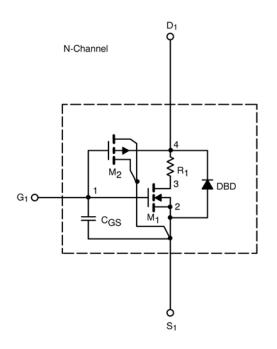


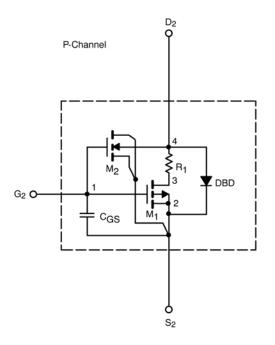
Vishay Siliconix

N- and P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

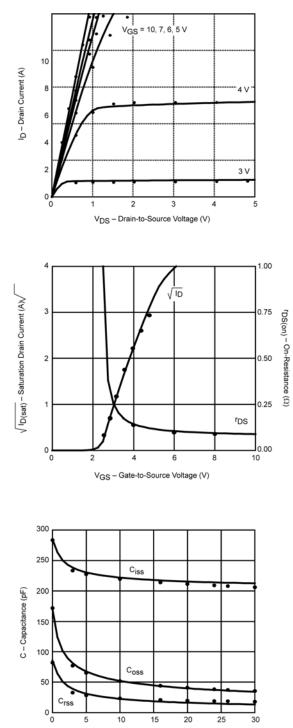
SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Parameter	Symbol	Test Condition		Typical	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V, V_{GS} , I_D = 250 μ A	N-Ch	1.9	v
		V_{DS} = V, V_{GS} , I_D = -250 μ A	P-Ch	2.13	
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	N-Ch	51	A
		V_{DS} = -5 V, V_{GS} = -10 V	P-Ch	24	
Drain-Source On-State Resistance ^a	۲ _{DS(on)}	V_{GS} = 10 V, I _D = 2.5 A	N-Ch	0.090	Ω
		V_{GS} = -10 V, I _D = -1.8 A	P-Ch	0.177	
		V_{GS} = 4.5 V, I _D = 2.0 A	N-Ch	0.134	
		V_{GS} = -4.5 V, I _D = -1.2 A	P-Ch	0.281	
Forward Transconductance ^a	g _{fs}	V_{DS} = 10 V, I_{D} = 2.5 A	N-Ch	4.3	· S
		V_{DS} = -15 V, I _D = -1.2 A	P-Ch	2.5	
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 1.05 A, $V_{\rm GS}$ = 0 V	N-Ch	0.81	v
		$I_{\rm S}$ = -1.05 V, $V_{\rm GS}$ = 0 V	P-Ch	-0.81	
Dynamic ^b	-		-		
Total Gate Charge	Qg		N-Ch	2	nC
		N-Channel $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 1.8 \text{ A}$ P-Channel $V_{DS} = -15 \text{ V}, V_{GS} = -5 \text{ V}, I_D = -1.8 \text{ A}$	P-Ch	2.4	
Gate-Source Charge	Q _{gs}		N-Ch	0.7	
			P-Ch	0.9	
Gate-Drain Charge	Q _{gd}		N-Ch	0.7	
			P-Ch	0.8	
Turn-On Delay Time	t _{d(on)}	N-Channel	N-Ch	7	ns
			P-Ch	8	
Rise Time	tr	V_{DD} = 15 V, R _L = 15 Ω	N-Ch	9	
		$V_{DD} = 13$ V, $R_L = 13 \Omega^2$ $I_D \cong 1$ A, $V_{GEN} = 10$ V, $R_G = 6 \Omega$	P-Ch	8	
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = -15 \text{ V}, \text{ R}_{L} = 15 \Omega$ $I_{D} \cong -1 \text{ A}, \text{ V}_{\text{GEN}} = -10 \text{ V}, \text{ R}_{\text{G}} = 6 \Omega$	N-Ch	12	
			P-Ch	11	
Fall Time	t _f		N-Ch	14	
			P-Ch	12	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = A, I_S = 1.05A, di/dt = 100 A/\mu s$	N-Ch	35	
		I _F = A, I _S = -1.05A, di/dt = 100 A/μs	P-Ch	31	

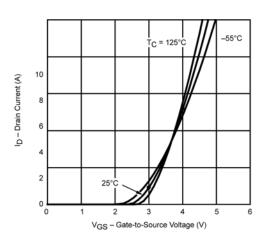
Notes

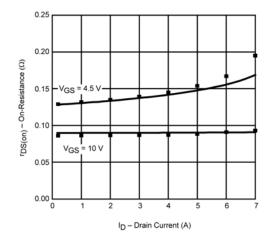
a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%.

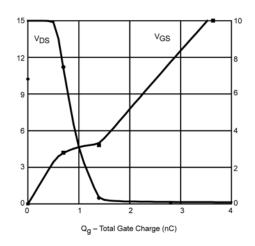


SPICE Device Model Si3552DV

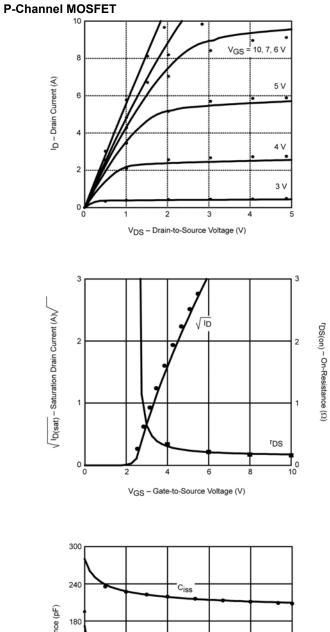
Vishay Siliconix

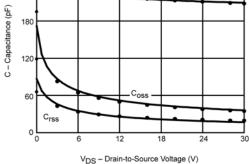

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

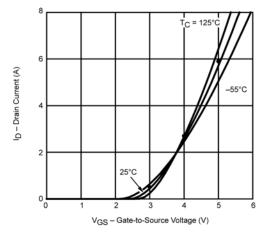

N-Channel MOSFET



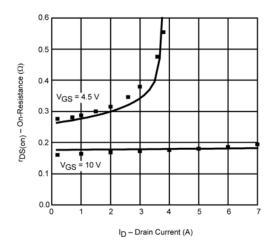
V_{DS} – Drain-to-Source Voltage (V)

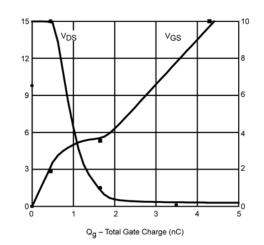

Note: Dots and squares represent measured data.





SPICE Device Model Si3552DV Vishay Siliconix





Note: Dots and squares represent measured data.

VISHAY

Document Number: 71514 S-52634-Rev. C, 02-Jan-06

4