捷多邦,专业PCB打样工厂,24小时加急出货

April 2005

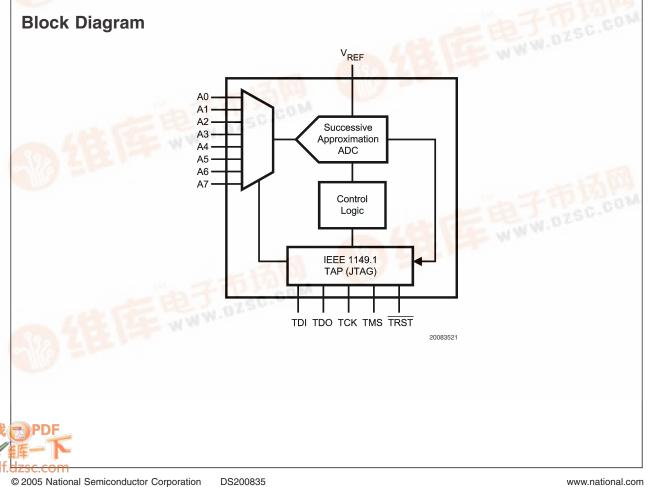
SCANSTA476 Eight Input IEEE 1149.1 Analog Voltage Monitor

General Description

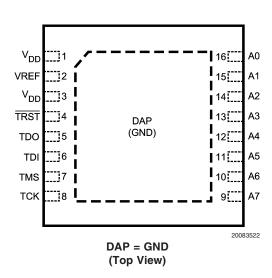
The SCANSTA476 is a low power, Analog Voltage Monitor used for sampling or monitoring up to 8 analog/mixed-signal input channels. Analog Voltage Monitors are valuable during product development, environmental test, production, and field service for verifying and monitoring power supply and reference voltages. In a supervisory role, the 'STA476 is useful for card or system-level health monitoring and prognostics applications.

Instead of requiring an external microcontroller with a GPIO interface, the 'STA476 features a common IEEE 1149.1 (JTAG) interface to select the analog input, initiate a measurement, and access the results - further extending the capabilities of an existing JTAG infrastructure.

The SCANSTA476 uses the V_{REF} input as a reference. This enables the SCANSTA476 to operate with a full-scale input range of 0 to V_{DD}, which can range from +2.7V to +5.5V.


The SCANSTA476 is packaged in a 16-lead non-pullback LLP package that provides an extremely small footprint for applications where space is a critical consideration. This product operates over the industrial temperature range of -40° C to $+85^{\circ}$ C.

Features


- Eight selectable Analog input channels
- Analog full-scale input range 0V to V_{DD}
- Typical accuracy of 2 mV at maximum V_{DD}
- Very low power operation
- Small package footprint in 16-lead, 5 x 5 x 0.8 mm LLP
- Single +2.7V to +5.5V supply operation
- IEEE 1149.1 (JTAG) compliant interface

Applications

- Measurement of Point Voltages
- Real-time Signal Monitoring
- System Health Monitoring and Prognostics
- Debug, Environmental Test, Production Test, Field Service
- Supplement In-Circuit Tester (ICT) access
- Vital in Servers, Computing, Telecommunication and Industrial equipment
- Essential in Medical, Data Storage, and Networking equipment

Connection Diagram

Pin Descriptions

Pin No.	Symbol	Description			
ANALOG I/O					
16	A0	Analog input 0. This signal can range from 0V to V _{REF} .			
15	A1	Analog input 1. This signal can range from 0V to V _{REF} .			
14	A2	Analog input 2. This signal can range from 0V to V _{REF} .			
13	A3	Analog input 3. This signal can range from 0V to V _{REF} .			
12	A4	Analog input 4. This signal can range from 0V to V _{REF} .			
11	A5	Analog input 5. This signal can range from 0V to V _{BEF} .			
10	A6	Analog input 6. This signal can range from 0V to V _{REF} .			
9	A7	Analog input 7. This signal can range from 0V to V _{REF} .			
2	V _{REF}	Analog reference voltage input. V_{REF} must be $\leq V_{DD}$. This pin should be connected to a qu +2.7V to +5.5V source (not directly to V_{DD}) and bypassed to GND with 0.1 μ F and 1 μ F monolithic capacitors located within 1 cm of the V_{REF} pin.			
DIGITAL I/O					
6	TDI	Test Data Input to support IEEE 1149.1 features			
5	TDO	Test Data Ouput to support IEEE 1149.1 features			
7	TMS	Test Mode Select to support IEEE 1149.1 features			
8	ТСК	Test Clock to support IEEE 1149.1 features			
4	TRST	Test Reset to support IEEE 1149.1 features			
POWER SUP	PLY				
1,3	V _{DD}	Positive supply pin. These pins should be connected to a quiet +2.7V to +5.5V source and bypassed to GND with 0.1 μ F and 1 μ F monolithic capacitors located within 1 cm of the power pin.			
(Note 1)	(Note 1) GND GND GND GRUP GRUP GRUP GRUP GRUP GRUP GRUP GRUP				

Note 1: Note that GND is not an actual pin on the package, the GND is connected thru the DAP on the back side of the LLP package.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage V _{DD}	-0.3V to +6.5V
Voltage on Any Analog Pin to GND	–0.3V to $V_{\rm DD}\text{+}0.3\text{V}$
Voltage on Any Digital Pin to GND	-0.3V to V_{DD} +0.3V
Input Current at Any Pin (Note 4)	±10 mA
ESD Susceptibility	
Human Body Model	8000V
Machine Model	>250V
Soldering Temperature	Refer to AN-1187

Junction Temperature	+150°C
Storage Temperature	–65°C to +150°C
Thermal Resistance, θ_{JA}	42°C/W
Thermal Resistance, θ_{JC}	14.3°C/W

Recommended Operating Conditions

Operating Temperature Range	$-40^{\circ}C \le T_A \le +85^{\circ}C$
V _{DD} Supply Voltage	+2.7V to +5.5V
Digital Input Pins Voltage Range	+0V to V_{DD}
Analog Input Pins Voltage Range	+0V to V_{REF}
(Note 5)	

SCANSTA476 Electrical Characteristics

The following specifications apply for V_{DD} = +2.7V to 5.5V, f_{TCK} = 20 MHz, unless otherwise noted.

Symbol	Parameter	Conditions	Typical	Limits	Units
POWER S	SUPPLY CHARACTERISTICS				
V		10°0 < T < 95°0		2.7	V (min)
V _{DD}	Supply Voltage	$-40^{\circ}C \le T_A \le 85^{\circ}C$		5.5	V (max)
	Normal Mode (Static)	$V_{DD} = +2.7V$ to +5.5V,	3.5	5.0	mA
I _{DD}	Normal Mode (Operational)	V_{DD} = +2.7V to +5.5V, f _{TCK} = 1 MSPS		5.0	mA (max)
P _D	Power Consumption, Normal Mode (Operational)	V_{DD} = +5.5V, f_{TCK} = 1 MSPS		27.5	mW (max)
ANALOG	INPUT CHARACTERISTICS (A0-A7)				
V _{IN}	Analog Input Range	$V_{\text{REF}} \leq V_{\text{DD}}$		0 to V _{REF}	V
V _{REF}	Reference Voltage Range			V _{DD} - 0.5V to V _{DD}	V
I _{DCL}	DC Leakage Current		0.1	±10	µA (max)
		$V_{DD} = +2.7V$	1	7.5	mV
V _{MEAS}	Analog Input Measurement Accuracy	V _{DD} = +5.5V	2	15	
DIGITAL	NPUT CHARACTERISTICS (TDI, TMS	S, TCK, TRST)			
V	Input High Voltage	$V_{DD} = +2.7V \text{ to } +3.6V$		2.0	V (min)
V _{IH}	Input High Voltage	$V_{DD} = +5.5V$		2.1	
V _{IL}	Input Low Voltage	$V_{DD} = +5V$		0.8	V (max)
V _{CL}	Input Clamp Voltage	I _{CL} = -18mA	-0.8	-1.5	V (max)
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DD}$	0.2	±10	μA (max)
I _{ILR}	Input Current	TRST, TDI, TMS only		-300	μA (max)
DIGITAL	OUTPUT CHARACTERISTICS (TDO)				
V _{OH}		I_{OH} = -100 $\mu A,2.7V \leq V_{DD} \leq 5.5V$		V _{DD} -0.2	V (min)
	Output High Voltage	I_{OH} = -4 mA, 3.0V \leq V _{DD} \leq 5.5V		2.4	V (min)
		$I_{OH} = -4 \text{ mA}, V_{DD} = 2.7 \text{V}$		2.2	V (min)
V _{OL}	Output Low Voltage	I_{OL} = 100 $\mu A,~2.7V \leq V_{DD} \leq 5.5V$		0.2	V (max)
	Output Low Voltage	$I_{OL} = 4 \text{ mA}, 2.7 \text{V} \le \text{V}_{DD} \le 5.5 \text{V}$		0.4	V (max)
l _{os}	Output Short Circuit Current	$V_{OUT} = 0V, V_{DD} = 5.5V$		-85	mA (max)
l _{oz}	TRI-STATE Leakage Current			±10	µA (max)
	Output Coding		Stra	ight (Natural)	Binary

SCANSTA476

SCANSTA476 Electrical Characteristics (Continued)

The following specifications apply for V_{DD} = +2.7V to 5.5V, f_{TCK} = 20 MHz, unless otherwise noted.

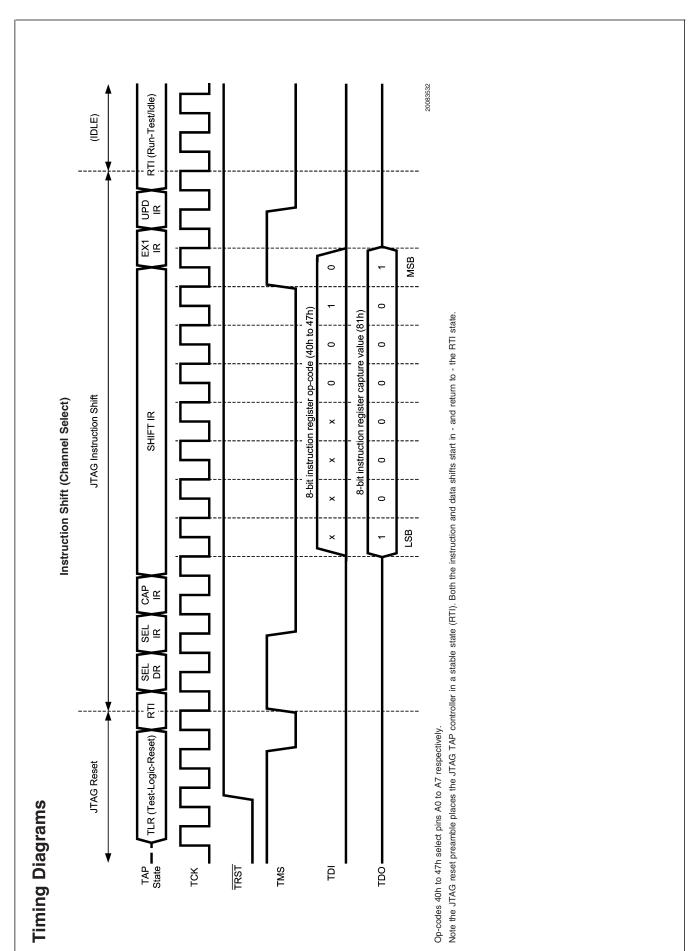
Symbol	Parameter	Conditions	Typical	Limits	Units
AC ELEC	TRICAL CHARACTERISTICS		L		
F _{MAX}	Throughput Rate	TCK = 20MHz		1	MSPS
					(max)
INPUT TI	MING CHARACTERISTICS				
t _{SET}	TDI to TCK (H/L)	(Note 3)		2.0	ns (min)
t _{HOLD}	TDI to TCK (H/L)	(Note 3)		1.5	ns (min)
t _{SET}	TMS to TCK (H/L)	(Note 3)		2.0	ns (min)
t _{HOLD}	TMS to TCK (H/L)	(Note 3)		2.0	ns (min)
t _w	TCK Pulse Width (H/L)	(Note 3)		10.0	ns (min)
t _{REC}	Recovery Time TRST to TCK	(Note 3)		2.0	ns (min)
tw	TRST Pulse Width (L)	(Note 3)		2.5	ns (min)
F _{MAX}	ТСК			20	MHz (min)

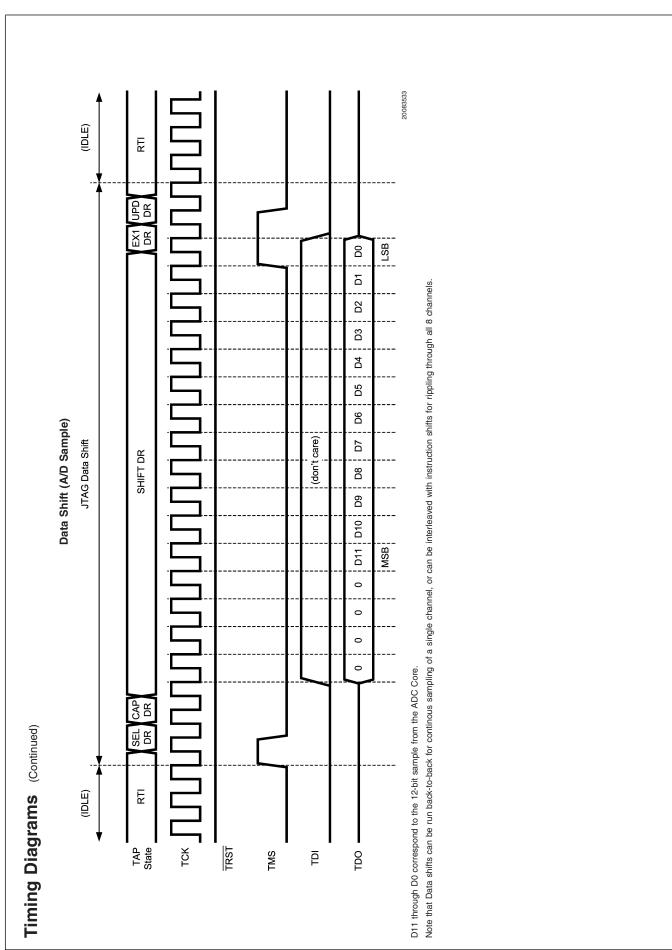
Note 2: Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not implied. Exposure to maximum ratings for extended periods may affect device reliability.

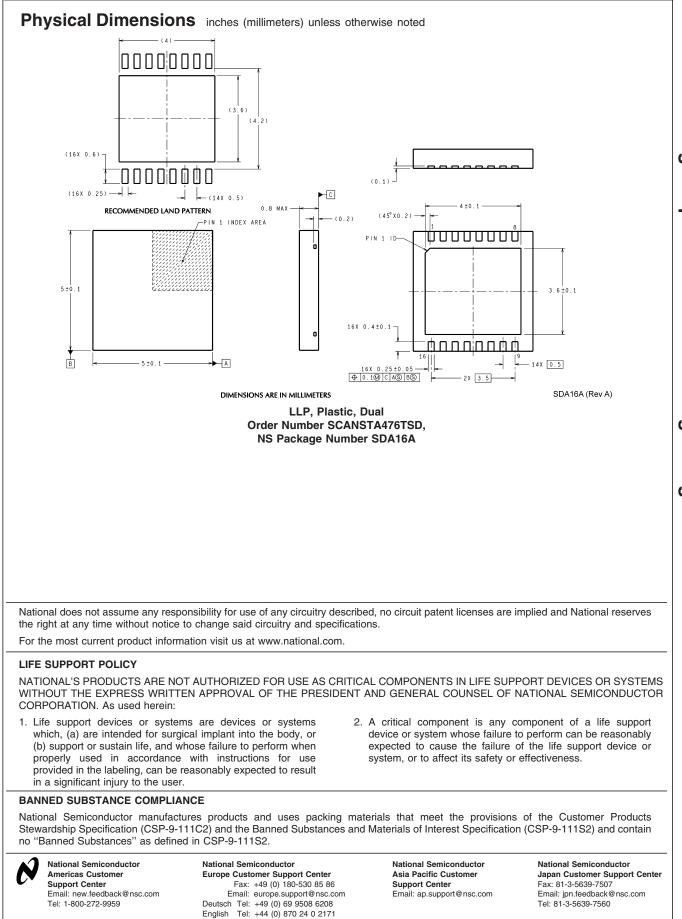
Note 3: Data sheet min/max specification limits are guaranteed by design or statistical analysis.

Note 4: Except power supply pins.

Note 5: For valid measurements, the analog V_IN < V_{REF} \le V_{DD}.


Applications Information


STARTUP MODE


POWER-UP TIMING

The SCANSTA476 typically requires 1 μs to power up , either after first applying V_{DD}, or after an incomplete conversion shift. To return to normal, one "dummy" conversion must be fully completed. After this first dummy conversion, the SCANSTA476 will perform conversions properly.

When the V_{DD} supply is first applied, the SCANSTA476 requires one dummy conversion after start-up.

Français Tel: +33 (0) 1 41 91 8790

www.national.com