查询SI1907DL供应商

VISHAY"

SPICE Device Model Si1907DL Vishay Siliconix

Dual P-Channel 1.8-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

Apply for both Linear and Switching Application

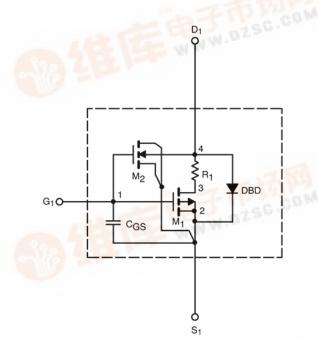
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

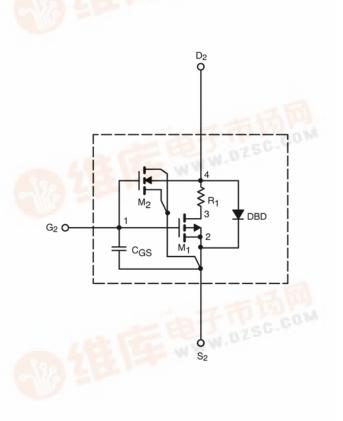
A novel gate-to-drain feedback capacitance network is used to model

the gate charge characteristics while avoiding convergence difficulties

of the switched C_{gd} model. All model parameter values are optimized

to provide a best fit to the measured electrical data and are not


intended as an exact physical interpretation of the device.


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

WW.DZ

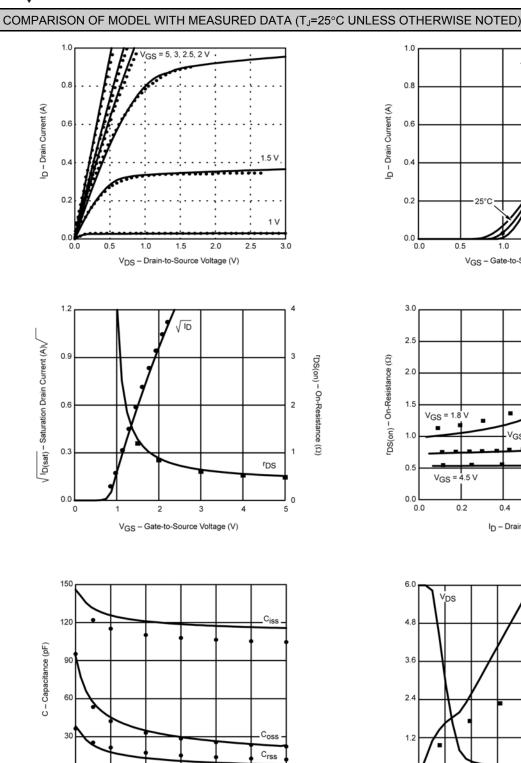
SUBCIRCUIT MODEL SCHEMATIC

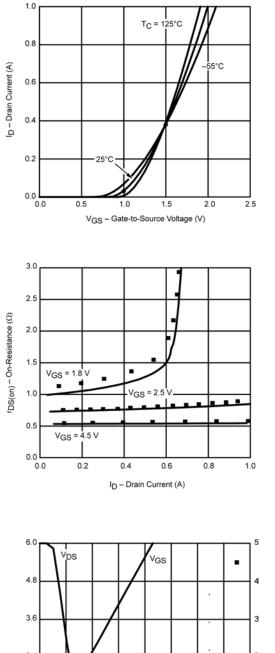
This cocument is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

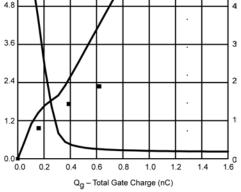
Document Number: 71526

SPICE Device Model Si1907DL Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UN	LESS OTHERW	(ISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	-		-		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	0.78		V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = -5 V, V_{GS} = -4.5 V	5.8		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = -4.5 V, I _D = -0.53 A	0.54	0.57	Ω
		V_{GS} = -2.5 V, I _D = -0.44 A	0.77	0.80	
		V_{GS} = -1.8 V, I _D = -0.20 A	1.05	1.25	
Forward Transconductance ^a	9 _{fs}	V_{DS} = -10 V, I_{D} = -0.53 A	1.19	1.1	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -0.23 A, $V_{\rm GS}$ = 0 V	-0.76	-0.80	V
Dynamic ^b					
Total Gate Charge	Qg	V_{DS} = -6 V, V_{GS} = -4.5 V, I_D = -0.53 A	0.72	1.5	nC
Gate-Source Charge	Q _{gs}		0.14	0.40	
Gate-Drain Charge	Q_gd		0.12	0.25	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -6 \text{ V}, \text{ R}_{L} = 12 \Omega$ $\text{I}_{D} \cong -0.50 \text{ A}, \text{ V}_{GEN} = -4.5 \text{ V}, \text{ R}_{G} = 6 \Omega$ $\text{I}_{F} = -0.23 \text{ A}, \text{ di/dt} = 100 \ \mu\text{s}$	6	6	ns
Rise Time	tr		7	20	
Turn-Off Delay Time	t _{d(off)}		23	10	
Fall Time	t _f		7	10	
Source-Drain Reverse Recovery Time	t _{rr}		15	20	


Notes


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.



SPICE Device Model Si1907DL

Vishay Siliconix

Note: Dots and squares represent measured data.

2

4

6

V_{DS} – Drain-to-Source Voltage (V)

8

10

12

٥

0