

SE4100L

PointCharger™ GPS Receiver IC Preliminary Information

Applications

- Mobile phone & PDA accessories
- Portable navigation
- Personal security
- Security systems
- Asset tracking
- Telematics equipment

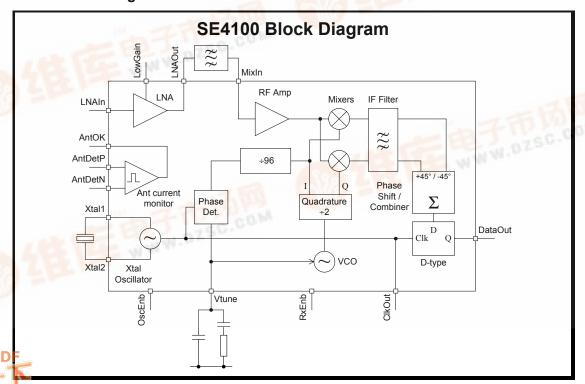
Features

- 30 mW power consumption
- 4x4mm 24 pin LPCC package
- Single conversion radio with integrated IF filters
- On-chip, Gain switchable LNA
- Low LNA noise figure, 1.3dB typ.
- On chip crystal oscillator can be powered up independently
- Fully integrated VCO, VCO tank circuit and PLL.
- Remote antenna current detection

Ordering Information

Туре	Package	Remark
SE4100L-R	24 Pin LPCC	Shipped in Tape & Reel

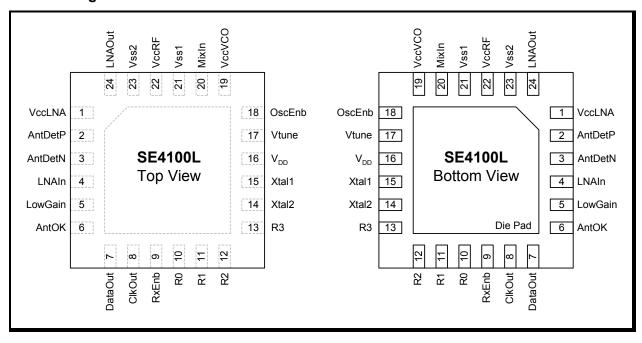
Product Description


The SE4100 is an integrated GPS receiver designed to receive the L1 signal at 1575.42MHz. The receiver has a low IF architecture, and integrates all of the amplifier, oscillator, mixer and demodulation functions.

The external component count is low, requiring just a 16.368MHz crystal and 11 passive components in its minimum configuration. This and the 24 pin LPCC package result in a very small circuit footprint, which is complemented by just 30mW operating power.

Two digitally controlled shutdown modes enable either to part to be powered down entirely or for just the 16 MHz clock supply to the baseband processor to be maintained.

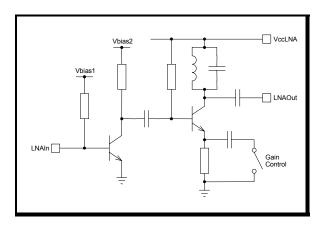
A switchable gain LNA enables the SE4100 to be used with a local passive antenna or with a remote active antenna without changing the circuit configuration. The on-chip VCO and PLL generates the required LO frequency from the external 16.368MHz crystal. All of the VCO and LO chain is integrated. An image reject mixer downconverts the RF signal to a 4.092MHz IF. The integrated IF filter feeds a combiner, limiter and output latch. The output signal is a 1-bit quantized 4.092 MHz digital IF at CMOS levels.


Functional Block Diagram

Pin Out Diagram

Pin Out Description

Pin No.	Name	Description
1	VccLNA	Power supply connection for LNA
2	AntDetP	Connection to battery side of antenna current sensing resistor
3	AntDetN	Connection to antenna feed side of antenna current sensing resistor
4	LNAIn	LNA Input
5	LowGain	LNA Gain control, High = low gain
6	AntOK	Antenna OK output flag (high = antenna current OK)
7	DataOut	Data Output
8	ClkOut	Buffered version of Xtal Osc output / D-type clock
9	RxEnb	Enable control for Receiver (all circuits except Reference oscillator and Data Registers), active high input
10	R0	Reserved internal connection, must be tied to V _{DD} for normal operation
11	R1	Reserved internal connection, must be tied to V _{DD} for normal operation
12	R2	Reserved internal connection, must be tied to V _{DD} for normal operation
13	R3	Reserved internal connection, must be tied to V _{DD} for normal operation
14	Xtal2	Connection to crystal
15	Xtal1	Connection to crystal
16	V_{DD}	Power supply for digital circuits (Xtal Oscillator, Data Registers and Bias circuits)
17	Vtune	Charge pump output / VCO control voltage input
18	OscEnb	Enable control for Reference oscillator, active high input
19	V _{CC} VCO	Decoupling connection for VCO power supply
20	MixIn	Mixer input signal, 50Ω single ended
21	V _{SS} 1	Ground
22	V _{CC} RF	Power supply connection for all RF circuits except the LNA
23	V _{SS} 2	Ground
24	LNAOut	LNA Output, 50Ω single ended
Die Pad	Gnd	Ground connection for all circuits via die pad



Functional Description

LNA

The internal LNA consists of two transistors cascaded. The biasing, gain switching circuit and output matching to 50Ω is contained on the IC. A conceptual diagram of the internal circuit is shown below.

The input match to 50Ω requires three external components, two capacitors and an inductor. The inductor should be a high Q type, e.g. wirewound or microstrip; otherwise the low noise figure of the LNA will not be obtained.

The output match is optimized to allow for a short length of narrow track between the IC package and a filter. Exact lengths and track widths will depend on the board material and thickness.

The gain of the amplifier is switched between high and low settings by the CMOS level compatible LowGain input pin. Internally, this reduces the gain of the second stage only in the low gain setting, which maintains a low noise figure for the amplifier.

The power supply for the amplifier is provided through the VccLNA pin. Care should be taken with the PCB layout to ensure that the power supply cannot act as a bypass around any filter between the LNA output and the mixer input.

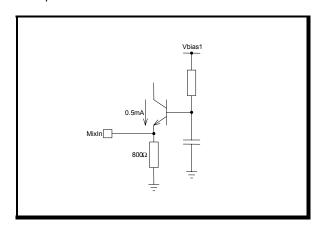
Antenna Current Monitor

The antenna current monitor is a window comparator designed to operate with common mode input voltages above the chip $V_{\rm CC}$. It is designed to monitor the supply current to an external active antenna and provide a logic output indicating if the current is within the desired range.

The state of the logic output on the AntOK pin is dependent on the voltage drop between AntDetP and AntDetN pins, AntDetP being the higher dc voltage. The current setting this voltage is adjusted by changing the value of the external current sense resistor between these pins.

Voltage	Logic Output
between	AntOK
AntDetP and	
AntDetN (ΔV_{ANT})	
<0.125	Low
0.25>∆V>0.5	High
>0.75	Low

The AntOK pin is a CMOS output designed to interface directly to the LowGain input pin, so that in the event the supply to the external active antenna is either shorted or open circuited, the internal LNA gain is switched to the high gain setting.


The external current sense resistor should be chosen according to the typical current of the external antenna I_{ANT} , using the formula:

$$R_{EXT} = \frac{0.375}{I_{ANT}}$$

Mixer RF Input

The mixer RF input pin, MixIn, is a single ended 50Ω input, designed to either interface to the LNAOut pin or to the output of an external filter using only a dc blocking capacitor, and without additional matching components.

The input is a common base configuration providing a wideband 50Ω termination. A conceptual diagram of the input circuit is shown below:

SE4100L PointCharger™ GPS Receiver IC Preliminary Information

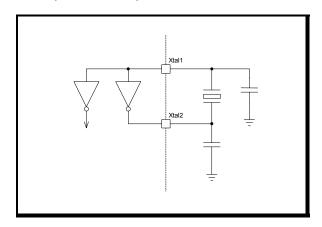
The filter type chosen should require a termination impedance of $50+j0\Omega$. Examples of suitable types are shown on the application schematic diagram.

The PCB layout should keep the track from the filter to the MixIn pin as short as possible to minimize pickup and mismatch (if the track is not 50Ω). A dc blocking capacitor should be used, even if the filter does not present a dc path, as the MixIn pin has 0.4V dc present which may be detrimental to the filter.

A filter will improve the performance of the receiver in the presence of out of band blocking signals, but is not essential if operation in the presence of such signals is not critical. If the filter is not fitted, the LNAOut pin should be connected to the MixIn pin via a coupling capacitor.

PLL and Loop Filter

The entire phase-locked loop generating the local oscillator for the mixer is contained on-chip, with the exception of the loop filter.


Values provided on the application circuit should be used, as these will provide optimum performance under all conditions.

The capacitors may be ceramic dielectric types, with either COG/NP0 or X7R dielectric. Higher capacitance per unit volume dielectrics should be avoided as the absolute tolerance and temperature stability may compromise system performance.

The PCB layout should keep the track from the Vtune pin to the loop filter as short as possible to minimize noise pickup.

Crystal Oscillator

The crystal oscillator is a Pierce configuration, as shown in the diagram below. The application circuit is designed to work with parallel resonant crystals with a load capacitance of 12pF.

The PCB layout should minimize the lengths of the tracks to Xtal1 and Xtal2 pins. The capacitors at each terminal of the crystal should be mounted adjacent to the crystal and have a low impedance connection to the ground plane.

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below.

This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Parameter	Min.	Max.	Unit
V_{CC} , V_{DD}	Supply Voltage	-0.3	+4.6	V
	Voltage On Any Pin With Respect To V _{SS} except AntDetP and AntDetN Pins	-0.3	V _{DD} +0.3	V
V _{AntDetP} ,	Voltage On AntDetP and AntDetN Pins With Respect To V _{SS}	-0.3	+6.0	V
T _{STG}	Storage Temperature Range	-65	+150	°C

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _A	Operating Temperature	-40	+25	+85	°C
V_{CC}, V_{DD}	Supply Voltage	2.7		3.6	V

DC Electrical Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Total Supply Current, All Circuits Active		9		mA
I _{CC(OSC)}	Supply Current, Oscillator Only Active		1.0		mA
I _{CC(OFF)}	Supply Current, No Circuits Active			10	μΑ

AC Electrical Characteristics

	LNA							
Symbol	Parameter	Note	Min.	Тур.	Max.	Unit		
V _{CCLNA}	LNA Supply Voltage		2.7		3.6	V		
I _{CC}	Supply Current , RxEnb = '1'			1.2		mA		
S21	Forward Gain, f _{RF} =1570MHz to 1580MHz, LowGain = '0', P _{in} = -80dBm			20		dB		
NF	Noise Figure, f _{RF} =1570MHz to 1580MHz, LowGain = '0'			1.3		dB		
S21 _{LOW}	Forward Gain, f _{RF} =1570MHz to 1580MHz, LowGain = '1', P _{in} = -80dBm			7		dB		
NF	Noise Figure, f _{RF} =1570MHz to 1580MHz, LowGain = '1'			2.5	4	dB		
Z11	Input Impedance, Single Ended Input, With External Matching Circuit			30-j75		Ω		
S22	Output Return Loss, 50Ω system, Single Ended Output				-10	dB		
IIP3 _H	High Gain Mode Input IP3, Tones At 1575 ± 5MHz @ –60dBm			-25		dBm		
IIP3 _L	Low Gain Mode Input IP3, Tones At 1575 ± 5MHz @ –60dBm			-15		dBm		
P1dB	Input Power At Which Gain Falls By 1dBm			-34		dBm		
t _R	Recovery Time From –3dBm Input Overload Signal			4	10	μsec		
V _{IL}	Input Low Level, LowGain Input				0.6	V		
V _{IH}	Input High Level, LowGain Input		V _{DD} -0.6			V		
I _{IN}	LowGain Input Current		-0.1		0.1	μΑ		

	Receiver							
Symbol	Parameter	Note	Min.	Тур.	Max.	Unit		
I _{CC}	Supply Current , RxEnb = '1'			8.0		mA		
NF	Noise Figure, f _{RF} =1570MHz To 1580MHz, Input to 'MixIn'			10		dB		
IIP3	Input IP3, Tones 1575 ± 5MHz @ -40dBm (Mixer and IF Filter Only)			-15		dBm		
S11	Input Return Loss, 50Ω System				-10	dB		
t _R	Recovery Time From –30dBm Input Overload Signal			4	10	μsec		
f _{IF}	IF Centre Frequency			4.092		MHz		
BW	-3dB Bandwidth			2.0		MHz		
ΔT_g	Group Delay Variation, f _C ± BW/2			0.1		μsec		
Av ₂	Attenuation At f _C ± BW			11		dB		
Av ₄	Attenuation At f _C ± 2.BW			27		dB		

	VCO and Local Oscillator							
Symbol	Parameter	Note	Min.	Тур.	Max.	Unit		
f _{VCO}	VCO Centre frequency			3142.656		MHz		
L _{1k}	LO SSB Phase noise at 1kHz offset				-65	dBc/Hz		
L _{10k}	LO SSB Phase noise at 10kHz offset				-65	dBc/Hz		
L _{100k}	LO SSB Phase noise at 100kHz offset				-85	dBc/Hz		

	Crystal Oscillator								
Symbol	Parameter	Note	Min.	Тур.	Max.	Unit			
I _{CC}	Supply Current, Crystal Oscillator And Clock Buffers, OscEnb = '1'			1.0		mA			
f _{XTAL}	Oscillator Frequency			16.368		MHz			
	Crystal Parameters								
	Mode			Parallel fund.					
	Frequency			16.368		MHz			
	ESR				50	Ω			
	C_LOAD			12		pF			
t _{START}	Oscillator Startup Time To 95% Of Final Amplitude And Within 10ppm Of Final Frequency				100	μsec			

	Antenna Current Monitor							
Symbol	Parameter	Note	Min.	Тур.	Max.	Unit		
ΔV_{ANT}	Voltage Between AntDetP And AntDetN For AntOK = High		0.25		0.5	V		
ΔV_{ANT}	Voltage Between AntDetP And AntDetN For AntOK = Low For Low Current Condition				0.125	V		
ΔV_{ANT}	Voltage Between AntDetP And AntDetN For AntOK = Low For High Current Condition		0.75			V		
V _{AntDetP}	Voltage Range On AntDetP For Normal Operation		Vcc-0.5		5.25	V		
V _{AntOK}	AntOK Output Voltage, Antenna OK, 1mA Current Source		Vcc-0.5		Vcc	V		
V _{AntOK}	AntOK Output Voltage, Antenna Not OK, 1mA Current Sink		0		0.5	V		

SE4100L

Timing Characteristics

Symbol	Parameter	Note	Min.	Тур.	Max.	Unit
t _{PEr}	Clock Period		60			nsec
t _{PWL}	Clock Low Width		20			nsec
t _{PWH}	Clock High Width		20			nsec
t _{DEL}	Clock To Data Delay Time				5	nsec
t _{SETUP}	Setup Time		21			nsec
t _{HOLD}	Hold Time		26		31	nsec
t _R	Rise Time, 10-90%				8	nsec
t _{R/F}	Rise and Fall Time, 10-90%				8	nsec

Output Data Timing Diagram

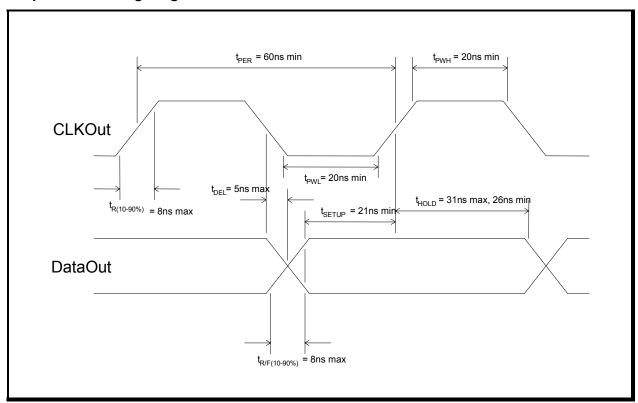
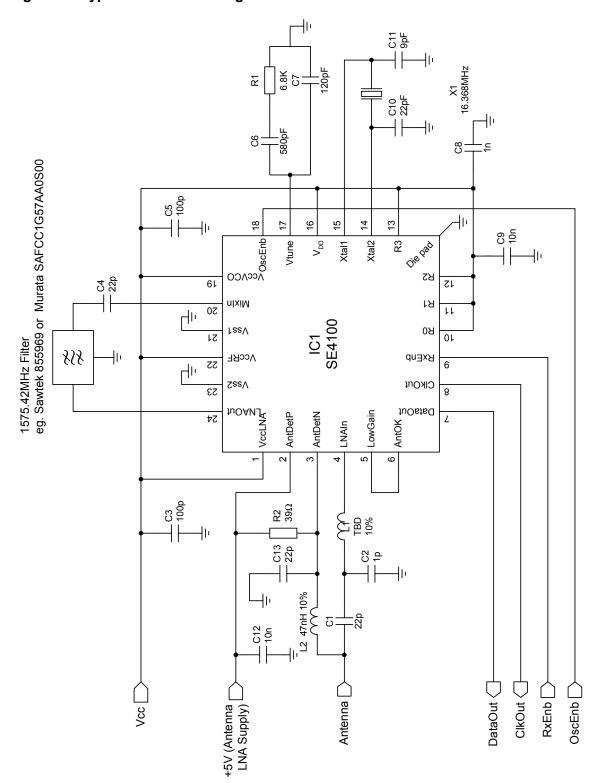
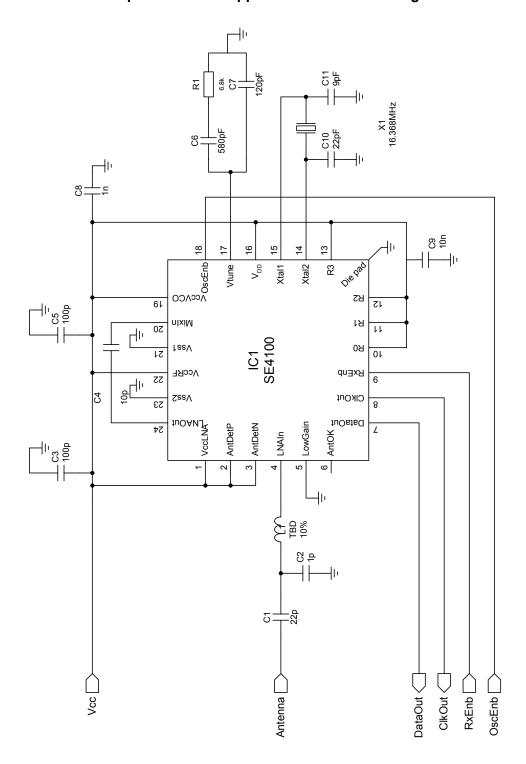
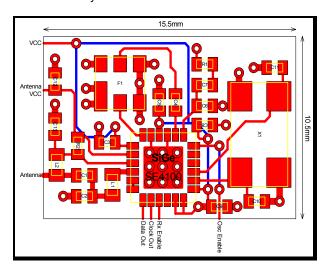


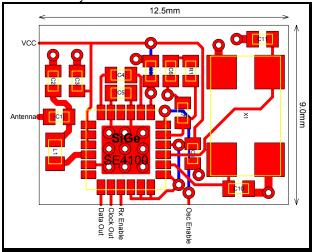
Figure 1: Typical Schematic Diagram


Figure 2: Minimum Component Count Application Schematic Diagram

Typical PCB Layout (With Filter And Antenna Current Sensing)

Total size of layout = $15.5 \times 10.5 \text{mm}$



Actual size

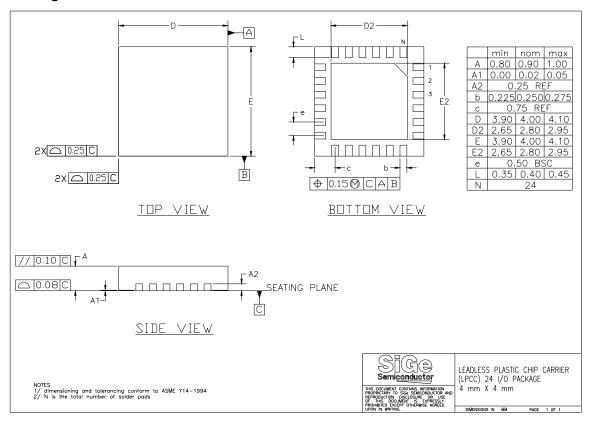
Typical PCB Layout (Minimum Component Count)

Total size of layout = $12.5 \times 9.0 \text{mm}$

Actual size

(R2, C12, C13, L2, F1 not used)

Note: These layouts are for illustration purposes only. Reference designs and layout information are available from SiGe Semiconductor.



Typical Bill Of Materials for Application PCB Layout

Component	Value	Туре	Manufacturer
IC1		SE4100	SiGe
C1	22pF	0402 ceramic	
C2	1pF	0402 ceramic	
C3	100pF	0402 ceramic	
C4	22pF	0402 ceramic	
C5	100pF	0402 ceramic	
C6	580pF	0402 ceramic	
C7	120pF	0402 ceramic	
C8	1nF	0402 ceramic	
C9	10nF	0402 ceramic	
C10	22pF	0402 ceramic	
C11	9pF	0402 ceramic	
C12	10nF	0402 ceramic	
C13	22pf	0402 ceramic	
L1	TBD 10%	0402CS-??NXJ	Coilcraft
L2	47nH, 10%	0402CS-47NXK	Coilcraft
R1	6.8kΩ	0402	
R2	39Ω	0402	
F1	1575.42MHz	855969	Sawtek
X1	16.368MHz	KSX series	AVX

Package Information

http://www.sige.com

Headquarters: Canada

Phone: +1 613 820 9244

Fax: +1 613 820 4933

2680 Queensview Drive

Ottawa ON K2B 8J9 Canada

sales@sige.com

San Diego United Kingdom

Phone: +1 858 668 3541 South Building, Walden Court

Fax: +1 858 668 3546 Parsonage Lane, Bishop's Stortford

Hertfordshire CM23 5DB

Hong Kong

Phone: +44 1279 464 200 Phone: +1 852 9177 1917 Fax: +44 1279 464 201

Product Preview

The datasheet contains information from the product concept specification. SiGe Semiconductor Inc. reserves the right to change information at any time without notification.

Preliminary Information

The datasheet contains information from the design target specification. SiGe Semiconductor Inc. reserves the right to change information at any time without notification.

Final

The datasheet contains information from the final product specification. SiGe Semiconductor Inc. reserves the right to change information at any time without notification. Production testing may not include testing of all parameters.

Information furnished is believed to be accurate and reliable and is provided on an "as is" basis. SiGe Semiconductor Inc. assumes no responsibility or liability for the direct or indirect consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license or indemnity is granted by implication or otherwise under any patent or other intellectual property rights of SiGe Semiconductor Inc. or third parties. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SiGe Semiconductor Inc. products are NOT authorized for use in implantation or life support applications or systems without express written approval from SiGe Semiconductor Inc.

RangerChargerTM, StreamChargerTM, PointChargerTM, and LightChargerTM are trademarks owned by SiGe Semiconductor Inc.

Copyright 2002 SiGe Semiconductor All Rights Reserved