	our0_blue[7	to 0]					
171	W	osd_bg_col	our1_red[7 t	to 0]					
172	W	osd_bg_col	our1_green	[7 to 0]					
173	W	osd_bg_col	our1_blue[7	to 0]					
174	W	osd_bg_col	our2_red[7 t	to 0]					
175	W	osd_bg_col	our2_green	[7 to 0]					
176	W	osd_bg_col	our2_blue[7	to 0]					
177	W	osd_bg_col	our3_red[7 t	to 0]					
178	W	osd_bg_col	our3_green	[7 to 0]					
179	W	osd_bg_col	our3_blue[7	to 0]					
180	W	osd_bg_col	our4_red[7 t	to 0]					
181	W	osd_bg_col	our4_green	[7 to 0]					
182	W	osd_bg_col	our4_blue[7	to 0]					
183	W	osd_bg_col	our5_red[7 t	to 0]					
184	W	osd_bg_col	our5_green	[7 to 0]					
185	W	osd_bg_col	our5_blue[7	to 0]					
186	W		our6_red[7 t	-					
187	W	_	our6_green						
188	W	osd_bg_col	sd_bg_colour6_blue[7 to 0]						
189	W	osd_bg_col	sd_bg_colour7_red[7 to 0]						
190	W	osd_bg_col	our7_green	[7 to 0]					
191	W	osd_bg_col	our7_blue[7	to 0]					
192	W	osd_fg_ colour7_ transp	osd_fg_ colour6_ transp	osd_fg_ colour5_ transp	osd_fg_ colour4_ transp	osd_fg_ colour3_ transp	osd_fg_ colour2_ transp	osd_fg_ colour1_ transp	osd_fg_ colour0_ transp

ADDRESS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
193	W	osd_fg_ colour7_ alpha	osd_fg_ colour6_ alpha	osd_fg_ colour5_ alpha	osd_fg_ colour4_ alpha	osd_fg_ colour3_ alpha	osd_fg_ colour2_ alpha	osd_fg_ colour1_ alpha	osd_fg_ colour0_ alpha
194	W	osd_bg_ colour7_ transp	osd_bg_ colour6_ transp	osd_bg_ colour5_ transp	osd_bg_ colour4_ transp	osd_bg_ colour3_ transp	osd_bg_ colour2_ transp	osd_bg_ colour1_ transp	osd_bg_ colour0_ transp
195	W	osd_bg_ colour7_ alpha	osd_bg_ colour6_ alpha	osd_bg_ colour5_ alpha	osd_bg_ colour4_ alpha	osd_bg_ colour3_ alpha	osd_bg_ colour2_ alpha	osd_bg_ colour1_ alpha	osd_bg_ colour0_ alpha
On screen	displa	y window							
196	W			cursor_row	/[5 to 0]				
197	W			cursor_colu	umn[5 to 0]				
198	W	char_appea [1 and 0]	arance	char_bg_c	olour[2 to 0]		char_fg_cc	lour[2 to 0]	
199	W ⁽¹⁾		char_code	6 to 0]					
On screen	displa	y character	matrix						
200	W		char_code	6 to 0]					
201	W ⁽¹⁾	char_def[7	to 0]						
TFT display	/ inter	face							
202	W				vsync_pol	hsync_pol	de_pol	clk_pol	single_ pixel_ output
203	W	line_sync	sync_de_ act	out_if_ enable	blank_tft	sync_ mode	blank_ctrl	border_ ctrl	active_ctrl
204	W	h_len_blanl	k[7 to 0]		•				
205	W						h_len_blan	k[10 to 8]	
206	W	h_len_bord	er[7 to 0]						
207	W						h_len_bord	ler[10 to 8]	
208	W	h_len_activ	e[7 to 0]						
209	W						h_len_activ	/e[10 to 8]	
210	W	v_end[7 to	0]		1				
211	W						v_end[10 to	o 8]	
212	W	v_start[7 to	0]						
213	W						v_start[10 t	o 8]	
214	W	v_active[7 t	o 0]	1					
215	W						v_active[10) to 8]	
216	W	h_vs_start[7 to 0]	i	1	1	i		
217	W						h_vs_start	10 to 8]	
218	W	h_vs_end[7	' to 0]	1	1		1		
219	W						h_vs_end['	10 to 8]	
220	W	h_hs_start[7 to 0]	1		1	1		
221	W						h_hs_start	10 to 8]	

1999 May 11

SXGA RGB to TFT graphics engine

SAA6721E

ADDRESS	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
222	W	h_hs_end[7	h_hs_end[7 to 0]								
223	W						h_hs_end[10 to 8]				
224	W	h_de_start[7 to 0]				·				
225	W						h_de_start[10 to 8]			
226	W	h_de_end[7	h_de_end[7 to 0]								
227	W						h_de_end[10 to 8]				
228	W	h_active_st	h_active_start[7 to 0]								
229	W						h_active_start[10 to 8]				
230	W	v_vs_end[7	' to 0]								
231	W						v_vs_end[10 to 8]				
232	W	h_max_len	[7 to 0]		•	•	•				
233	W						h_max_len[10 to 8]				

Note

1. Register does not work with register address auto-increment, but with incrementing the address on which the operation is performed.

NAME	SUBADDRE	ESS R/W	DATA
State			•
IIC TEST REGISTER			
IIC test register	2	R/W	D7 to D0
STATE REGISTER		•	
Interrupt state	3	R	D0
Interrupt active			logic 0
Interrupt not active			logic 1
RGB mode detection			
SYNC DETECT REGISTER			
Hsync presence	4	R	D0
Hsync present			logic 0
Hsync not present			logic 1
Vsync presence			D1
Vsync present			logic 0
Vsync not present			logic 1
Hsync polarity			D2
Negative Hsync			logic 0
Positive Hsync			logic 1
Vsync polarity			D3
Negative Vsync			logic 0
Positive Vsync			logic 1

NAME	SUBADDRESS	R/W	DATA
VERTICAL FRAME RESOLUTION		1	
Number of lines between two Vsyncs	5 and 6	R	D10 to D0
HORIZONTAL FRAME RESOLUTION	•	•	
Number of clocks between two Hsyncs	7 and 8	R	D11 to D0
RGB auto adjustment		•	
REFERENCE LINE POSITION			
Reference line for auto adjustment measurements	9 and 10	W	D10 to D0
REFERENCE PIXEL POSITION			
Reference pixel for auto adjustment measurements	11 and 12	W	D11 to D0
REFERENCE COLOUR			
Colour for selecting black or non-black pixels	13	W	D7 to D0
REFERENCE PIXEL COLOUR RED COMPONENT			
Red colour component of reference pixel	14	R	D7 to D0
REFERENCE PIXEL COLOUR GREEN COMPONENT			
Green colour component of reference pixel	15	R	D7 to D0
REFERENCE PIXEL COLOUR BLUE COMPONENT			
Blue colour component of reference pixel	16	R	D7 to D0
BLACK LINES COUNTER			
Number of black lines after Vsync	17	R	D7 to D0
BLACK PIXELS COUNTER			
Number of black pixels after Hsync	18 and 19	R	D8 to D0
NON-BLACK LINES COUNTER			
Number of non-black lines after Vsync	20 and 21	R	D10 to D0
NON-BLACK PIXELS COUNTER			
Number of non-black pixels after Hsync	22 and 23	R	D11 to D0

NAME	SUBADDRESS	R/W	DATA
General configuration	·		•
CONFIGURATION REGISTER 1			
Processing reset state	24	W	D0
Processing path not in reset state			logic 0
Processing path in reset state			logic 1
Memory reset state			D1
Memory path not in reset state			logic 0
Memory path in reset state			logic 1
Input reset state			D2
Input path not in reset state			logic 0
Input path in reset state			logic 1
External memory initialization			D3
No external memory initialization			logic 0
Start external memory initialization			logic 1
External memory configuration			D4
External memory present			logic 0
No external memory present			logic 1
External ADC configuration			D5
2 ADCs connected			logic 0
1 ADC connected			logic 1
Interrupt acknowledge			D6
No acknowledge			logic 0
Reset interrupt output to logic 1			logic 1
CONFIGURATION REGISTER 2			•
Output interface Power-down mode	25	W	D0
Normal processing			logic 0
All outputs of output interface at LOW level			logic 1
Blank screen			D1
Normal data processing			logic 0
Blank screen generation after memory interface			logic 1
Output temporal dithering			D2
No temporal dithering of output data stream			logic 0
Temporal dithering of output data			logic 1
Colour space conversion matrix			D3
Conversion YUV to RGB enabled			logic 0
Straight RGB processing enabled			logic 1
YUV processing clock multiplexer			D4
Clock will be applied at pin VCLK			logic 0
Clock will be applied at pin MCLKI			logic 1

NAME	SUBADDRESS	R/W	DATA
Clock distribution			
CLOCK MULTIPLEXING			
Memory clock generation	26	W	D0
Memory clock is taken from pin MCLKI			logic 0
Memory clock is $\frac{1}{2}$ PLL clock			logic 1
Panel clock generation			D1
Panel clock is equal system clock			logic 0
Panel clock is generated by PLL clock and post-divider			logic 1
PLL activation			D2
PLL disabled			logic 0
PLL enabled			logic 1
PLL post-divider precision			D3
$\frac{1}{2}$ clock precision disabled			logic 0
$\frac{1}{2}$ clock precision enabled			logic 1
PLL pre-divider precision			D4
$1/_2$ clock precision disabled			logic 0
$1/_2$ clock precision enabled			logic 1
PLL post-divider activation			D5
PLL post-divider disabled			logic 0
PLL post-divider enabled			logic 1
PLL pre-divider activation			D6
PLL pre-divider disabled			logic 0
PLL pre-divider enabled			logic 1
External memory clock multiplexer			D7
Enable memory clock			logic 0
Use system clock as external memory clock			logic 1
PRE-DIVIDER P-COUNTER			
Pre-divider p-counter programming	27	W	D7 to D0
PRE-DIVIDER N-COUNTER			
Pre-divider n-counter programming	28	W	D7 to D0
PRE-DIVIDER N-OFFSET			
Pre-divider n-counter offset programming	29	W	D3 to D0
Post-divider P-counter			•
Post-divider p-counter programming	30	W	D7 to D0
Post-divider N-Counter			
Post-divider n-counter programming	31	W	D7 to D0
Post-divider N-OFFSET		•	
Post-divider n-counter offset programming	32	W	D3 to D0

ΝΑΜΕ	SUBADDRESS	R/W	DATA
Input interface			
GENERAL PROGRAMMING			
Hsync polarity	33	W	D0
Hsync is active LOW, line starts at rising edge of pin VHS			logic 0
Hsync is active HIGH, line starts at falling edge of pin VHS			logic 1
Vsync polarity			D1
Vsync is active LOW, line starts at rising edge of pin VVS			logic 0
Vsync is active HIGH, line starts at falling edge of pin VVS			logic 1
Clamp pulse polarity			D2
Pulse is active LOW			logic 0
Pulse is active HIGH			logic 1
Gain correction pulse polarity			D3
Pulse is active LOW			logic 0
Pulse is active HIGH			logic 1
ADC sample sequence			D4
ADC 0 is sampled first after Hsync (video input port A, B, C)			logic 0
ADC 1 is sampled first after Hsync (video input port D, E, F)			logic 1
RGB/YUV processing mode			D5
YUV processing enabled			logic 0
RGB processing enabled			logic 1
Input interface activation			D6
No data sampling			logic 0
Data sampling enabled			logic 1
Interlaced RGB mode			D7
Non-interlaced RGB processing			logic 0
Interlaced RGB processing			logic 1

S

SXGA RGB to TF	Γ graphics	engine
----------------	------------	--------

raphics	engine

NAME		R/W	DATA
INTERLACED MODE PROGRAMMING			
YUV CREF polarity	34	W	D0
YUV clock qualifier is active LOW			logic 0
YUV clock qualifier is active HIGH			logic 1
YUV HREF polarity	_		D1
Active data qualifier is active LOW			logic 0
Active data qualifier is active HIGH			logic 1
YUV format			D3 and D2
CCIR 656			D3 = 0 and D2 = 0
4 : 1 : 1 format			D3 = 0 and D2 = 1
4 : 2 : 2 format			D3 = 1 and D2 = 0
4 : 4 : 4 format			D3 = 1 and D2 = 1
YUV field sampling mode			D5 and D4
All incoming frames are captured			D5 = 0 and $D4 = 0$
Capture alternating fields only			D5 = 0 and D4 = 1
Capture odd fields only			D5 = 1 and D4 = 0
Capture even fields only	_		D5 = 1 and D4 = 1
Field reverse flag			D6
Keep original odd field identification			logic 0
Change field identification			logic 1
VERTICAL SAMPLE OFFSET			
Vertical sample offset from Vsync	35 and 36	W	D10 to D0
HORIZONTAL SAMPLE OFFSET			
Horizontal sample offset from Hsync	37 and 38	W	D11 to D0
VERTICAL SAMPLE LENGTH			
Vertical sample window length	39 and 40	W	D10 to D0
HORIZONTAL SAMPLE LENGTH			
Horizontal sample window length	41 and 42	W	D11 to D0
CLAMP PULSE START			
Start of clamp pulse after active edge of Hsync	43	W	D7 to D0
CLAMP PULSE END			
End of clamp pulse after active edge of Hsync	44	W	D7 to D0
GAIN CORRECTION PULSE START DELAY			
Delay of start of GAINC pulse from first edge of Hsync	45	W	D7 to D0
GAIN CORRECTION PULSE END DELAY			
Delay of end of pulse GAINC from second edge of Hsync	46	W	D7 to D0

NAME	SUBADDRESS	R/W	DATA
Colour correction	·		
PROGRAMMING SELECTOR, ACTIVATION			
Colour correction activation	47	W	D0
Straight colour processing			logic 0
Colour substitution enabled			logic 1
Blue component programming			D1
Red component correction colour writing disabled			logic 0
Red component correction colour writing enabled			logic 1
Green component programming			D2
Red component correction colour writing disabled			logic 0
Red component correction colour writing enabled			logic 1
Red component programming			D3
Red component correction colour writing disabled			logic 0
Red component correction colour writing enabled			logic 1
COLOUR INDEX FOR LOOK-UP TABLE WRITING			
Colour component look-up table index	48	W	D7 to D0
COLOUR VALUE FOR LOOK-UP TABLE WRITING			
Colour component substitution value	49	W	D7 to D0
Memory interface/de-interlacing unit			
GENERAL CONFIGURATION			
De-interlacing mode	50	W	D1 and D0
No de-interlacing			D1 = 0 and D0 = 0
De-interlacing without filtering			D1 = 0 and D0 = 1
De-interlacing with spatial filtering			D1 = 1 and D0 = 0
De-interlacing with temporal filtering			D1 = 1 and D0 = 1
External memory data bus width			D3 and D2
32 bits (two 16-bit channels)			D3 = 0 and D2 = 0
48 bits (three 16-bit channels)			D3 = 0 and D2 = 1
64 bits (four 16-bit channels)			D3 = 1 and D2 = 0
do not use			D3 = 1 and D2 = 1
Internal data path width			D4
RGB and YUV 4 : 4 : 4 processing			logic 0
YUV 4 : 2 : 2, YUV 4 : 1 : 1 and CCIR 656 processing			logic 1
ACCESS BURST LENGTH			
Number of bursts per read/write access to SDRAM	51	W	D3 to D0
SDRAM BURST LENGTH			
SDRAM burst length	52	W	D3 to D0
SDRAM initialization code for burst length			D6 to D4

NAME	SUBADDRESS	R/W	DATA
SDRAM TIMING PARAMETER 1; SEE TABLE 14			
Active to read or write delay (t _{RCD}) in clocks	53	W	D3 to D0
CAS latency (CL) in clocks			D6 to D4
SDRAM TIMING PARAMETER 2; SEE TABLE 14			
Precharge command period (t _{RP}) in clocks	54	W	D3 to D0
Active bank A to active band B command (t _{RRD}) in clocks			D7 to D4
SDRAM TIMING PARAMETER 3; SEE TABLE 14			
Auto refresh, active command period (t_{RC}) in clocks	55	W	D3 to D0
Write recovery time (t _{WR}) in clocks			D7 to D4
Field 1 start address (row)			
Start address of field 1 in external SDRAM memory (row)	56 and 57	W	D10 to D0
FIELD 1 START ADDRESS (COLUMN)			
Start address of field 1 in external SDRAM memory (column)	58	W	D7 to D0
Field 2 start address (row)			
Start address of field 2 in external SDRAM memory (row)	59 and 60	W	D10 to D0
FIELD 2 START ADDRESS (COLUMN)	·		•
Start address of field 2 in external SDRAM memory (column)	61	W	D7 to D0
Field 3 start address (row)			•
Start address of field 3 in external SDRAM memory (row)	62 and 63	W	D10 to D0
FIELD 3 START ADDRESS (COLUMN)			
Start address of field 3 in external SDRAM memory (column)	64	W	D7 to D0
Field 4 start address (row)			
Start address of field 4 in external SDRAM memory (row)	65 and 66	W	D10 to D0
FIELD 4 START ADDRESS (COLUMN)		1	1
Start address of field 4 in external SDRAM memory (column)	67	W	D7 to D0
OUTPUT FRAME LENGTH			
Vertical length of output frame after de-interlacing unit	68 and 69	W	D10 to D0
OUTPUT LINE LENGTH			
Horizontal length of output frame after de-interlacing unit	70 and 71	W	D11 to D0
BLANK COLOUR RED COMPONENT DEFINITION			1
Red colour component for blank screen generation	72	W	D7 to D0
BLANK COLOUR GREEN COMPONENT DEFINITION	I	1	1
Green colour component for blank screen generation	73	W	D7 to D0
BLANK COLOUR BLUE COMPONENT DEFINITION		I	1
Blue colour component for blank screen generation	74	W	D7 to D0

NAME	SUBADDRESS	R/W	DATA
Scaler			
SCALER CONFIGURATION			
Horizontal downscaler activation	75	W	D0
Horizontal downscaler disabled			logic 0
Horizontal downscaler enabled			logic 1
Vertical downscaler activation			D1
Vertical downscaler disabled			logic 0
Vertical downscaler enabled			logic 1
Horizontal upscaler activation			D2
Horizontal upscaler disabled			logic 0
Horizontal upscaler enabled			logic 1
Vertical upscaler activation			D3
Vertical upscaler disabled			logic 0
Vertical upscaler enabled			logic 1
Horizontal upscaling transition function programming			D4
Horizontal upscaling transition function writing disabled			logic 0
Horizontal upscaling transition function writing enabled			logic 1
Vertical upscaling transition function programming			D5
Vertical upscaling transition function writing disabled			logic 0
Vertical upscaling transition function writing enabled			logic 1
Line memory usage			D6
Line memory used by upscaling unit			logic 0
Line memory used by downscaling unit			logic 1
VERTICAL UPSCALE INCREMENT			
Increment for vertical upscaling	76 and 77	W	D11 to D0
VERTICAL UPSCALE CORRECTION			
Fraction of vertical upscaling increment (1/100)	78	W	D6 to D0
HORIZONTAL UPSCALE INCREMENT	·		
Increment for horizontal upscaling	79 and 80	W	D11 to D0
HORIZONTAL UPSCALE CORRECTION			•
Fraction of horizontal upscaling increment (1/100)	81	W	D6 to D0
VERTICAL DOWNSCALE INCREMENT			
Increment for vertical downscaling	82	W	D5 to D0
VERTICAL DOWNSCALE CORRECTION			
Fraction of vertical downscaling increment (1/100)	83	W	D6 to D0
HORIZONTAL DOWNSCALE INCREMENT			
Increment for horizontal downscaling	84	W	D5 to D0
		-	

NAME	SUBADDRESS	R/W	DATA
HORIZONTAL DOWNSCALE CORRECTION			
Fraction of horizontal downscaling increment $(1/_{100})$	85	W	D6 to D0
INDEX FOR COEFFICIENT TABLE WRITING			
Transition function look-up table index	86	W	D5 to D0
COEFFICIENT VALUE FOR LOOK-UP TABLE WRITING			
Values of transition function	87	W	D6 to D0
Panning unit			
VERTICAL PICTURE OFFSET			
Vertical input picture offset inside the output frame	88 and 89	W	D10 to D0
HORIZONTAL PICTURE OFFSET		•	•
Horizontal input picture offset inside the output frame	90 and 91	W	D11 to D0
VERTICAL OUTPUT FRAME LENGTH			
Vertical output frame length	92 and 93	W	D10 to D0
HORIZONTAL OUTPUT FRAME LENGTH			
Horizontal output frame length	94 and 95	W	D11 to D0
BORDER COLOUR RED COMPONENT DEFINITION			
Red colour component for border generation	96	W	D7 to D0
BORDER COLOUR GREEN COMPONENT DEFINITION			
Green colour component for border generation	97	W	D7 to D0
BORDER COLOUR BLUE COMPONENT DEFINITION			
Blue colour component for border generation	98	W	D7 to D0

NAME	SUBADDRESS	R/W	DATA
OSD overlay port			
GENERAL CONFIGURATION			
OSD overlay port activation	99	W	D0
Overlay information will not be inserted into data stream			logic 0
Overlay information will be inserted into data stream			logic 1
Sync pulse generation			D1
No sync pulses will be generated			logic 0
Sync pulses will be generated			logic 1
Clock edge for sampling			D2
Data sampling at falling edge of clock at pin OVCLK			logic 0
Data sampling at rising edge of clock at pin OVCLK			logic 1
Clock gating			D3
OVCLK always enabled			logic 0
OVCLK enabled only during internal active video processing			logic 1
Horizontal sync polarity			D4
Active LOW horizontal sync pulse at pin OVHS			logic 0
Active HIGH horizontal sync pulse at pin OVHS			logic 1
Vertical sync polarity			D5
Active LOW vertical sync pulse at pin OVVS			logic 0
Active HIGH vertical sync pulse at pin OVVS			logic 1
Overlay port active pixel qualifier polarity			D6
Active LOW qualifier signal at pin OVACT			logic 0
Active HIGH qualifier signal at pin OVACT			logic 1
Overlay port clock polarity			D7
Sync pulse change with respect to falling edge at pin OVCLK			logic 0
Sync pulse change with respect to rising edge at pin OVCLK			logic 1
OVERLAY HORIZONTAL SYNC START			
Start of horizontal sync pulse with respect to left frame border	100 and 101	W	D10 to D0
OVERLAY HORIZONTAL SYNC LENGTH			
Length of horizontal sync pulse	102 and 103	W	D10 to D0
OVERLAY HORIZONTAL SYNC LATENCY			
Delay between start of horizontal sync and valid overlay data	104	W	D7 to D0
OVERLAY WINDOW HORIZONTAL LENGTH			
Horizontal length of overlay region	105 and 106	W	D10 to D0
OVERLAY WINDOW VERTICAL OFFSET			
Vertical offset of overlay region	107 and 108	W	D10 to D0
OVERLAY WINDOW VERTICAL LENGTH			
Vertical length of overlay region	109 and 110	W	D10 to D0
	- 1		1

NAME	SUBADDRESS	R/W	DATA
OVERLAY VERTICAL SYNC START	· ·	-	
Start of vertical sync pulse with respect to top frame border	111 and 112	W	D10 to D0
COLOUR 0 TO 7 RED COMPONENT DEFINITION			
Red colour component for overlay colour 0 to 7	113, 116, 119,	W	D7 to D0
	122, 125, 128,		
2 4 5	131 and 134		
COLOUR 0 TO 7 GREEN COMPONENT DEFINITION			
Green colour component for overlay colour 0 to 7	114, 117, 120, 123, 126, 129,	W	D7 to D0
	132 and 135		
COLOUR 0 TO 7 BLUE COMPONENT DEFINITION			
Blue colour component for overlay colour 0 to 7	115, 118, 121,	W	D7 to D0
	124, 127, 130,		
	133 and 136		
On screen display			
GENERAL CONFIGURATION			
OSD activation	137	W	D0
OSD is not visible			logic 0
OSD is visible			logic 1
OSD character size			D1
12×16 character matrix			logic 0
24 × 24 character matrix			logic 1
OSD zoom			D2
No zooming of OSD window			logic 0
Zoom by 2 of OSD window			logic 1
OSD WINDOW VERTICAL OFFSET			
Vertical offset of OSD window from left frame border in pixel	138 and 139	W	D10 to D0
OSD WINDOW HORIZONTAL OFFSET			i
Horizontal offset of OSD window from top frame border in pixel	140 and 141	W	D11 to D0
OSD WINDOW VERTICAL SIZE			1
Vertical size of OSD window in characters	142	W	D5 to D0
OSD WINDOW HORIZONTAL SIZE			
Horizontal size of OSD window in characters	143	W	D5 to D0
Foreground colour 0 to 7 red component definition			
Red colour component for foreground colour 0 to 7	144, 147, 150, 153, 156, 159, 162 and 165	W	D7 to D0

NAME	SUBADDRESS	R/W	DATA
Foreground colour 0 to 7 green component definition			
Green colour component for foreground colour 0 to 7	145, 148, 151, 154, 157, 160, 163 and 166	W	D7 to D0
Foreground colour 0 to 7 blue component definition	·		
Blue colour component for foreground colour 0 to 7	146, 149, 152, 155, 158, 161, 164 and 167	W	D7 to D0
BACKGROUND COLOUR 0 TO 7 RED COMPONENT DEFINITION	·		
Red colour component for background colour 0 to 7	168, 171, 174, 177, 180, 183, 186 and 189	W	D7 to D0
BACKGROUND COLOUR 0 TO 7 GREEN COMPONENT DEFINITION			•
Green colour component for background colour 0 to 7	169, 172, 175, 178, 181, 184, 187 and 190	W	D7 to D0
BACKGROUND COLOUR 0 TO 7 BLUE COMPONENT DEFINITION			
Blue colour component for background colour 0 to 7	170, 173, 176, 179, 182, 185, 188 and 191	W	D7 to D0
FOREGROUND TRANSPARENT COLOUR DEFINITION			
Foreground colour transparency Foreground colour is not transparent Foreground colour is transparent	192	W	D7 to D0 logic 0 logic 1
FOREGROUND ALPHA BLENDING COLOUR DEFINITION			
Foreground colour alpha blending Foreground colour is not alpha blendable Foreground colour is alpha blendable	193	W	D7 to D0 logic 0 logic 1
BACKGROUND TRANSPARENT COLOUR DEFINITION			•
Background colour transparency Background colour is not transparent Background colour is transparent	194	W	D7 to D0 logic 0 logic 1
BACKGROUND ALPHA BLENDING COLOUR DEFINITION			1
Background colour alpha blending Background colour is not alpha blendable Background colour is alpha blendable	195	W	D7 to D0 logic 0 logic 1

NAME	SUBADDRESS	R/W	DATA
On screen display window	·		•
CURSOR POSITION 1			
Cursor row	196	W	D5 to D0
CURSOR POSITION 2	ł		1
Cursor column	197	W	D5 to D0
CHARACTER APPEARANCE			
Foreground colour code	198	W	D2 to D0
Background colour code			D5 to D3
Character appearance			D7 and D6
Picture information will be overwritten by OSD data			D7 = 0 and D6 = 0
Transparency of OSD transparent colours			D7 = 0 and D6 = 1
1 : 1 alpha blending of OSD alpha colours			D7 = 1 and D6 = 0
1 : 2 alpha blending of OSD alpha colours			D7 = 1 and D6 = 1
CHARACTER CODE			1
Code of character to be placed at cursor position	199	W	D6 to D0
On screen display character matrix		1	1
CHARACTER CODE			
Code of character to be defined	200	W	D6 to D0
CHARACTER PATTERN			
Character definition pattern	201	W	D7 to D0
TFT display interface			
GENERAL CONFIGURATION 1			
Output width	202	W	D0
Double pixel output (48 bits)			logic 0
Single pixel output (24 bits)			logic 1
Output clock polarity			D1
Data output with respect to falling edge of pin PCLK			logic 0
Data output with respect to rising edge of pin PCLK			logic 1
Data qualifier polarity			D2
Active LOW pin PDE			logic 0
Active HIGH pin PDE			logic 1
Horizontal sync polarity			D3
Active LOW horizontal sync at pin PHS			logic 0
Active HIGH horizontal sync at pin PHS			logic 1
Vertical sync polarity			D4
Active LOW vertical sync at pin PVS			logic 0
Active HIGH vertical sync at pin PVS			logic 1

NAME	SUBADDRESS	R/W	DATA
GENERAL CONFIGURATION 2			•
Line length controlling in active video region	203	W	D0
Line length controlling disabled			logic 0
Line length controlling enabled			logic 1
Line length controlling in border region	-		D1
Line length controlling disabled			logic 0
Line length controlling enabled			logic 1
Line length controlling in top blanking region			D2
Line length controlling disabled			logic 0
Line length controlling enabled			logic 1
Output interface mode			D3
Free running output interface timing (external SDRAM required)			logic 0
Synchronous output interface timing (without external SDRAM)	_		logic 1
Blanking mode			D4
Normal operating mode			logic 0
All data outputs are at LOW level (black colour)	_		logic 1
Output interface enabling			D5
Output interface disabled, no data processing			logic 0
Output interface enabled, normal data processing	-		logic 1
Data qualifier generation mode			D6
Disable pulse generation at pin PDE during vertical syncs			logic 0
Enable pulse generation at pin PDE during vertical syncs	-		logic 1
Line synchronization			D7
Normal mode			logic 0
Do not use			logic 1
HORIZONTAL LINE LENGTH IN BLANKING REGION			
Horizontal line length in blanking region	204 and 205	W	D10 to D0
HORIZONTAL LINE LENGTH IN BORDER REGION			
Horizontal line length in border region	206 and 207	W	D10 to D0
HORIZONTAL LINE LENGTH IN ACTIVE VIDEO REGION			
Horizontal line length in active video region	208 and 209	W	D10 to D0
VERTICAL FRAME END			
Vertical frame length	210 and 211	W	D10 to D0
VERTICAL BORDER REGION START			
Vertical start of border region	212 and 213	W	D10 to D0
VERTICAL ACTIVE VIDEO REGION START			
Vertical start of active video region	214 and 215	W	D10 to D0
HORIZONTAL DELAY OF START OF VERTICAL SYNC			
Horizontal start delay of vertical sync pulse at pin PVS	216 and 217	W	D10 to D0

SAA6721E

NAME	SUBADDRESS	R/W	DATA
HORIZONTAL DELAY OF END OF VERTICAL SYNC		•	
Horizontal end delay of vertical sync pulse at pin PVS	218 and 219	W	D10 to D0
HORIZONTAL SYNC PULSE START			
Start of horizontal sync pulse at pin PHS	220 and 221	W	D10 to D0
HORIZONTAL SYNC PULSE END			
End of horizontal sync pulse at pin PHS	222 and 223	W	D10 to D0
DATA QUALIFIER START			
Start of border region and horizontal data qualifier at pin PDE	224 and 225	W	D10 to D0
DATA QUALIFIER END			
End of border region and horizontal data qualifier at pin PDE	226 and 227	W	D10 to D0
HORIZONTAL ACTIVE REGION START			
Start of horizontal active video region	228 and 229	W	D10 to D0
VERTICAL SYNC PULSE END			
Vertical sync pulse end at pin PVS	230 and 231	W	D10 to D0
MAXIMUM HORIZONTAL LINE LENGTH			
Maximum reachable line length for length controlling	232 and 233	W	D10 to D0

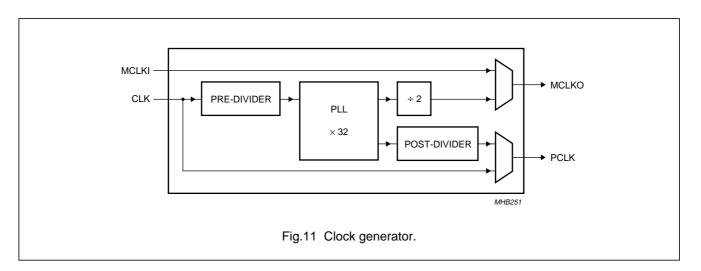
8.2 Clock management

8.2.1 CLOCK GENERATION AND MULTIPLEXING

For normal operation the SAA6721E uses two clock inputs; pin VCLK and pin CLK. VCLK is used as the sample clock provided by the external ADCs or decoder. The frequency and the sample edges of this clock depend on the number of ADCs connected, or on the video dot clock:

- 1 ADC mode: maximum VCLK frequency is 150 MHz
- 2 ADC mode: maximum VCLK frequency is 75 MHz.

The clock from pin CLK is used as an internal reference, and it is the source clock for the internal PLL. The memory clock MCLKO and panel clock PCLK are derived from the PLL (see Fig.11):


$$\begin{split} \text{MCLKO} &= \frac{\text{CLK}}{N} \times 16 \\ \text{PCLK} &= \frac{\text{CLK}}{N} \times \frac{32}{M} \\ \text{Where N} &= \text{pre-divider ratio, M} = \text{post-divider ratio and} \\ 5 \text{ MHz} &\leq \frac{\text{CLK}}{N} \leq 8 \text{ MHz} \end{split}$$

programming flag pll_mclk must be set to logic 0. The same is possible for the panel output clock. Therefore the system clock CLK is used directly. The system clock is controlled by pll_pclk which must be set to logic 0.

It is possible to drive the memory clock output directly

without the internal PLL via pin MCLKI. To achieve this the

SAA6721E

8.2.2 CLOCK DIVIDER

The pre- and post-dividers are implemented in such a way, that they support dividing ratios of 0.5 steps in an interval from 1.5 to 10.5. All further dividing ratios are in steps of 1.0; see Fig.12 and Table 9.

Programming of the clock dividers must be done using the registers 26 to 32. It is necessary that the clock dividers must be disabled before programming and be enabled afterwards. This can be done with pre_div_enable and post_div_enable.

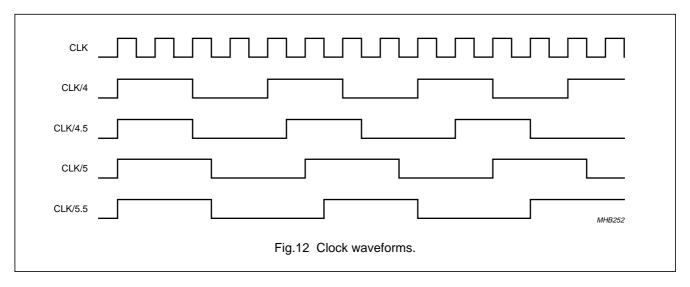


Table 9 Clock divider programming

RATIO	P-COUNTER (HEX)	N-COUNTER (HEX)	N-OFFSET COUNTER (HEX)	HALF CLK
1.5	10	10	1	1
2.0	00	00	0	0
2.5	30	30	2	1
3.0	10	10	0	1
3.5	41	41	3	1

RATIO	P-COUNTER (HEX)	N-COUNTER (HEX)	N-OFFSET COUNTER (HEX)	HALF CLK
4.0	11	00	0	0
4.5	61	61	4	1
5.0	21	21	0	1
5.5	72	72	5	1
6.0	22	00	0	0
6.5	92	92	6	1
7.0	32	32	0	1
7.5	A3	A3	7	1
8.0	33	00	0	0
8.5	C3	C3	8	1
9.0	43	43	0	1
9.5	D4	D4	9	1
10.0	44	00	0	0
10.5	F4	F4	A	1
11.0	54	54	0	1
12.0	55	00	0	0
13.0	65	65	0	1
14.0	66	00	0	0
15.0	76	76	0	1
16.0	77	00	0	0
17.0	87	87	0	1
18.0	88	00	0	0
19.0	98	98	0	1
20.0	99	00	0	0
21.0	A9	A9	0	1
22.0	AA	00	0	0
23.0	BA	BA	0	1
24.0	BB	00	0	0
25.0	СВ	СВ	0	1
26.0	CC	00	0	0
27.0	DC	DC	0	1
28.0	DD	00	0	0
29.0	ED	ED	0	1
30.0	EE	00	0	0
31.0	FE	FE	0	1
32.0	FF	00	0	0

SAA6721E

8.3 RGB/YUV input interface

8.3.1 SAMPLING MODE

The input interface allows sampling of RGB or YUV data. Because of that two different modes must be supported: RGB data sampling and YUV data sampling. The flag rgb_proc_on selects RGB mode sampling if asserted. If the flag is not asserted YUV data is selected.

Sampling of interlaced RGB data is enabled by rgb_interl_on.

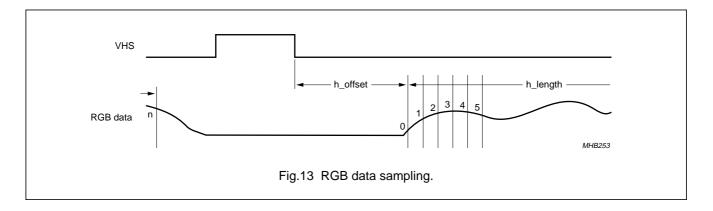
8.3.2 RGB DATA SAMPLING

Sampling is done on the rising edge or on both edges of VCLK depending on the number of ADCs.

The sample window is defined by v_offset, h_offset, v_length, and h_length.

The offset counters start counting from the second edge of their reference signals, i.e. VVS for vertical offset and VHS for horizontal offset. Figure 13 shows the horizontal offset. The polarities of the sync signals are given with vs_pol and hs_pol. The vertical sample offset is given in lines and the horizontal offset is measured in pixels. The width of the sample window is defined by the length counters. The vertical width is measured in lines and the horizontal width in pixels, but only even pixel numbers are allowed.

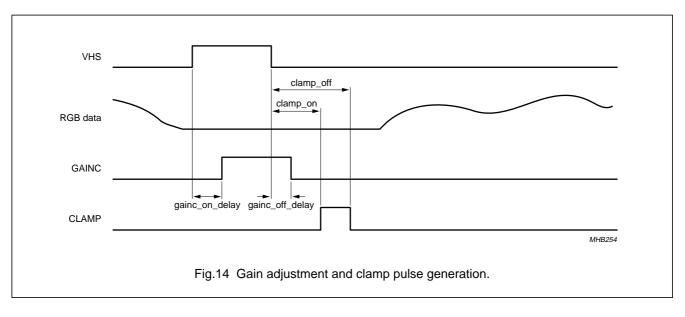
The sample clock for the ADCs is always VCLK, but in dual ADC mode this clock is half the pixel clock. Because of that, in dual ADC mode, both clock edges are used to sample data by the ADCs.


Table 10 Clock relationships

NUMBER OF ADCs	VCLK	VCLK SAMPLE EDGE
1	dot clock	positive
2	1/2 dot clock	both

In single ADC mode, with each VCLK clock, a pixel must be sampled from port A. In dual ADC mode, at each VCLK clock edge, a pixel must be sampled alternating from port A or B. The flag adc_sample_seq selects from which port data sampling starts after the active edge of the horizontal synchronization pulse.

8.3.3 CLAMP PULSE GENERATION


The clamp pulse is generated with respect to half the dot clock. The counters values responsible for switching the clamp pulse on or off are clamp_on and clamp_off. Both start counting from the second edge of VHS. The polarity of CLAMP is given with clamp_pol.

SAA6721E

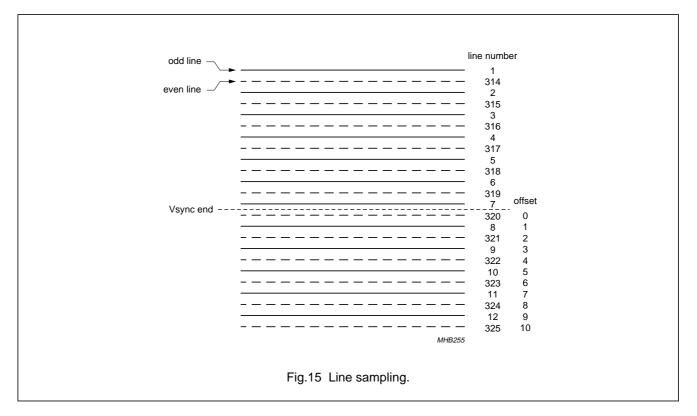
8.3.4 GAIN CORRECTION PULSE GENERATION

The GAINC signal is the delayed horizontal sync pulse (VHS). It is delayed with respect to half the dot clock. The first edge of VHS is delayed by gainc_on_delay and the second edge by gainc_off_delay (see Fig.14). The polarity is programmed by gainc_pol.

8.3.5 YUV DATA SAMPLING

In YUV mode the input interface receives digital YUV encoded video data from an external video decoder. The video data can be in 4: 4: 4, 4: 2: 2, 4: 1: 1, or YUV 4: 2: 2 with CCIR 656 codes. For the 4: 4: 4, 4: 2: 2, and 4: 1: 1 formats the reference signals VVS and VHS must be considered to identify the frames. The polarity of these signals is programmable with vs_pol and hs_pol. The region of valid video data and the start point for the UV sequence is defined by HREF applied at pin VPD6.

External reference signals are needed for sampling the YUV 4 : 4 : 4, 4 : 2 : 2 and 4 : 1 : 1 data. If CCIR 656 data is to be sampled, all external reference signals are ignored, because their information is coded into the data stream. All information about active video, blanking and field ID is taken from the CCIR 656 codes. The selection of the input format is done by yuv_input_mode as shown in Table 11.


Table 11 YUV input modes

yuv_input_mode[1 and 0]	DESCRIPTION
0	YUV 4 : 2 : 2 with
	CCIR 656 codes
1	YUV 4 : 1 : 1
2	YUV 4 : 2 : 2
3	YUV 4 : 4 : 4

Data sampling occurs in relation to horizontal and vertical offset counters, and horizontal and vertical length counters. They are the same as for programming the RGB input, v_offset, h_offset, v_length, and h_length. All offset and length values are relative to the whole frame, and not to odd or even fields (see Fig.15).

SAA6721E

SXGA RGB to TFT graphics engine

8.3.5.1 Field capturing

Another problem that must be considered is frame dropping. It is possible that the connected video source only provides either odd or even frames, or that the video source drops frames. Therefore the input interface must process the incoming video stream in several ways, as shown in Table 12.

Table 12 Field capture modes

yuv_field_mode[1 and 0]	DESCRIPTION
0	all incoming frames are captured
1	after an odd frame the next even frame will be captured, and vice versa
2	capture only odd frames
3	capture only even frames

8.3.5.2 YUV clocking

VCLK, or alternatively the clock from MCLKI, is used for clocking the input interface in YUV mode and the data path behind the external clock. This second port will be used if yuv_clk_mux is set to logic 1. The external clock is the line-locked video clock from the video decoder. This clock is gated by CREF and applied at pin VPD7. Data is only to be sampled if this signal is asserted. Alternatively the line-locked video clock divided by two can be used (if provided by the decoder). In this event CREF must be tied to logic 1 or logic 0 depending on its programmed polarity.

1999 May 11

SAA6721E

8.4 Video mode and synchronization signal detection

The SAA6721E can be used to build up multi-sync systems using an external microcontroller. Therefore information about the input resolution and timing are provided (see Tables 7 and 8). The flags pos_vsync and pos_hsync show the polarity of the synchronization signals at VVS and VHS. If they are set to logic 1 they are active HIGH, and their active edge is the falling edge. If these flags are set to logic 0, they are active LOW.

For detecting Video Electronic Standard Association (VESA) Power-down modes or a not connected input, the presence of the synchronization signals will be detected: it can be read via no_vsync, and no_hsync. These flags are active HIGH. The timing of the applied RGB video input can be taken from v_lines reporting the number of lines of a full frame. The horizontal timing can be calculated from h_clocks. This register shows the length of a line in numbers of reference clock periods. The reference clock is equal to the panel clock PCLK in double pixel output mode (48 bits in parallel), or it is half the panel clock PCLK in single pixel output mode (24 bits in parallel).

If one of the above mentioned flags or counters changes its value, it can be assumed that a new graphics mode has been applied. In this case an interrupt at pin $\overline{\text{INT}}$ will be generated. This port is active LOW. The reset can be cleared by writing a logic 1 to intr_clear at address 24.

For adjusting the RGB input interface to a new graphics mode, the registers of the section RGB auto adjustment are to be used. With this auto adjustment support it is possible to measure the number of blanking pixels and lines between the end of the synchronization pulses and the active video. The horizontal and vertical back porch blanking can be read out at black_pixels and black_lines. The number of active pixels or lines will be reported from non_black_pixels and non_black_lines. The first value should be used for tuning the sample clocks PLL so that this value corresponds to the number of pixels to be sampled horizontally in this specific graphics mode. To distinguish between blanking and active video ref_colour is used. If the sample values of all three colour components are below this value the pixel is treated as a blanking pixel, otherwise it is treated as active video.

Additionally a reference pixel can be defined with ref_line and ref_pixel. The R, G, and B components of this pixel are sampled and available at ref_pixel_red, ref_pixel_green, and ref_pixel_blue. They can be used for fine tuning the external PLL in frequency and phase and for colour gain adjustment.

8.5 Memory interface and de-interlacer unit

The SAA6721E features a 64 bits wide synchronous DRAM interface. Both SDRAM and SGRAM devices can be used. There is no difference in programming when using SDRAM or SGRAM devices. The only thing that must be considered is the amount of frame buffer memory, which must be enough for the specific application.

Depending on the kind of input data stream the memory interface must be switched to YUV4: 2: 2 or YUV4: 1: 1 mode by setting yuv422_mode to logic 1 to enable 16 bits per pixel processing. If this flag is set to logic 0, 24 bits per pixel are used which is needed for RGB and YUV 4: 4: 4 processing. If not the whole bandwidth of the 64 bits wide data bus is needed, the data bus can be downsized to 48 or 32 bits. This is done with the parameter data_width, see Table 13.

Table 13 Data bus width

data_width[1 and 0]	PROGRAMMED BUS WIDTH (BITS)
0	32
1	48
2	64

Since the different timing parameters of various RAM device types are different, all important timing values are programmable and must be set-up according to the used RAM types.

To reach a high effective bandwidth all access to the external memory is organized in bursts. The larger the number of subsequent read or write accesses the higher the effective bandwidth. An effective bandwidth of 91% can be reached by doing 64 words burst accesses. The RAM devices support a maximum internal burst length of 8 words only, so 8 of these bursts must be run subsequently. This can be programmed by setting up the RAM with SDRAM_burst_length_code taken from the specification data of the SDRAM or SGRAM. The memory interface must be programmed to 64 words bursts by programming the RAM burst length SDRAM_burst_length to 8, and the number of these bursts in burst_seq_length to 8. The internal structure of the SAA6721E is optimized for 64 words bursts.

SAA6721E

8.5.1 MEMORY INTERFACE LIMITATIONS

The timing parameters of the memory access can be programmed to fulfil the timing restrictions of several SDRAM or SGRAM devices. But there are some limitations, as shown in Table 14.

TIMING SYMBOL	PARAMETER	CONDITIONS	MINIMUM VALUE (CLOCK PERIODS)
CAS latency	Column Address Strobe (CAS) latency		≥2
t _{RCD}	activate to command delay; Row Address Strobe (RAS) to CAS delay		≥2
t _{RRD}	RAS to RAS bank activity delay	$t_{RRD} \neq t_{RCD}$; proposal is $t_{RRD} = t_{RCD} + 1$	≥3
t _{RP}	RAS precharge time		≥3
t _{WR}	write recovery time		≥1
t _{RC}	RAS cycle time		≥3
SDRAM_burst_length		must be supported by SDRAM	≥2
burst_seq_length		must be an even number	≥2
t _{RSC}	Register Set Cycle (RSC) mode time	internally defined; cannot be changed	=8

Table 14 Memory interface limitations

8.5.2 INITIALIZATION OF EXTERNAL MEMORY

All SGRAM and SDRAM devices must be powered-up and initialized correctly. The SAA6721E memory interface is implemented to fulfil the INTEL PC100 SDRAM specification.

Table 15 shows the required programming steps to initialize the memory correctly.

	Table 15	Memory	initialization	programming
--	----------	--------	----------------	-------------

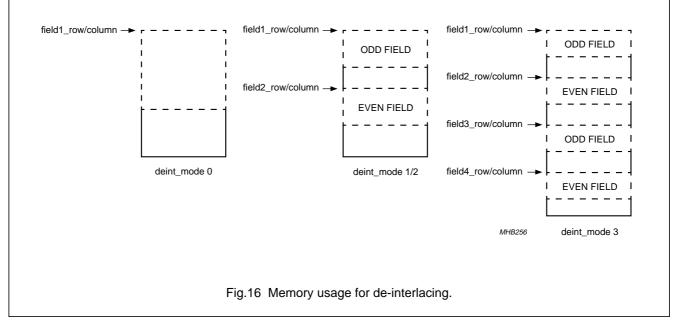
STEP ACTION		REGISTERS
1	1 SAA6721E Power-on reset	
2 set-up timing parameters		51 to 55
3 start memory initialization with setting memory_init		24
4	4 set-up all other parameters	
5 release internal memory reset together with other internal resets		24

8.5.3 FRAME AND FIELD MEMORY

The memory interface acts as a decoupling unit to adapt the different frame rates at the video input to the panel output. The external memory is also used for the de-interlacing unit which reconstructs the frames from odd and even fields in interlaced mode. The algorithm of de-interlacing can be selected by deint_mode (see Table 16).

Table 16 De-interlacing modes

deint_mode[1 and 0] ALGORITHM		MEMORY NEEDS
0 no de-interlacing and no filtering		1 frame buffer
1 de-interlacing without filtering		2 field buffers
2 de-interlacing with spatial filtering		2 field buffers
3	de-interlacing with temporal filtering	4 field buffers


De-interlacing mode 0 must be selected for non-interlaced input of RGB or YUV. Only one memory area is needed, whose start address must be programmed into field1_row and field1_column. Normally this should be logic 0 for both values. All other modes need more than one memory area. So the other field start addresses must be programmed (see Fig.16).

The memory interface addresses alternately the two banks of the SDRAM or SGRAM devices. So the memory needs for the field stores must be calculated from the following formula:

 $field_memory_size[18 \ to \ 0] = number_of_pixels \times \frac{bytes_per_pixel}{2 \times data_bus_width \ (bytes)} \ , \ where$

- number_of_pixels depends on the input resolution and whether it is an odd or even field
- bytes_per_pixel is 2 for YUV 4 : 2 : 2 and YUV 4 : 1 : 1; 3 for YUV 4 : 4 : 4 and RGB.

All memory addresses must be transformed into row and column addresses used by DRAMs. The column address is formed by the 8 LSBs (field_memory_size[7 to 0]), and the row address by all the other address bits (field_memory_size[18 to 8]). The column address must be aligned to the number of internal DRAM bursts, normally in steps of 8 (0, 8, 16, etc.).

SAA6721E

The values given in Table 17 can be used for frame resolutions up to 720×576 pixels which complies to the 625 line/50 Hz mode.

Table 17 Field start address values

FIELD	VALUE (HEX)
Field1 row/column	000/0
Field2 row/column	08D/0
Field3 row/column	100/0
Field4 row/column	180/0

8.5.4 FRAME RECOVERY

During de-interlacing and also in mode 0, output frames with the right vertical and horizontal dimensions must be generated. Since size information is not stored in the external memory, the output frame resolution must be programmed into the registers frame_length and line_length. The first value gives the vertical resolution, and the second the horizontal resolution in pixels. If no downscaler is used, these values can be taken directly from the input interface. If downscaling is activated, the size of the de-interlacer output frame must be calculated from the RGB input frame size divided by the downscaling factors.

If no valid data stream is applied at the RGB/YUV input interface, the de-interlacer is able to generate a picture by itself. This will be enabled with blank_screen at address 25. The colour of this frame is defined by blank_colour_red, blank_colour_green, and blank_colour_blue.

8.6 Scaling

Two different scaling units are implemented to perform both up and downscaling. The downscaling engine, which is located before the memory interface, and the upscaling engine after the memory interface.

8.6.1 DOWNSCALING

If the downscaler is to be used, it must be enabled by setting flags down_v_scaler_on and down_h_scaler_on. For vertical scaling a line memory buffer is needed. This memory must be switched to downscaling mode by setting down_v_scaler_mem to logic 1 because only one is available.

Setting up the desired downscaling ratios is achieved by programming the scaling increments down_v_incr, down_v_corr, and down_h_incr, down_h_corr. This must be done for both vertical and horizontal scaling.

incr =
$$\frac{number_of_output_pixels}{number_of_input_pixels} \times 64 = xx.yy$$

Where xx is equivalent to down_v_incr or down_h_incr and yy is the fraction of the result in $\frac{1}{100}$.

This is the value for programming the increment correction values down_v_corr and down_h_corr.

Example: SXGA \rightarrow XGA

Horizontal:
$$\frac{1024}{1280} \times 64 = 51.20$$

This means down_h_incr = 51 and down_h_corr = 20.

Vertical:
$$\frac{768}{1024} \times 64 = 48.00$$

This means down_v_incr = 48 and down_v_corr = 0.

8.6.2 Upscaling

The upscaler must be activated by $up_v_scaler_on$ and $up_h_scaler_on$. To use the line memory for upscaling, down_v_scaler_mem must be set to logic 0. To set-up the zoom factor, the scaling increments up_v_incr , up_v_corr , up_h_incr , and up_h_corr must be programmed.

$$incr = \frac{number_of_output_pixels}{number_of_input_pixels} \times 64 = xx.yy$$

Where xx is equivalent to up_v_incr or up_h_incr and yy is the fraction of the result in $\frac{1}{100}$.

This is the value for programming the increment correction values up_v_corr and up_h_corr.

Example: XGA \rightarrow SXGA

Horizontal: $\frac{1280}{1024} \times 64 = 80.00$

This means $up_h_incr = 80$ and $up_h_corr = 0$.

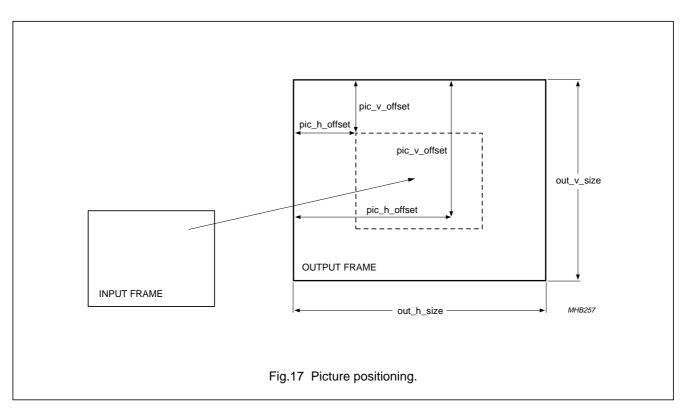
Vertical:
$$\frac{1024}{768} \times 64 = 85.33$$

This means $up_v_incr = 85$ and $up_v_corr = 33$.

SAA6721E

8.6.3 UPSCALER TRANSITION FUNCTION

A special feature of the zooming algorithm is a free programmable transition function which allows smoothing or sharpening of the transition between pixels that have been calculated.

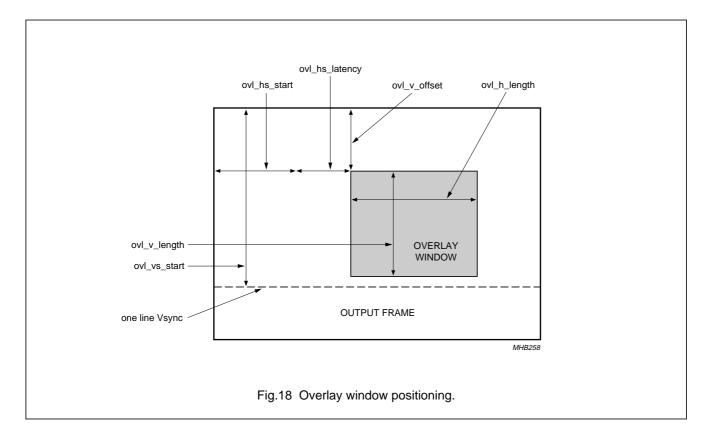

This function will be stored in a look-up table, containing 64 words of 7 bits; thus a function of 64 points with a resolution from 0 to 64 can be programmed.

Programming is performed using the registers coeff_index and coeff_value. The first register defines the point of the function, the second the value. Writing to register coeff_value increments the value of coeff_index automatically, so that the next point of the function is addressed. Additionally no register increment will be performed, so that subsequent I²C-bus write addresses always have the same register coeff_value.

8.7 Panning unit

If the scaled or non-scaled input frame does not fit into the needed output frame, whether it is to large or to small, the panning unit enlarges the input frame to the size of the output frame. This is achieved by generating a border region around the input frame, or it cuts the input frame down to the size of the output frame. The position of the top left pixel of the input frame inside the output frame must be defined with pic_v_offset and pic_h_offset. The output frame size must be programmed with out_v_size and out_h_size (see Fig.17).

If the input frame is to large only the right and bottom part will be cropped. The colour of the generated border region must be set via border_colour_red, border_colour_green, and border_colour_blue.

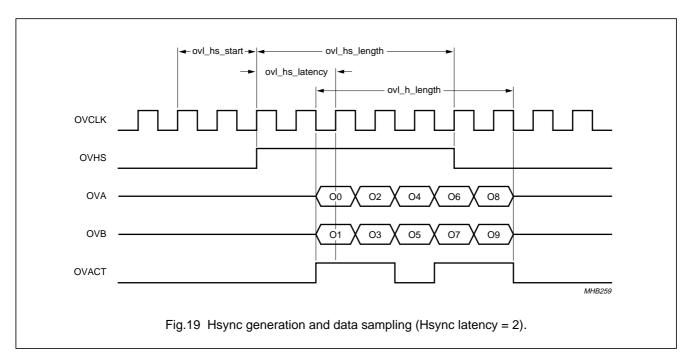

SAA6721E

8.8 Overlay port

8.8.1 OVERLAY INSERTION

If ovl_syncs_active is HIGH, the vertical and horizontal sync signals for the external OSD controller are generated. The flag ovl_insert_active switches on the insertion of the information at the overlay port provided by an external OSD controller into the data stream at the position defined by ovl_v_offset, ovl_hs_start, and ovl_hs_latency (see Fig.18).

The incoming data from ports ovI0 and ovI1 is replaced by the defined colour information and treated as a double pixel, which will be inserted into the data stream if OVACT is set. The pixel at port 0 is then the left pixel, and the pixel at port 1 is the right pixel. The sampling of the ports ovI0 and ovI1 is done on the positive edge of OVCLK in the event that sample_edge is asserted, otherwise on the falling edge of OVCLK.


SAA6721E

8.8.2 SYNC GENERATION

The start of the horizontal sync pulse is defined in ovl_hs_start and the polarity in ovl_hs_pol. The sync pulse length is defined in ovl_hs_length (see Fig.19). It is possible to generate a Hsync pulse from one clock cycle length up to longer than the horizontal overlay data. The vertical sync pulse starts at ovl_vs_start and is always one output frame line long.

8.8.3 DATA SAMPLING

Data sampling from the two ports OVA and OVB starts from the beginning of the horizontal sync pulse, but the number of clocks defined in ovl_hs_latency will decide when reading data from the overlay port will start (see Fig.19). The end of the sync pulse is not important.

8.8.4 OVCLK GATING

All of the above mentioned functions will only work during internal processing of valid video data, and not during internal blanking regions. This can give problems if the overlay window is displayed at the left border of the picture because the first pixels of a line will be processed due to the internal pipeline structure. To overcome this, the OVCLK can be gated to disable data processing by the external OSD controller during internal blanking. Clock gating is enabled by clk_gating_on.

8.9 Colour space matrix

The back-end processing of the SAA6721E and the TFT panels require RGB video data. So the built-in colour space matrix is used to convert video data from YUV space into RGB space. It can be enabled by setting csm_bypass to logic 0 (see general configuration section of the programming register Table 7), otherwise the colour space converter will be bypassed.

8.10 Colour correction

The colour correction unit can be used to perform gamma correction, change of brightness, and so on. This can be achieved by means of a look-up table. Each colour component value in an RGB pixel is used as a pointer into this table. The value from the table will replace the incoming colour.

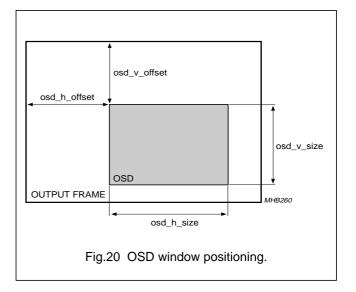
Various tables exist for R, G, and B components. Programming of a table must be performed using the programming registers 47 to 49 (see the colour correction section of the programming register Table 7). It must be decided which component table should be written to (red_prog, green_prog, blue_prog). In colour_index the start address or the first incoming colour value for programming must be written. Then subsequent writing to colour_value fill the table. At this address the I²C-bus address auto-increment stops, but the value programmed into colour_index will be incremented. It is possible to write to more than one table by enabling of programming multiple colour components.

SAA6721E

If the colour correction unit is switched to bypass mode (when colour_correction_on is not asserted), the incoming colours are used for further processing.

Writing to the colour correction table is possible during data processing.

8.11 On screen display


8.11.1 OSD GENERALS

The implemented OSD is a character based window system. It consists of a character matrix memory where all character definitions are stored, and an OSD window memory defining the OSD window's contents. The OSD window will be inserted into the video data stream if osd_active is set to logic 1. Writing to these memories can be done during data processing.

8.11.2 OSD WINDOW

The OSD window contains the character, colour and appearance information to be displayed. Such a definition exists for each character position. A character can use one of 8 different foreground and background colours. Some of these colours can be defined as transparent colours where the original picture information will be displayed instead, as alpha blended colours where a 1 : 1 or 1 : 2 alpha blending will be done between picture and OSD, or as normal colours. Transparency or alpha blending effects will be enabled or disabled for the single characters.

The size and outline of the visible OSD window can be programmed as long as the internal memory meets the needs. This memory is able to store information of 1152 characters information. The programming registers osd_v_size and osd_h_size define the OSD window size in characters. The window position inside the output frame must be defined with osd_v_offset and osd_h_offset (see Fig.20).

The OSD can be programmed to use a 24×24 character matrix, or a 12×16 matrix. The first one should be used for Kanji and the second for standard characters. The selection of the font size is done by char_size. A logic 1 selects 24×24 font, and a logic 0 the smaller 12×16 font. If the small 12×16 font is used, up to 128 different characters can be defined. Alternatively up to 42 characters of the larger 24×24 font can be used.

Table 18 gives some possible OSD settings.

SAA6721E

Table 18 OSD window size

OSD SIZE	OSD WINDOW RESOLUTION/PIXELS		
	24 × 24	12 × 16	
32 × 16	768 imes 384	384 imes 256	
40 × 20	960 × 480	480 × 320	
48 × 24	1152 imes 576	576 × 384	

The whole OSD window can be zoomed in both directions by a factor of two by setting zoom2 to logic 1. This results in pixel doubling horizontally and vertically.

Each character can be displayed using 1 of 8 different foreground and background colours. These sixteen colours can be chosen from the full true colour palette with 8 bits per colour component. The definition of these colours is in registers 144 to 191 (see OSD section of the programming register Table 7). The first 8 colour entries are used for foreground colours, and the second half is used for defining the background colours. Registers 192 to 195 (see Table 7) decide the transparency and alpha blending effects. If one of these effects is enabled for a specific character, only the colours defined as transparency or alpha blending colours will be used to generate these effects.

Each character information in the OSD window memory consists of 15 bits of information. This is given in Tables 19 and 20.

CHARACTER INFORMATION	NUMBER OF BITS
Character code	7
Appearance	2
Background colour	3
Foreground colour	3

The character code is used to address the defined characters inside the matrix memory.

The appearance bits decide about transparency and alpha blending, and background and foreground colour are indices to the colour definition registers.

APPEARANCE VALUE	EFFECT
0	OSD character colours are displayed instead of the picture colours
1	OSD character colours defined as transparency colours will be replaced by the picture colours
2	OSD character colours defined as alpha blending colours will be alpha blended 1 : 1 with the picture colours
3	OSD character colours defined as alpha blending colours will be alpha

Table 20 Colour effects

To access a certain character position its coordinates must be programmed into registers 196 (cursor_row) and 197 (cursor_column), see Table 7. After that, the colours and appearance of the character must be defined in address 198 (see Table 7). This definition is valid for all further writes to register 199 (char_code), see Table 7. After writing to this register the cursor position changes to the next right position. At line end it wraps around to the first left character in the line below. I²C-bus auto-increment is not active at register 199 (see Table 7), so that subsequent I²C-bus byte write accesses will define several characters.

blended 2 : 1 with the picture colours

8.11.3 OSD CHARACTER MATRIX

Two different font sizes are supported; 24×24 and 12×16 pixels. With the internal matrix memory 42 characters (24×24 pixels) can be defined, or 128 characters (16×12 pixels).

The definition of the characters is achieved by writing to registers 200 and 201 (see Table 7). The first register must be written to with the character code of the character to be defined. Then the bytes with the pixel pattern must be written to address 201 (see Table 7). The definition of a character is done with 3 bytes per line at 24×24 font (72 bytes per character), and with 3 bytes per 2 lines at 12×16 font (24 bytes per character), see Fig.21.

SXGA RGB to TFT graphics engine

SAA6721E

The second mode is synchronized to the input data, mainly implemented to support the SAA6721E's no memory mode. In this mode the input data is sent directly to the output interface, which must synchronize its output timing to get the same frame rate as the input. Additionally it starts generating vertical blanking and synchronization signals at pins PVS and PHS directly after releasing the internal reset.

After the programmed top blanking the output interface enlarges the last blanking line until data from the input interface reaches the output interface. Because too long lines cause counter overflows in the panels, a controlling mechanism exists which changes the length of the blanking, border and active lines according to the timing requirements of the panel and the applied graphics mode. This mode can be enabled by setting the programming register sync_mode to logic 1, otherwise the first free running mode will be selected.

The length controlling the blanking, border and active video region can be enabled by asserting blank_ctrl, border_ctrl, and active_ctrl.

The output interface also supports a Power-down mode which sets all output signals to logic 0. This will be activated by the programming flag power_down (see section general configuration Table 7).

For flicker free switching between different input modes, the output interface is able to set all data outputs to the panel to logic 0, resulting in a black picture. Even if during programming and internal reset no synchronization pulses for the panel are generated and the panel loses the last picture information, the panel still displays black colour, because this is its Idle state. To switch the output interface into this mode blank_tft must be set.

To enable the panel interface it must be enabled with out_if_enable. The interface supports single pixel (24 bits) and double pixel (48 bits) output in parallel. The selection between these two modes must be done with single_pixel_output. The active clock edge at PCLK can also be selected by clk_pol.

8.12 Temporal dithering (frame rate controller)

The SAA6721E is able to display true colour (8 bits per colour) on high colour displays (6 bits per colour). The algorithm used is temporal dithering. This feature can be enabled by setting frc_on to logic 1 in the general configuration register block (see Table 7).

8.13 Output interface

8.13.1 GENERAL

The output interface is the interface between the SAA6721E and the TFT panel. Its timing parameters can be programmed in a wide range to support panels of many different manufacturers.

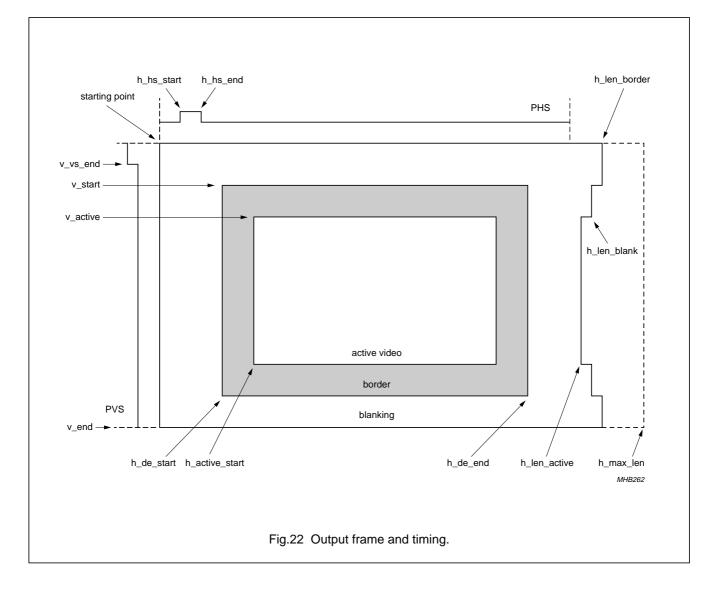
The output interface can operate in two different modes.

The first mode is the free running mode which is adapted to the memory mode of the SAA6721E. In this mode the output is independent from the input at the RGB/YUV input interface. So the output frame generation can start directly after releasing the internal reset. For getting a high frame rate the output timing can be programmed to satisfy the minimum timing requirements of the panel.

SAA6721E

8.13.2 FRAME GENERATION

The output frame contains three main regions:


- Blanking region
- Border region
- Active video region.

The blanking region contains all front and back porch as well as the synchronization intervals. The border region is visible on the panel and is used for positioning the active video region inside this visible area. To ensure a great flexibility in the 'sync to input' mode there are 3 different horizontal length counters (h_len_blank, h_len_border, h_len_active) with independent length control (see Fig.22).

A maximum value must be programmed in h_max_len which is the upper limit for line lengthening during activated control mechanism. In free running mode all 3 counters should be programmed with the same minimum values.

If no border is needed, because the active video region covers the visible area of the panel, the active video length counters should point to the same positions as the border length counters. Then the active video length counters have a higher priority.

The border colour inserted by the output interface is the same as the blank colour in the memory interface; blank_colour_red, blank_colour_green, blank_colour_blue.

SAA6721E

8.13.3 TIMING REFERENCE SIGNALS

The SAA6721E supports three timing reference signals to drive the panels: PVS (vertical synchronization pulse), PHS (horizontal synchronization pulse) and PDE (data qualifier). The polarity of these signals is programmable. To program high polarity the three programming registers (vsync_pol, hsync_pol, de_pol) must be set to logic 1. Sometimes panels require that no data qualifier signals must be active during vertical synchronization. The generation of PDE pulses during active PVS can be switched off by de-asserting sync_de_inact. The position and length of the horizontal synchronization pulses in an output line must be programmed with h_hs_start and h_hs_end. The vertical synchronization pulse starts at line 0 and ends at v_vs_end. The horizontal start offset in line 0 can be set-up with h_vs_start and the horizontal end offset with h_vs_end.

The data qualifier PDE frames the display region that should be visible on the panel horizontally. It will be asserted at h_de_start and it will be de-asserted at h_de_end. It frames both horizontal border and active video region.

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins are connected together and all supply pins are connected together.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DDD}	digital supply voltage		-0.5	+4.6	V
V _{DD(PLL)}	PLL supply voltage		-0.5	+4.6	V
V _n	voltage at digital inputs and outputs	outputs in 3-state	-0.5	+5.5	V
	voltage at digital output	outputs active	-0.5	V _{DDD} + 0.5	V
ΔV_{SS}	voltage difference between $V_{SS(PLL)}$ and $V_{SS(D)}$		_	100	mV
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		0	70	°C
T _{amb(bias)}	operating bias ambient temperature		-10	+70	°C
V _{es}	electrostatic handling voltage for all pins	note 1	-2	+2	kV

Note

1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k Ω resistor.

SAA6721E

10 CHARACTERISTICS

 V_{DDD} = 3.0 to 3.6 V; $V_{DD(PLL)}$ = 3.1 to 3.5 V; T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies				ł		
V _{DDD}	digital supply voltage		3.0	3.3	3.6	V
I _{DDD}	digital supply current		_	600	tbf	mA
PD	digital power dissipation		_	2	-	W
V _{DD(PLL)}	PLL supply voltage		3.1	3.3	3.5	V
I _{DD(PLL)}	PLL supply current		_	tbf	tbf	mA
P _{PLL}	PLL power dissipation		_	tbf	-	W
P _{PLL + D}	digital plus PLL power dissipation		_	2	-	W
Digital input	s					
V _{IL(SCL, SDA)}	LOW-level input voltage at pins SDA and SCL		-0.5	-	+0.3V _{DDD}	V
$V_{\text{IH}(\text{SCL}, \text{SDA})}$	HIGH-level input voltage at pins SDA and SCL		0.7V _{DDD}	_	V _{DDD} + 0.5	V
V _{IL(LVTTL)}	LOW-level input voltage at LVTTL pins		-0.5	_	+0.8	V
V _{IH(LVTTL)}	HIGH-level input voltage at LVTTL pins		2.0	-	V _{DDD} + 0.5	V
I _{LI}	input leakage current		_	-	10	μA
Ci	input capacitance	outputs at 3-state	_	-	8	pF
	input capacitance at all other inputs		_	-	5	pF
Digital outp	uts					
V _{OL(SDA)}	LOW-level output voltage	SDA at 3 mA sink current	_	-	0.4	V
	at pin SDA	SDA at 6 mA sink current	_	-	0.6	V
V _{OL(CMOS)}	LOW-level output voltage at CMOS pins		_	_	0.4	V
V _{OH(CMOS)}	HIGH-level output voltage at CMOS pins		2.4	-	-	V
V _{OL(LVTTL)}	LOW-level output voltage at LVTTL pins		_	_	0.4	V
V _{OH(LVTTL)}	HIGH-level output voltage at LVTTL pins		0.85V _{DDD}	_	-	V

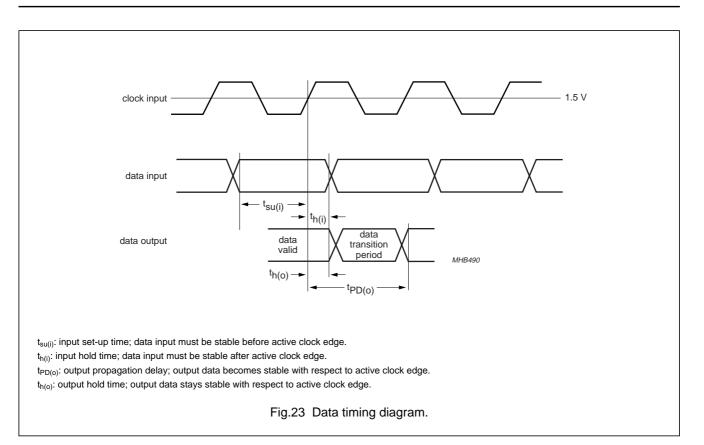
SAA6721E

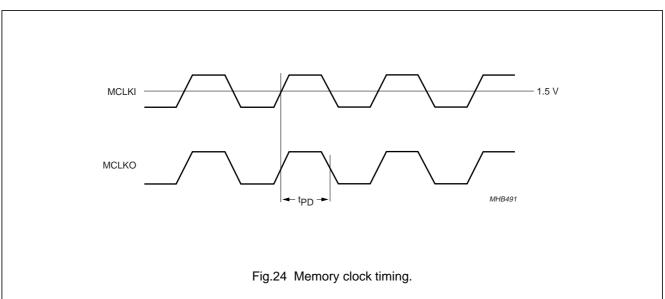
11 TIMING CHARACTERISTICS

 V_{DDD} = 3.0 to 3.6 V; $V_{DD(PLL)}$ = 3.1 to 3.5 V; T_{amb} = 25 °C; see Fig.23; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
System cloo	ck input at pin CLK		1	I.	1	_
f _{CLK}	clock frequency		24	-	70	MHz
δ	duty factor		40	50	60	%
RGB/YUV s	ample clock input at pin VCLK	•				•
f _{VCLK}	clock frequency	single ADC mode	25	-	150	MHz
		double ADC mode	12.5	_	75	MHz
δ	duty factor		40	50	60	%
	s at pins VVS, VHS, VPA7 to VP VPF0 with respect to signal at		o VPC0, V	PD7 to VP	D0, VPE7	to VPE0,
t _{su}	set-up time		-4.0	-	-	ns
t _h	hold time		7.0	_	_	ns
Output sign	als at pins CLAMP and GAINC v	with respect to signal at pi	n VCLK; n	ote 1		
t _h	hold time		8	-	-	ns
t _{PD}	propagation delay		-	-	13	ns
Output cloc	k to panel at pin PCLK		1	1	4	
f _{PCLK}	clock frequency		_	_	80	MHz
δ	duty factor		40	50	60	%
• •	als at pins PVS, PHS, PDE, PAR G0, and PBB7 to PBB0 with res			PAB0, PBR	7 to PBR),
t _h	hold time					
	pins PVS, PHS and PDE		-0.5	-	-	ns
	all other pins		0	-	-	ns
t _{PD}	propagation delay					
	pins PVS, PHS and PDE		-	-	1	ns
	all other pins		-	-	3.5	ns
Overlay por	t clock output at pin OVCLK				_	
f _{OVCLK}	clock frequency				80	MHz
δ	duty factor		40	50	60	%
Input signal	s at pins OVACT, OVA2 to OVA0	, and OVB2 to OVB0 with	respect to	signal at p	oin OVCL	ĸ
t _{su(i)}	set-up time		6.0	-	-	ns
t _{h(i)}	hold time		-3.0	_	_	ns
Output sign	als at pins OVVS and OVHS wit	h respect to signal at pin C	OVCLK; no	te 1		
t _{h(o)}	hold time		-1.0	-	-	ns
t _{PD(o)}	propagation delay		-	-	1.0	ns

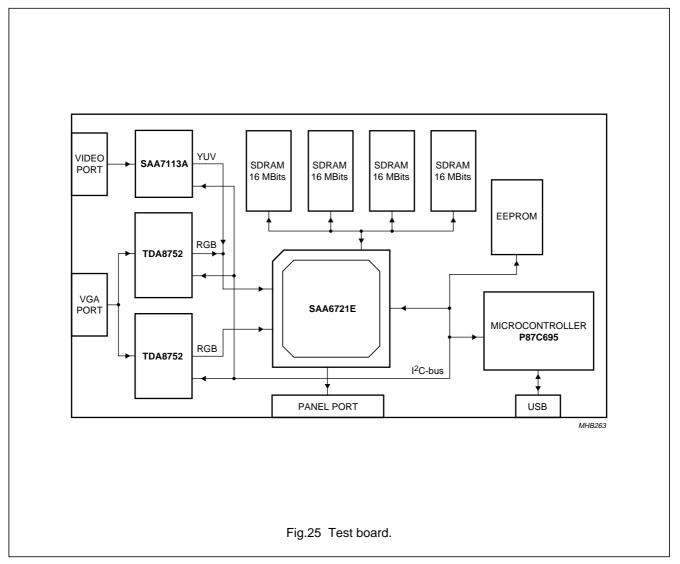
SAA6721E


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Memory por	t clock output; pin MCLKO			-	- 1	
f _{MCLKO}	frequency		-	-	125	MHz
CL	load capacitance		-	-	20	pF
δ	duty factor		40	50	60	%
Input signal	at pin MCLKI with respect to sig	jnal at pin MCLKO ; see F	ig.24	·		•
f _{MCLKI}	frequency		-	-	125	MHz
δ	duty factor		40	50	60	%
t _{PD}	propagation delay		6.5		10	ns
Input signal	s at pins DQ63 to DQ0 with resp	ect to the negative edge	of signal a	t pin MCL	ко	
t _{su}	set-up time		6.0	-	-	ns
t _h	hold time		-3.0	-	-	ns
	als at pins DQ63 to DQ0, RAS, C MCLKO; note 3	AS, WE, A10 to A0, and I	BA with re	spect to th	e negative	edge of
t _h	hold time					
	pins DQ63 to DQ0		-1	_	_	ns
	pins \overline{RAS} , \overline{CAS} , \overline{WE} , A10 to A0, and BA		0	-	-	ns
t _{PD}	propagation delay					
	pins DQ63 to DQ0		-	-	1.0	ns
	pins \overline{RAS} , \overline{CAS} , \overline{WE} , A10 to A0, and BA		-	-	1.0	ns


Notes

1. $C_L = 15 pF$, $I_o = 2 mA$ and $R_L = 2 k\Omega$.

2. $C_L = 15 pF$, $I_o = 4 mA$ and $R_L = 2 k\Omega$.


3. $C_L = 10 pF$, $I_o = 4 mA$ and $R_L = 2 k\Omega$.

SAA6721E

12 APPLICATION INFORMATION

13 PACKAGE OUTLINE

BGA292: plastic ball grid array package; 292 balls; body 27 x 27 x 1.75 mm SOT489-1 D D_1 ball A1 corner E₁ E detail X **k** A Z_D е ⊕øw@ // v A → - 🛛 У ΖE w ٧ U Т R e P 0 0 00 Ν õ 0 0-0 00 М 0 0 L ĸ $\overline{\cap}$ ō $\overline{\mathbf{0}}$ J 00 00 0000 0000 н 000000 G F 0000 õ õõ 0 Е 0000 D õ õõõ bbbb С в Α 2 4 6 8 10 12 14 16 18 20 3 5 7 9 11 13 15 17 19 1 Х 0 10 20 mm scale DIMENSIONS (mm are the original dimensions) Α D₁ UNIT Е **A**₁ b D E₁ е k v w z_D z_E Α2 у max. 0.70 1.85 0.90 27.2 24.7 27.2 24.7 4.0 1.84 1.84 0.15 mm 2.46 1.27 0.35 0.3 0.50 1.62 0.60 26.8 24.0 26.8 24.0 3.9 1.04 1.04 REFERENCES OUTLINE EUROPEAN **ISSUE DATE** VERSION PROJECTION IEC JEDEC EIAJ]⊕ SOT489-1 ----98-05-06

SAA6721E

14 SOLDERING

14.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

14.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

14.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

14.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300 \,^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ C.$

SAA6721E

14.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD		
PACKAGE	WAVE	REFLOW ⁽¹⁾	
BGA, SQFP	not suitable	suitable	
HLQFP, HSQFP, HSOP, SMS	not suitable ⁽²⁾	suitable	
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable	

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the *"Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods"*.
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

SAA6721E

15 DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values m of the device at these or at a	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or hay cause permanent damage to the device. These are stress ratings only and operation ny other conditions above those given in the Characteristics sections of the specification miting values for extended periods may affect device reliability.
Application information	

Where application information is given, it is advisory and does not form part of the specification.

16 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale

17 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

SAA6721E

NOTES

SAA6721E

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381. Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14 Tel. +353 1 7640 000. Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 02 67 52 2531, Fax. +39 02 67 52 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria

Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398

South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,

Tel. +55 11 821 2333, Fax. +55 11 821 2382 **Spain:** Balmes 22, 08007 BARCELONA,

Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 **Switzerland:** Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 62 5344, Fax.+381 11 63 5777

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1999

SCA 64

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

545004/750/01/pp72

Date of release: 1999 May 11

Document order number: 9397 750 04392

Let's make things better.

Philips

