急出货

## **Product Description**

Stanford Microdevices' SGA-4363 is a high performance SiGe Heterojunction Bipolar Transistor MMIC Amplifier. A Darlington configuration featuring 1 micron emitters provides high  $F_{\scriptscriptstyle T}$  and excellent thermal perfomance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. At 850 Mhz and 45mA , the SGA-4363 typically provides +28.7 dBm output IP3, 16.4 dB of gain, and +14.3 dBm of 1dB compressed power using a single positive voltage supply. Only 2 DC-blocking capacitors, a bias resistor and an optional RF choke are required for operation.



# SGA-4363

DC-2000 MHz, Cascadable SiGe HBT MMIC Amplifier



#### **Product Features**

- High Gain: 14.8 dB at 1950 MHz
- Cascadable 50 Ohm
- Patented SiGe Technology
- Operates From Single Supply
- Low Thermal Resistance Package

## **Applications**

- Cellular, PCS, CDPD
- Wireless Data, SONET
- Satellite

| Symbol           | Parameter                                                       | Units      | Frequency           | Min. | Тур.         | Max. |
|------------------|-----------------------------------------------------------------|------------|---------------------|------|--------------|------|
| G                | Small Signal Gain                                               | dB<br>dB   | 850 MHz<br>1950 MHz | 14.8 | 16.4<br>14.8 | 18.0 |
| P <sub>1dB</sub> | Output Power at 1dB Compression                                 | dBm<br>dBm | 850 MHz<br>1950 MHz | 121  | 14.3<br>13.0 | WW.  |
| OIP <sub>3</sub> | Output Third Order Intercept Point (Power out per tone = -5dBm) |            | 850 MHz<br>1950 MHz | H    | 28.7<br>25.7 | 72.7 |
| Bandwidth        | Determined by Return Loss (<-10dB)                              | MHz        |                     |      | 2000         |      |
| IRL              | Input Return Loss                                               | dB         | 1950 MHz            |      | 14.4         |      |
| ORL              | Output Return Loss                                              | dB         | 1950 MHz            |      | 10.7         |      |
| NF               | Noise Figure                                                    | dB         | 1950 MHz            |      | 3.1          |      |
| V <sub>D</sub>   | Device Voltage                                                  | V          |                     | 2.9  | 3.2          | 3.5  |
| $R_{Th}$         | Thermal Resistance                                              | °C/W       |                     |      | 255          |      |

Test Conditions:

V<sub>S</sub> = 8 V R<sub>BIAS</sub> = 110 Ohms I<sub>D</sub> = 45 mA Typ. T₁ = 25°C  $OIP_3$  Tone Spacing = 1 MHz, Pout per tone = -5 dBm  $Z_s = Z_i = 50$  Ohms



#### SGA-4363 DC-2000 MHz Cascadable MMIC Amplifier

#### Typical RF Performance at Key Operating Frequencies

|                  |                                    |      | Frequency (MHz) |      |      |      |      |      |
|------------------|------------------------------------|------|-----------------|------|------|------|------|------|
| Symbol           | Parameter                          | Unit | 100             | 500  | 850  | 1950 | 2400 | 3500 |
| G                | Small Signal Gain                  | dB   | 17.0            | 16.7 | 16.4 | 14.8 |      |      |
| OIP <sub>3</sub> | Output Third Order Intercept Point | dBm  |                 | 29.4 | 28.7 | 25.7 |      |      |
| P <sub>1dB</sub> | Output Power at 1dB Compression    | dBm  |                 | 14.3 | 14.3 | 13.0 |      |      |
| IRL              | Input Return Loss                  | dB   | 11.9            | 12.2 | 12.9 | 14.4 |      |      |
| ORL              | Output Return Loss                 | dB   | 10.2            | 11.5 | 13.3 | 10.7 |      |      |
| S <sub>12</sub>  | Reverse Isolation                  | dB   | 20.9            | 21.4 | 21.4 | 20.7 |      |      |
| NF               | Noise Figure                       | dB   |                 | 2.8  | 2.7  | 3.1  |      |      |

**Test Conditions:** 

 $V_S = 8 V$  $R_{BIAS} = 110 Ohms$   $I_D = 45 \text{ mA}$  Typ.  $T_1 = 25^{\circ}\text{C}$   $OIP_3$  Tone Spacing = 1 MHz, Pout per tone = -5 dBm  $Z_s = Z_1 = 50$  Ohms

# Noise Figure vs. Frequency $V_D = 3.2 \text{ V}, I_D = 45 \text{ mA (Typ.)}$



#### OIP, vs. Frequency $V_{p}=3.2 \text{ V, } I_{p}=45 \text{ mA (Typ.)}$ 18 15 P<sub>1dB</sub> (dBm) 12 9 T,=+25°C 6 0 0.5 1.5 2 2.5 3 Frequency (GHz)

#### **Absolute Maximum Ratings**

| Parameter                               | Absolute Limit |  |  |
|-----------------------------------------|----------------|--|--|
|                                         |                |  |  |
| Max. Device Current (I <sub>D</sub> )   | 90 mA          |  |  |
| Max. Device Voltage (V <sub>D</sub> )   | 5 V            |  |  |
| Max. RF Input Power                     | +8 dBm         |  |  |
| Max. Junction Temp. (T <sub>J</sub> )   | +150°C         |  |  |
| Operating Temp. Range (T <sub>L</sub> ) | -40°C to +85°C |  |  |
| Max. Storage Temp.                      | +150°C         |  |  |

Operation of this device beyond any one of these limits may cause permanent damage.

Bias Conditions should also satisfy the following expression:  $I_DV_D$  (max) <  $(T_J - T_L)/R_{th}$ 





### SGA-4363 DC-2000 MHz Cascadable MMIC Amplifier



NOTE: Full S-parameter data available at www.stanfordmicro.com





#### **Basic Application Circuit**





#### Part Identification Marking

The part will be marked with an "A43" designator on the top surface of the package.



For package dimensions, refer to outline drawing at www.stanfordmicro.com

# Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed.

#### **Application Circuit Element Values**

| Reference      | Frequency (Mhz) |        |       |       |       |  |  |
|----------------|-----------------|--------|-------|-------|-------|--|--|
| Designator     | 500             | 850    | 1950  | 2400  | 3500  |  |  |
| C <sub>B</sub> | 220 pF          | 100 pF | 68 pF | 56 pF | 39 pF |  |  |
| C <sub>D</sub> | 100 pF          | 68 pF  | 22 pF | 22 pF | 15 pF |  |  |
| L <sub>c</sub> | 68 nH           | 33 nH  | 22 nH | 18 nH | 15 nH |  |  |

| Recommended Bias Resistor Values for I <sub>D</sub> =45mA            |     |     |      |      |  |
|----------------------------------------------------------------------|-----|-----|------|------|--|
| Supply Voltage(V <sub>s</sub> )                                      | 6 V | 8 V | 10 V | 12 V |  |
| R <sub>BIAS</sub> 62 Ω 110 Ω 150 Ω 200 Ω                             |     |     |      |      |  |
| Note: R <sub>BIAS</sub> provides DC bias stability over temperature. |     |     |      |      |  |

#### **Mounting Instructions**

- 1. Use a large ground pad area near device pins 1, 2, 4, and 5 with many plated through-holes as shown.
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

| Pin | #  | Function        | Description                                                                                                                     |
|-----|----|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 3   |    | RF IN           | RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.             |
| 1   |    | GND             | Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.        |
| 6   | i  | RF OUT/<br>BIAS | RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation. |
| 2,4 | ,5 | GND             | Sames as Pin 2                                                                                                                  |

#### **Part Number Ordering Information**

| Part Number | Reel Size | Devices/Reel |
|-------------|-----------|--------------|
| SGA-4363    | 7"        | 3000         |