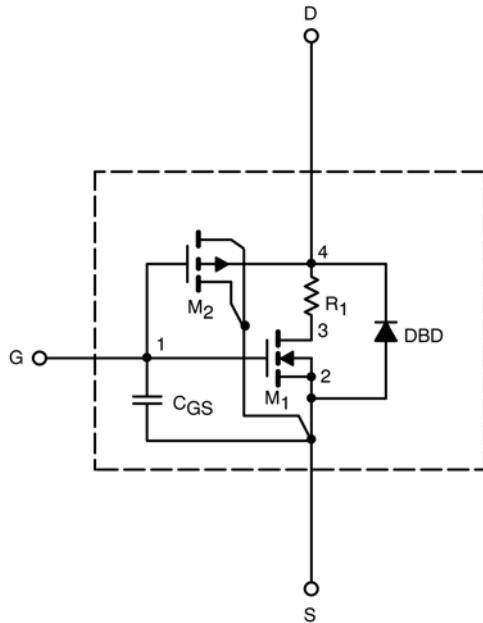


N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

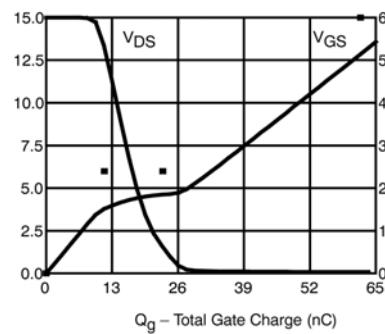
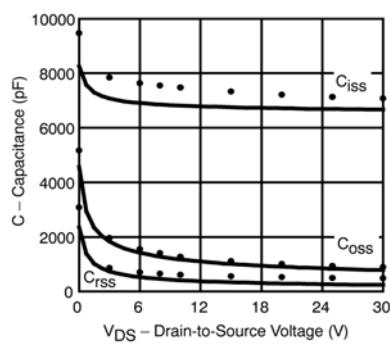
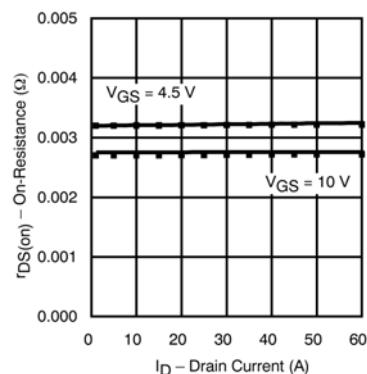
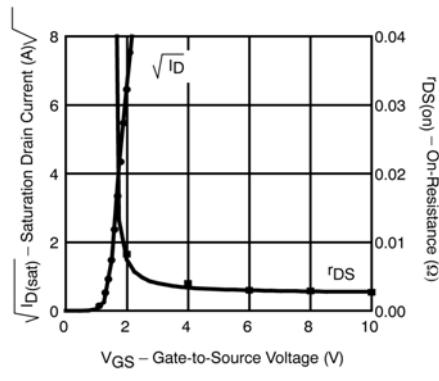
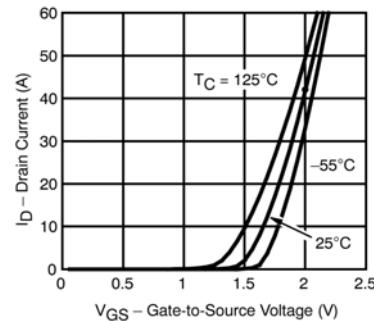
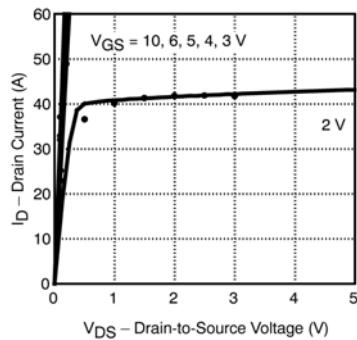
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPICE Device Model Si7380DP

Vishay Siliconix







SPECIFICATIONS ($T_J = 25^\circ\text{C}$ UNLESS OTHERWISE NOTED)

Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(\text{th})}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	0.81		V
On-State Drain Current ^a	$I_{D(\text{on})}$	$V_{DS} \geq 5 \text{ V}$, $V_{GS} = 10 \text{ V}$	1652		A
Drain-Source On-State Resistance ^a	$r_{DS(\text{on})}$	$V_{GS} = 10 \text{ V}$, $I_D = 29 \text{ A}$	0.0028	0.0027	Ω
		$V_{GS} = 4.5 \text{ V}$, $I_D = 25 \text{ A}$	0.0032	0.0032	
Forward Transconductance ^a	g_{fs}	$V_{DS} = 6 \text{ V}$, $I_D = 29 \text{ A}$	110	110	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 4.5 \text{ A}$, $V_{GS} = 0 \text{ V}$	0.75	0.68	V
Dynamic^b					
Total Gate Charge	Q_g	$V_{DS} = 15 \text{ V}$, $V_{GS} = 4.5 \text{ V}$, $I_D = 29 \text{ A}$	54	46	nC
Gate-Source Charge	Q_{gs}		11.5	11.5	
Gate-Drain Charge	Q_{gd}		11.5	11.5	
Turn-On Delay Time	$t_{d(\text{on})}$		32	20	
Rise Time	t_r	$V_{DD} = 15 \text{ V}$, $R_L = 15 \Omega$ $I_D \geq 1 \text{ A}$, $V_{GEN} = 4.5 \text{ V}$, $R_G = 6 \Omega$	19	15	Ns
Turn-Off Delay Time	$t_{d(\text{off})}$		185	220	
Fall Time	t_f		61	85	
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 2.9 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$	29	55	

Notes

- a. Pulse test; pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.
- b. Guaranteed by design, not subject to production testing.

COMPARISON OF MODEL WITH MEASURED DATA (T_J=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com