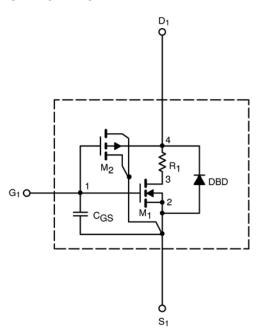


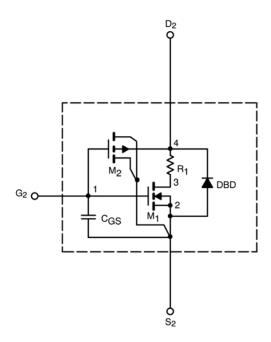
SPICE Device Model Si7922DN Vishay Siliconix

Dual N-Channel 100-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

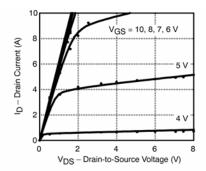
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

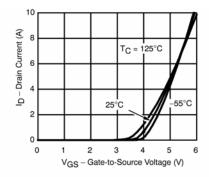
Document Number: 70322 www.vishay.com 31-May-04 1

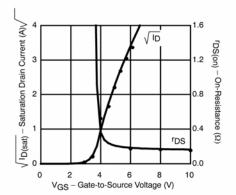
SPICE Device Model Si7922DN

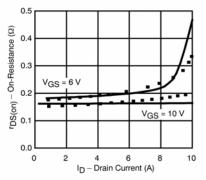
Vishay Siliconix

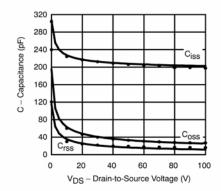
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μA	2.6		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	29		Α
Drain-Source On-State Resistance ^a	r	V _{GS} = 10 V, I _D = 2.5 A	0.16	0.16	Ω
	r _{DS(on)}	$V_{GS} = 6 \text{ V}, I_D = 2.3 \text{ A}$	0.18	0.19	
Forward Transconductance ^a	g _{fs}	V_{DS} = 10 V, I_{D} = 2.5 A	4.8	5.3	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 2.2 \text{ A}, V_{GS} = 0 \text{ V}$	0.73	0.8	V
Dynamic ^b					
Total Gate Charge	Qg	V_{DS} = 50 V, V_{GS} = 10 V, I_{D} = 2.5 A	4.8	5.2	nC
Gate-Source Charge	Q_{gs}		1.1	1.1	
Gate-Drain Charge	Q_{gd}		1.9	1.9	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 50 V, R _L = 50 Ω I _D \cong 1 A, V _{GEN} = 4.5 V, R _G = 6 Ω	7	7	Ns
Rise Time	t _r		14	11	
Turn-Off Delay Time	t _{d(off)}		8	8	
Fall Time	t _f		13	11	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = 2.2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	32	40	

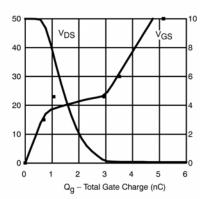

www.vishay.com Document Number: 70322


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7922DN Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 70322 www.vishay.com 31-May-04

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com