查询SI6426供应商

FAIRCHILD SEMICONDUCTOR

捷多邦,专业PCB打样工厂,24小时加急出货

October 2001

Si6426DQ

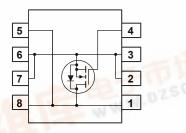
Si6426DQ

20V N-Channel PowerTrench[®] MOSFET

NW.OZSC

General Description

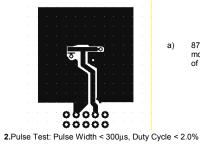
This N-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gate drive voltage ratings (2.5V to 8V).


Applications

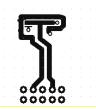
- Battery protection
- DC/DC conversion
- · Power management
- Load switch

Features

- 5.4 A, 20 V $R_{DS(ON)}$ = 35 m Ω @ V_{GS} = 4.5 V $R_{DS(ON)}$ = 40 m Ω @ V_{GS} = 2.5 V
- Extended V_{GSS} range (±8V) for battery applications
- High performance trench technology for extremely W.DZSC.C low R_{DS(ON)}
- Low profile TSSOP-8 package


Absolute Maximum Ratings TA=25°C unless otherwise noted

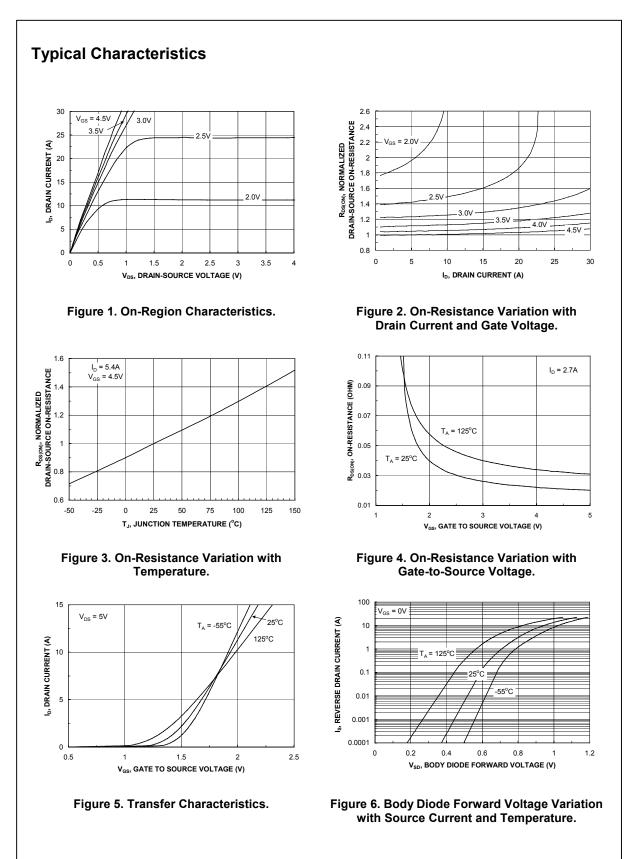
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		± 8	V
I _D	Drain Current – Continuous	(Note 1)	5.4	A
	– Pulsed		30	2 ()
PD	Power Dissipation	(Note 1a)	1.4	W
		(Note 1b)	1.1	L D V
T _J , T _{STG}	Operating and Storage Junction Temperatu	ire Range	-55 to +150	°C
Therma	al Characteristics			
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	87	°C/W
$R_{\theta JA}$			114	1


Device Marking	Device	Reel Size	Tape width	Quantity
6426	Si6426DQ	13"	16mm	3000 units

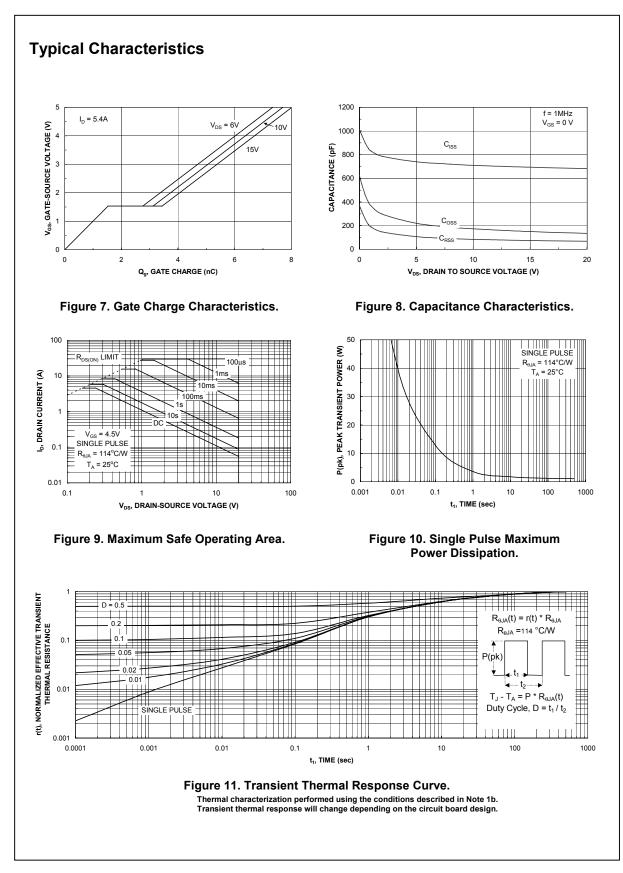
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Symbol	Falameter	Test conditions		тур	Wax	Units
Off Char	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A	20			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		14		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 20 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
		V_{DS} = 20 V, V_{GS} = 0 V, T_J =55°C			5	
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 8 V$, $V_{DS} = 0 V$			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = -8 V$, $V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 250 \ \mu A$	0.6	0.9	1.5	V
<u>ΔV_{GS(th)}</u> ΔT _J	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 4.5 V, I_D = 5.4 A$ $V_{GS} = 2.5 V, I_D = 4.9 A$		23 33	35 40	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 4.5 V$, $V_{DS} = 5 V$	20			Α
		V _{GS} = 2.5 V, V _{DS} = 5 V	8			
g _{FS}	Forward Transconductance	$V_{DS} = 10 V$, $I_D = 5.4 A$		11		S
- Dvnamio	c Characteristics			1	1	
C _{iss}	Input Capacitance	$V_{DS} = 10 V$, $V_{GS} = 0 V$,		710		pF
Coss	Output Capacitance	f = 1.0 MHz	-	173		pF
C _{rss}	Reverse Transfer Capacitance	1		84		pF
	ng Characteristics (Note 2)			1	1	
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 6 V$, $I_D = 1 A$,		7	14	ns
tr	Turn–On Rise Time	$V_{GS} = 4.5 V$, $R_{GEN} = 6 \Omega$		17	31	ns
t _{d(off)}	Turn–Off Delay Time	-		16	29	ns
t _f	Turn–Off Fall Time	1		3	6	ns
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V$, $I_F = 1.5 A$, $dI_F/dt = 100A/\mu s$		14	100	ns
Qg	Total Gate Charge	$V_{DS} = 6 V$, $I_D = 5.4 A$,		7	10	nC
Q _{gs}	Gate–Source Charge	V _{GS} = 4.5 V		1.5		nC
Q _{gd}	Gate–Drain Charge	1		1.2		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
l _s	Maximum Continuous Drain–Source				1.25	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.25 A$ (Note 2)		0.7	1.2	V

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 87°C/W when mounted on a 1in² pad of 2 oz copper.



b) 114°C/W when mounted on a minimum pad of 2 oz copper.


Scale 1 : 1 on letter size paper

c)

Si6426DQ

Si6426DQ

Si6426DQ

TRADEMARKS				
8 8	ed and unregistered tradema austive list of all such trader	arks Fairchild Semiconductor on marks.	owns or is authorized to us	se and is
ACEx [™] Bottomless [™] CoolFET [™] <i>CROSSVOLT</i> [™] DenseTrench [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Series [™]	FAST [®] FASTr [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] ISOPLANAR [™] LittleFET [™] MicroFET [™] MicroPak [™] MICROWIRE [™]	OPTOLOGIC [™] OPTOPLANAR [™] PACMAN [™] POP [™] Power247 [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SILENT SWITCHER [®]	SMART START [™] STAR*POWER [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] TruTranslation [™] UHC [™] UltraFET [®]	VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.