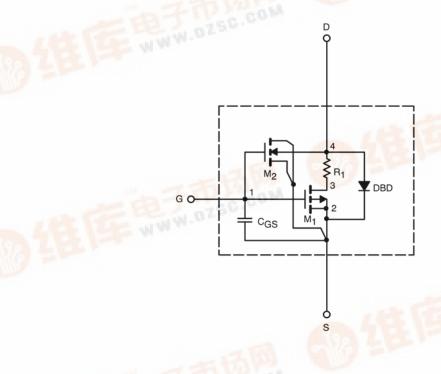


SPICE Device Model Si3433BDV Vishay Siliconix

P-Channel 1.8-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- · Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

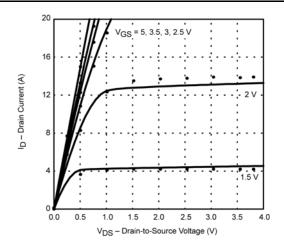
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

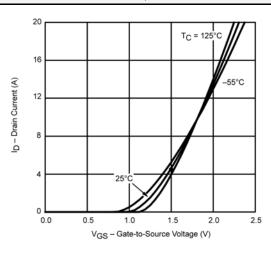
Document Number: 72188

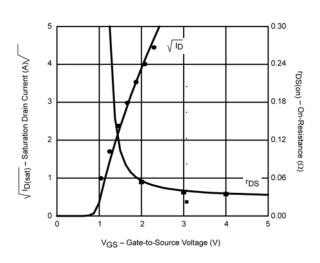
SPICE Device Model Si3433BDV

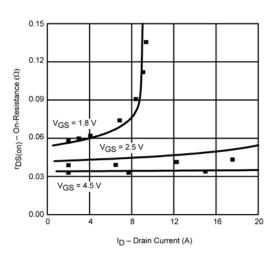
Vishay Siliconix

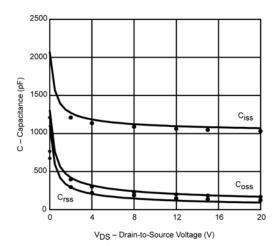
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static			•	-	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.80		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	156		Α
Drain-Source On-State Resistance ^a	「DS(on)	$V_{GS} = -4.5 \text{ V}, I_D = -5.6 \text{ A}$	0.034	0.034	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -4.8 \text{ A}$	0.043	0.045	
		$V_{GS} = -1.8 \text{ V}, I_D = -1 \text{ A}$	0.055	0.060	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -5 \text{ V}, I_D = -5.6 \text{ A}$	15	10	S
Diode Forward Voltage ^a	V_{SD}	$I_S = -1.7 \text{ A}, V_{GS} = 0 \text{ V}$	-0.80	-0.70	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = -10 V, V_{GS} = -4.5 V, I_{D} = -5.6 A	11.6	12	nC
Gate-Source Charge	Q_{gs}		1.7	1.7	
Gate-Drain Charge	Q_{gd}		3.5	3.5	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -10 \text{ V}, \text{ R}_{L} = 10 \Omega$ $I_{D} \cong -1 \text{ A}, \text{ V}_{GEN} = -4.5 \text{ V}, \text{ R}_{G} = 6 \Omega$	16	15	ns
Rise Time	t _r		13	45	
Turn-Off Delay Time	$t_{d(off)}$		83	80	
Fall Time	t _f		9	60	

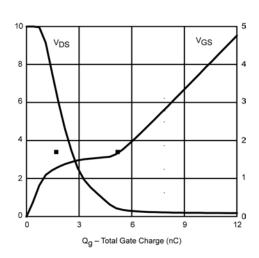

www.vishay.com Document Number: 72188


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si3433BDV Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 72188 www.vishay.com