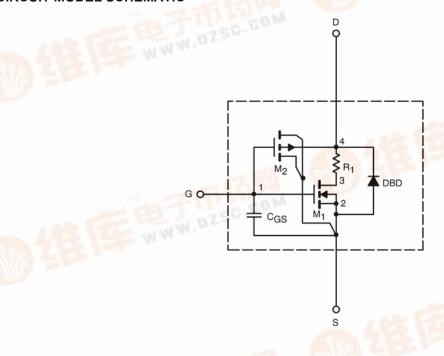


SPICE Device Model Si7446DP Vishay Siliconix

N-Channel 30-V (D-S), Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

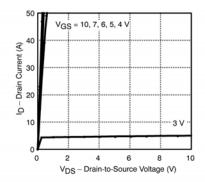
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

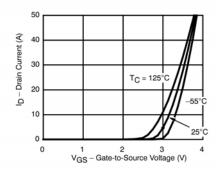
Document Number: 71720 www.vishay.com

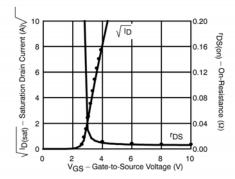
SPICE Device Model Si7446DP

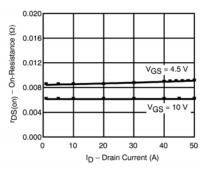
Vishay Siliconix

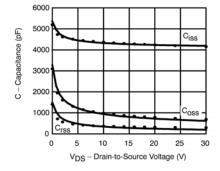
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.89	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V	759	Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 19 A	0.0061	Ω
		V_{GS} = 4.5 V, I_{D} = 17 A	0.0086	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 19 A	55	S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = 4.3 \text{ A}, V_{GS} = 0 \text{ V}$	0.83	V
Dynamic ^b				
Total Gate Charge ^b	Q_g	V_{DS} = 15 V, V_{GS} = 5 V, I_{D} = 19 A	36	nC
Gate-Source Charge ^b	Q_{gs}		14	
Gate-Drain Charge ^b	Q_{gd}		12	
Turn-On Delay Time ^b	t _{d(on)}	V_{DD} = 15 V, R_L = 15 Ω $I_D \cong$ 1A, V_{GEN} = 10 V, R_G = 6 Ω	18	ns
Rise Time ^b	t _r		37	
Turn-Off Delay Time ^b	t _{d(off)}		39	
Fall Time ^b	t _f		108	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = 2.3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	49	

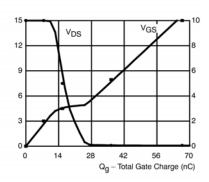

Document Number: 71720 www.vishay.com


Notes a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7446DP Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71720 www.vishay.com