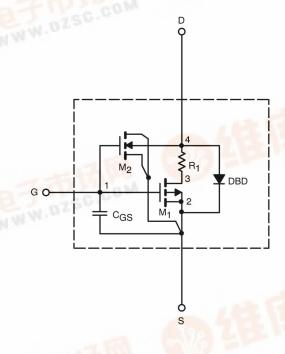


SPICE Device Model Si6405DQ Vishay Siliconix

P-Channel 12-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

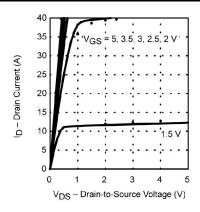
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

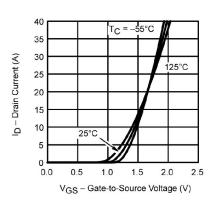
Document Number: 72715 www.vishay.com

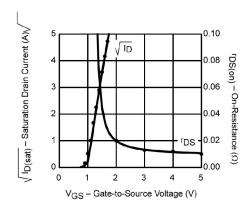
Llodel Si6405DQ

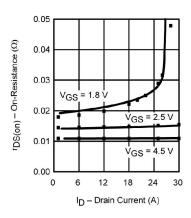
Vishay Siliconix

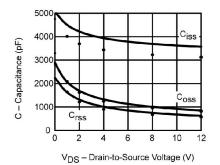
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	0.78		V
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	298		Α
Drain-Source On-State Resistance ^b	「DS(on)	$V_{GS} = -4.5 \text{ V}, I_D = -8.6 \text{ A}$	0.011	0.011	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -7.6 \text{ A}$	0.0143	0.0145	
		$V_{GS} = -1.8 \text{ V}, I_D = -6.7 \text{ A}$	0.0201	0.0185	
Forward Transconductance ^b	G fs	$V_{DS} = -15 \text{ V}, I_D = -8.6 \text{ A}$	32	35	S
Diode Forward Voltage ^b	V _{SD}	$I_S = -1.5 \text{ A}, V_{GS} = 0 \text{ V}$	-0.79	-0.62	V
Dynamic ^a					
Total Gate Charge	Q_g	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -8.6 \text{ A}$	36	42	nC
Gate-Source Charge	Q _{gs}		4.6	4.6	
Gate-Drain Charge	Q_{gd}		12.7	12.7	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -10 \text{ V, } R_L = 10 \Omega$ $I_D \cong -1 \text{ A, } V_{GEN} = -4.5 \text{ V, } R_G = 6 \Omega$	67	50	ns
Rise Time	t _r		67	105	
Turn-Off Delay Time	t _{d(off)}		190	185	
Fall Time	t _f		61	135	

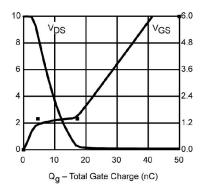

Document Number: 72715 www.vishay.com


Notes a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$




SPICE Device Model Si6405DQ Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 72715 www.vishay.com