N**ational** Semiconductor

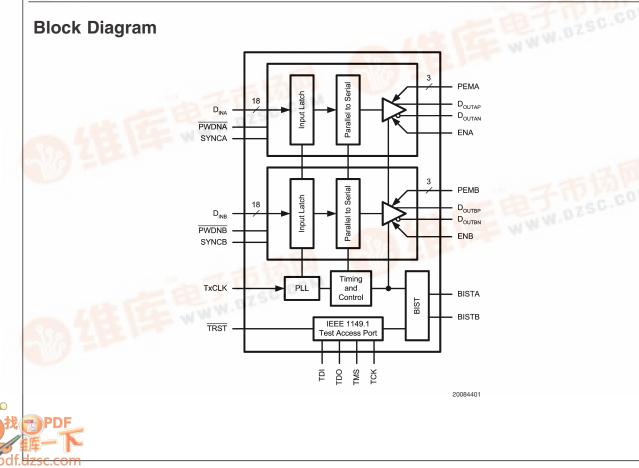
捷多邦,专业PCB打样工厂,24小时加急出货

November 2004

SCAN921821 - Dual 18-Bit Serializer with Pre-emphasis,

1149.1 (JTAG), and At-Speed BIS

SCAN921821 Dual 18-Bit Serializer with Pre-emphasis, IEEE 1149.1 (JTAG), and At-Speed BIST **General Description**


The SCAN921821 is a dual channel 18-bit serializer featuring signal conditioning, boundary SCAN, and at-speed BIST. Each serializer block transforms an 18-bit parallel LVCMOS/ LVTTL data bus into a single Bus LVDS data stream with embedded clock. This single serial data stream with embedded clock simplifies PCB design and reduces PCB cost by narrowing data paths that in turn reduce PCB size and layers. The single serial data stream also reduces cable size, the number of connectors, and eliminates clock-to-data and data-to-data skew.

Each channel also has an 8-level selectable pre-emphasis feature that significantly extends performance over lossy interconnect. Each channel also has its own powerdown pin that saves power by reducing supply current when the channel is not being used.

The SCAN921821 also incorporates advanced testability features including IEEE 1149.1 and at-speed BIST PRBS pattern generation to facilitate verification of board and link integrity

Features

- 15-66 MHz Dual 18:1 Serializer with 2.376 Gbps total throughput
- 8-level selectable pre-emphasis on each channel drives lossy cables and backplanes
- >15kV HBM ESD protection on Bus LVDS I/O pins
- Robust BLVDS serial data transmission with embedded clock for exceptional noise immunity and low EMI
- Power saving control pin for each channel
- IEEE 1149.1 "JTAG" Compliant
- At-Speed BIST PRBS generation
- No external coding required
- Internal PLL, no external PLL components required
- Single +3.3V power supply
- Low power: 260 mW (typ) per channel at 66 MHz with PRBS-15 pattern
- Single 3.3 V supply
- Fabricated with advanced CMOS process technology
- Industrial -40 to +85°C temperature range
- Compact 100-ball FBGA package

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{DD}) -0.3V to +4V					
Supply Voltage (V _{DD})					
Ramp Rate	< 30 V/ms				
LVCMOS/LVTTL Input					
Voltage	–0.3V to (V _{DD} +0.3V)				
LVCMOS/LVTTL Output					
Voltage	–0.3V to (V _{DD} +0.3V)				
Bus LVDS Driver Output					
Voltage	-0.3V to +3.9V				
Bus LVDS Output Short					
Circuit Duration	10ms				
Junction Temperature	+150°C				
Storage Temperature	–65°C to +150°C				
Lead Temperature					
(Soldering, 4 seconds)	+220°C				
Maximum Package Power	Dissipation at 25°C				
FBGA-100	3.57 W				

Derating Above 25°C 28.57 mW				
Thermal resistance θ_{JA} 35°C/V				
θ_{JC}	11.1°C/W			
ESD Rating				
HBM, 1.5 KΩ, 100 pF				
All pins	>8 kV			
Bus LVDS pins	>15 kV			
MM, 0Ω, 200 pF	>1200 V			
CDM	>2 kV			

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V_{DD})	3.15	3.3	3.45	V
Operating Free Air Temperature (T _A)	-40	+25	+85	°C
Clock Rate	15		66	MHz
Supply Noise			100	mV p-p

DC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VCMOS/	LVTTL Input DC Specifica	ations			•	
V _{IH}	High Level Input Voltage		2.0		V _{DD}	V
V_{IL}	Low Level Input Voltage		GND		0.8	v
V_{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}$	-1.5	-0.7		V
I _{INH}	High Level Input Current	$V_{IN} = V_{DD} = V_{DDMAX}$	-20	±2	+20	μA
I _{INL}	Low Level Output Current	$V_{IN} = V_{SS}, V_{DD} = V_{DDMAX}$	-10	±2	+10	μA
149.1 (JT	AG) DC Specifications					•
V _{IH}	High Level Input Voltage		2.0		V _{DD}	V
V _{IL}	Low Level Input Voltage		GND		0.8	v
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA	-1.5	-0.7		V
I _{INH}	High Level Input Current	$V_{IN} = V_{DD} = V_{DDMAX}$	-20		+20	μA
I _{INL}	Low Level Output Current	$V_{IN} = V_{SS}, V_{DD} = V_{DDMAX}$	-200		+200	μA
V _{OH}	High Level Output Voltage	$I_{OH} = -9 \text{ mA}$	2.3		V _{DD}	mV
V _{OL}	Low Level Output Voltage	I _{OL} = 9 mA	GND		0.5	mV
I _{OS}	Output Short Circuit Current	V _{OUT} = 0 V	-100	-80	-50	mA
i	Output Tri-state	$\overline{\text{PWDN}}$ or EN = 0.8V, V _{OUT} = 0 V	-10		+10	μA
l _{oz}	Current	PWDN or EN = 0.8V, V _{OUT} = VDD	-30		+30	μA

www.national.com

Symbol	Parameter	Con	Min	Тур	Max	Units	
-						I	
us LVDS	Output DC Specificati	ons				1	
V _{OD}	Output Differential Voltage (DO+) - (DO-)	Figure 10	0, R _L = 100Ω	450	500	550	mV
ΔV_{OD}	Output Differential Voltage Unbalance				2	15	mV
Vos	Offset Voltage			1.05	1.2	1.25	V
ΔV_{OS}	Offset Voltage Unbalance				2.7	15	mV
		Pre-Empha	asis Level = 1	1.10	1.24	1.35	
		Pre-Empha	asis Level = 2	1.35	1.47	1.55	
	Pre-Emphasis Output	Pre-Empha	asis Level = 3	1.55	1.70	1.80	
Q _{POV}	Voltage Ratio	Pre-Empha	asis Level = 4	1.80	1.91	1.95	
	V _{ODPRE} / V _{OD}	Pre-Empha	asis Level = 5	1.95	2.08	2.20	
		Pre-Empha	2.10	2.21	2.35	1	
		Pre-Emphasis Level =		2.15	2.30	2.50	
I _{OS}	Output Short Circuit Current	DO = 0V, $Din = H$,	-10	-25	-75	mA	
1	TRI-STATE Output	\overline{PWDN} or $EN = 0.8$	3V, DO = 0V (Note 4)	-10	± 1	+10	μA
l _{oz}	Current	\overline{PWDN} or $EN = 0.8$	-55	± 6	+55	μA	
ower Su	pply Current (DVDD, P\	DD and AVDD Pins)					
	Total Supply Current		f = 66 MHz, PRBS-15 Pattern		160	225	mA
I _{DD}	(includes load current)	$C_L = 15pF,$ $R_L = 100 \Omega$	f = 66 MHz, Worst Case Pattern (Checker-Board Pattern)		180		mA
	Total Supply Current		f = 66 MHz, PRBS-15 Pattern		240		mA
I _{DDP}	with Pre-Emphasis (includes load current)	$C_L = 15 pF,$ $R_L = 100 \Omega$	f = 66 MHz, Worst Case Pattern (Checker-Board Pattern)		280	325	mA
I _{DDX}	Supply Current Powerdown	$\overline{PWDN} = 0.$	8V, EN = 0.8V		1.0	3.0	mA
	ng Requiremen		anges unless otherwise sp	ecified.			
Symbol	Parameter		ditions	Min	Тур	Max	Units
t _{TCP}	Transmit Clock Period			15.2	Т	66.7	ns
t _{TCIH}	Transmit Clock High Time			0.4T	0.5T	0.6T	ns
t _{TCIL}	Transmit Clock Low Time			0.4T	0.5T	0.6T	ns
					1	1	

ns

ps (RMS)

3

6

80

(Note 5)

TCLK Input

Transition Time TCLK Input Jitter

 $t_{\rm CLKT}$

t_{JIT}

AC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Serializer	AC Specifications					
t _{LLHT}	Bus LVDS Low-to-High Transition Time	<i>Figure 2</i> , (Note 5) R _L = 100Ω,		0.3	0.4	ns
t _{LHLT}	Bus LVDS High-to-Low Transition Time	$C_L = 10022$, $C_L = 10$ pF to GND		0.3	0.4	ns
t _{DIS}	DIN (0-17) Setup to TCLK	Figure 4, (Note 5) $R_{L} = 100\Omega$,	1.9			ns
t _{DIH}	DIN (0-17) Hold from TCLK	$C_L = 10022$, $C_L = 10$ pF to GND	0.6			ns
t _{HZD}	DO ± HIGH to TRI-STATE Delay			3.9	10	ns
t _{LZD}	DO ± LOW to TRI-STATE Delay	Figure 5 $R_{\rm L} = 100\Omega$,		3.5	10	ns
t _{zhD}	DO ± TRI-STATE to HIGH Delay	$C_L=10pF$ to GND		3.2	10	ns
t _{ZLD}	DO ± TRI-STATE to LOW Delay			2.4	10	ns
t _{SPW}	SYNC Pulse Width	Figure 7, $R_L = 100\Omega$	5*t _{TCP}		6*t _{TCP}	ns
t _{PLD}	Serializer PLL Lock Time	Figure 6, $R_L = 100\Omega$	510*t _{TCP}		1024*t _{TCP}	ns
t _{SD}	Serializer Delay	Figure 8 , $R_L = 100\Omega$	t _{TCP} + 2.5	t _{TCP} + 4.5	t _{TCP} + 6.5	ns
t _{sкcc}	Channel to Channel Skew			70		ps
t _{RJIT}	Random Jitter	Room Temperature, V _{DD} = 3.3V, 66 MHz		6.1		ps (RMS
t	Deterministic Jitter	15 MHz	-390		320	ps
t _{DJIT}	Figure 9, (Note 5)	66 MHz	-60		30	ps
149.1 (JT	AG) AC Specifications					
f _{MAX}	Maximum TCK Clock Frequency		25			MHz
t _s	TDI or TMS Setup to TCK, H or L		2.4			ns
t _H	TDI or TMS Hold from TCK, H or L	$C_L = 15 pF$,	2.8			ns
t _{W1}	TCK Pulse Width, H or L	$R_L = 500 \ \Omega$	10			ns
t _{W2}	TRST Pulse Width, L		10			ns
t _{REC}	Recovery Time, TRST to TCK		2			ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Typical values are given for V_{CC} = 3.3V and T_A = +25 $^{\circ}$ C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground except VOD, \triangle VOD, VTH and VTL which are differential voltages.

Note 4: I_{OZ} is measured at each pin. The DOUT pin not under test is floated to isolate the TRI-STATE current flow.

Note 5: Guaranteed by Design (GBD) using statistical analysis.

AC Timing Diagrams and Test Circuits

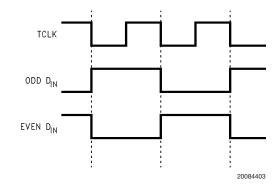
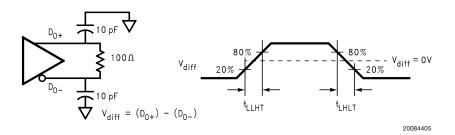
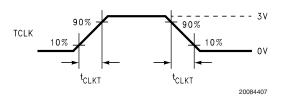
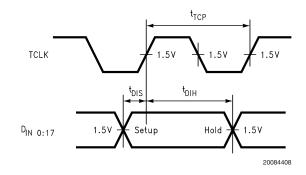
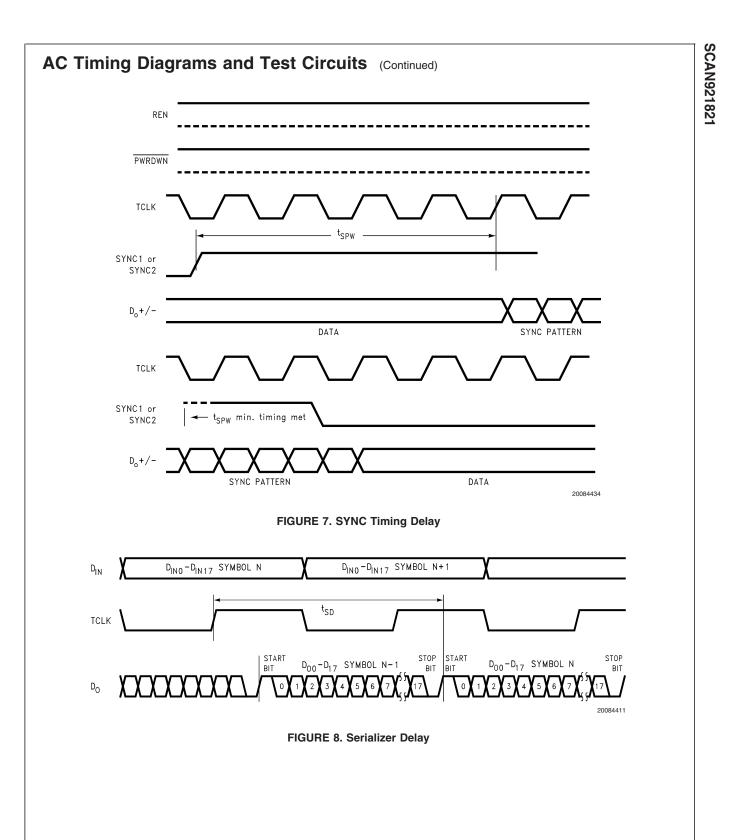
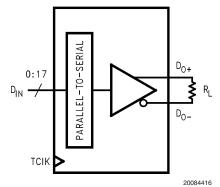




FIGURE 1. "Worst Case" Serializer IDD Test Pattern

FIGURE 2. Serializer Bus LVDS Distributed Output Load and Transition Times

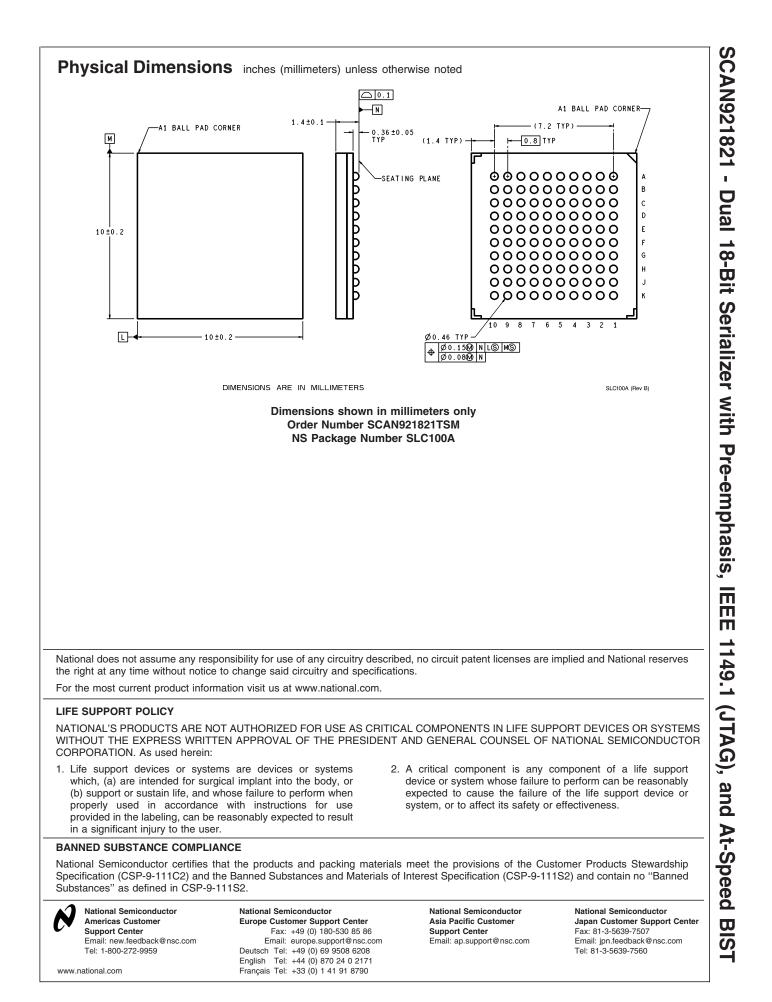




FIGURE 4. Serializer Setup/Hold Times

AC Timing Diagrams and Test Circuits (Continued) Parasitic package and trace capacitance D_{O+} 50Ω +1.2V 50Ω D_{O-} DEN 3٧ DEN 1.5V 1.5V 0٧ t_{HZD} t_{ZHD} V_{OH} 50% 50% - 1.1V - t_{LZD} t_{ZLD} $D_{0\pm}$ 1.1V 50% 50% $\rm V_{OL}$ 20084409 FIGURE 5. Serializer TRI-STATE Test Circuit and Timing PWRDN 2.0V 0.87 t_{HZD} or t_{LZD} TCLK t_{ZHD} or t_{PLD} t_{ZLD} TRI-STATE TRI-STATE D_{0±} Output Active 20084410 FIGURE 6. Serializer PLL Lock Time, and PWRDN TRI-STATE Delays

AC Timing Diagrams and Test Circuits (Continued) Ideal Bit Start Ideal Bit Stop t_{DJIT} Max. t_{DJIT} Min. t_{DJIT} Typ. t_{DJIT} Max. \mathbf{t}_{DJIT} Min. \mathbf{t}_{DJIT} Typ. t_{BIT} . Negative Positive Negative Positive Deterministic Deterministic Deterministic Deterministic Jitter Jitter Jitter Jitter + _ + _ 0 0 20084429 FIGURE 9. Deterministic Jitter and Ideal Bit Position

 $\label{eq:VOD} V_{OD} = (DO^+) - (DO^-).$ Differential output signal is shown as (DO+)-(DO-), device in Data Transfer mode.


Pre-emphasis Truth Table

PEM LEVEL	PEM2	PEM1	PEM0
0	L	L	L
1	L	L	Н
2	L	Н	L
3	L	Н	н
4	Н	L	L
5	Н	L	Н
6	Н	Н	L
7	Н	Н	Н

Pin Diagra	ım									
-					1821TVV View					
A1	A2	A3	A4	A5	A6	A7	A8	(A9)	(A10)	
BISTB	PV _{SS}	DOUTBN	AV _{DD}	ENB	AV _{DD}	DOUTAN	DOUTAP	AV _{DD}	ENA	
B1	B2	B3	B4	B5	B6	B7	B8	B9	BI0	
DINB16	SYNCB	AV _{DD}	DOUTBP	AV _{DD}	PEMB1	AV _{SS}	PEMB0	PEMA1	BISTA	
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	
DINB14	DV _{DD}	DV _{SS}	AV _{SS}	AV _{SS}	AV _{SS}	AV _{DD}	PEMA2	SYNCA	DINA16	
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	
DINB13	DINB12	DINB17	DV _{DD}	PV _{DD}	PEMA0	AV _{SS}	DINA17	DINA15	DINA13	
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	
DINB11	DINB9	DINB15	DV _{SS}	DINB8	PEMB2	DV _{SS}	DINA14	DINA12	DINA9	
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	
DINB10	DINB7	DINB5	DV _{SS}	PV _{DD}	DINA11	DV _{SS}	DINA4	DINA10	DINA8	
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	
DINB6	DINB4	DINB2	DV _{SS}	DV _{DD}	DV _{DD}	DINA1	DINA2	DINA7	DINA6	
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	
DINB3	DINB1	TxCLK	DV _{SS}	TCK	PV _{DD}	PV _{SS}	DV _{SS}	DINA0	DINA5	
J1 DINB0	J2 PWDNA	J3 DV _{DD}	J4 TRST	$\bigcup_{PV_{DD}}$	J6 PV _{SS}	J7 PV _{DD}	J8 NC	J9 DV _{DD}	J10 DINA3	
K1	K2	K3	K4	K5	K6	K7	K8	K9	K10	
DV _{SS}	TDI	TMS	DV _{SS}	TDO	DV _{DD}	PV _{SS}	PV _{SS}	PWDNB	DV _{DD}	
									20084402	

Pin Descriptions

Pin Name	Pin Count	I/O, Type	Description				
DATA PINS	1						
DINA0-17	18		Transmitter inputs. There is a pull-down circuitry on each of these pins which are				
DINB0-17	18	I, LVCMOS	active if respective PWDNA or PWDNB pin is pulled high.				
DOUTAP	1						
DOUTAN	1						
DOUTBP	1	O,BLVDS	Inverting and non-inverting differential transmitter outputs.				
DOUTAN	1						
	ONTROL PINS	1					
TxCLK	1	I, LVCMOS	Transmitter reference clock. Used to strobe data at the inputs and to drive the transmitter PLL. There is a pull-up circuitry on this pin which is always active.				
ENA	1		Transmitter outputs enable pins. There is a pull-down circuitry on each of these pins that are active if corresponding PWDNA or PWDNB pin is pulled high.				
ENB	1	I, LVCMOS	When these pins are set to LOW, the transmitter outputs will be disabled. The PLL will remain locked.				
PWDNA	1		Stand-by mode pins. There is a pull-down circuitry on each of these pins that ar				
PWDNB	1	I, LVCMOS	always active. When these pins are set to LOW, the transmitter will be put in low power mode and the PLL will lose lock.				
SYNCA	1	I, LVCMOS	Transmitter synchronization pins. There is a pull-down circuitry on each of these pins that are active if corresponding PWDNA or PWDNB pin is pulled high.				
SYNCB	1		When these pins are set to HIGH, the transmitter will ignore incoming data and send SYNC patterns to provide a locking reference to receiver(s).				
PRE-EMPHAS	IS PINS		·				
PEMA0-2	3		8-level pre-emphasis selection pins. There is a pull-down circuitry on each of				
PEMB0-2	3	I, LVCMOS	these pins which are active if corresponding PWDNA or PWDNB pin is pulled high.				
JTAG PINS	1		5				
TDI	1	I, LVCMOS	Test Data Input to support IEEE 1149.1. There is a pull-up circuitry on this pin which is always active.				
TDO	1	O, LVCMOS	Test Data Output to support IEEE 1149.1.				
TMS	1	I, LVCMOS	Test Mode Select Input to support IEEE 1149.1. There is a pull-up circuitry on this pin which is always active.				
ТСК	1	I, LVCMOS	Test Clock Input to support IEEE 1149.1. There is no failsafe circuitry on this pil				
TRST	1	I, LVCMOS	Test Reset Input to support IEEE 1149.1. There is a pull-up circuitry on this pin which is always active.				
BIST PINS		•					
BISTA	1	I, LVCMOS	BIST selection pins. These pins select which transmitter will generate a PRBS				
BISTB	1	-	like data. There is a pull-down circuitry on these pins which are active if corresponding PWDNA or PWDNB pin is pulled high.				
POWER PINS							
AVDD	6	I, POWER	Power Supply for the LVDS circuitry.				
DVDD	8	I, POWER	Power Supply for the digital circuitry.				
PVDD	5	I, POWER	Power Supply for the PLL and BG circuitry.				
AVSS	5	I, POWER	Ground reference for the LVDS circuitry.				
DVSS	10	I, POWER	Ground reference for the digital circuitry.				
PVSS	5	I, POWER	Ground reference for the PLL and BG circuitry.				
OTHER PINS			•				
NC	1	N/A	Not connected.				

