查询SL6679TP1Q供应商

SEMICONDUCTOR

Supersedes September 1996 version, DS4410 - 1.5

The SL6679 is an advanced Direct Conversion FSK Data Receiver for operation up to 450 MHz. The device integrates all functions to convert a binary FSK modulated RF signal into a demodulated data stream.

Adjacent channel rejection is provided using tuneable gyrator filters. RF and audio AGC functions assist operation when large interfering signals are present and an automatic frequency control (AFC) function is provided to extend centre frequency acceptance.

FEATURES

- Very Low Power Operation from Single Cell
- Superior Sensitivity
- Operation at 512, 1200 and 2400 Baud
- On Chip 1 Volt Regulator
- 1mm Height Miniature Package
- Automatic Frequency Control Function
- Programmable Post Detection Filter
- AGC Detection Circuitry
- Power Down Function
- Battery Strength Indicator

APPLICATIONS

- Pagers, including Credit Card, PCMCIA and Watch Pagers
- Low Data Rate Receivers, e.g. Security Systems

ORDERING INFORMATION

SL6679/KG/TP1N

1mm TQFP device, baked and dry packed, supplied in trays SL6679/KG/TP1Q 1mm TQFP device, baked and dry packed, supplied in tape and reel

SL6679

Direct Conversion FSK Data Receiver

Preliminary Information

DS4410 - 2.1 April 1998

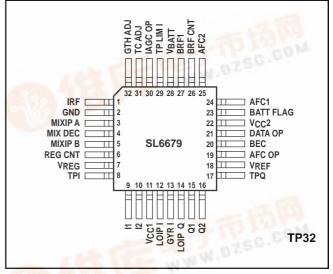


Fig. 1 Pin identification diagram (top view). See Table 1 for pin descriptions

ABSOLUTE MAXIMUM RATINGS

Storage temperature	-55°C to+150°C
Operating temperature	-10°C to+55°C
Maximum voltage on any pin w.r.t. any	+4V
other pin, subject to the following conditions:	
Current, pin 3 (MIXIP), pin 5 (MIXPB)	, <5ma
pin 12 (LOIPI) and pin 14 (LOIPB)	
Most negative voltage on any pin	-0.5V w.r.t. gnd

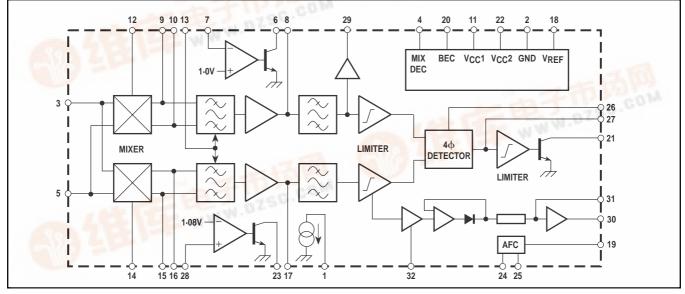


Fig. 2 Block diagram of SL6679

Pin number	Pin name	Pin description
1	IRF	LNA current source
2	GND	Ground
3	MIXIP A	Mixer input A
4	MIX DEC	Mixer biasing decouple
5	MIXIP B	Mixer input B
6	REG CNT	1V regulator control external PNP drive
7	VREG	1V regulator output voltage
8	TPI	I channel pre-gyrator filter test point.
9	11	Mixer output, I channel
10	12	Mixer output, I channel
11	VCC1	Positive supply 1
12	LOIP I	LO input channel I
13	GYRI	Gyrator current adjust pin
14	LOIP Q	LO input channel Q
15	Q1	Mixer output, Q channel
16	Q2	Mixer output, Q channel
17	TPQ	Q channel pre-gyrator filter test point
18	VREF	Reference voltage
19	AFC OP	AFC output
20	BEC	Battery economy control
21	DATA OP	Data output pin
22	VCC2	Positive supply 2
23	BATT FLAG	Battery flag output
24	AFC1	AFC characteristic defining pin
25	AFC2	AFC characteristic defining pin
26	BRF CNT	Bit rate filter control
27	BRF1	Bit rate filter 1, output from detector
28	VBATT	Battery flag input voltage
29	TP LIM I	I channel limiter (post gyrator filter) test point, output only
30	IAGC OP	Audio AGC output current
31	TC ADJ	Audio AGC time constant adjust
32	GTH ADJ	Audio AGC gain and threshold adjust. RSSI signal indicator

Table 1 SL6679 pin descriptions

ELECTRICAL CHARACTERISTICS (1)

Electrical Characteristics (1) are guaranteed over the following range of operating conditions unless otherwise stated $T_{AMB} = +25^{\circ}C$, $V_{CC}1 = 1.3V$, $V_{CC}2 = 2.7V$

		Value					
Characteristic	Pin	Min.	Typ. Max. Units		Units	Conditions	
Supply voltage, V _{CC} 1	11	0.95	1.3	2.7	V	V _{CC} 1≤V _{CC} 2−0.8V	
Supply voltage, V _{CC} 2	22	1.9	2.7	3.5	V		
Supply current, I _{CC} 1	11	1.20	1.60	2.2	mA	Including IRF	
Supply current, I _{CC} 2	22	260	390	490	μA	Ŭ	
1 volt regulator, V _{REG}	7	0.95	1.0	1.05	· v	$I_{LOAD} = 3mA$, external PNP($\beta \ge 100$, $V_{CE} = 0.1V$)	
1 volt regulator load current	7	0.25		3	mA	External PNP ($h_{FE} \ge 100, V_{CE} = 0.1V$)	
LNA current source, IRF	1	375	500	700	μA	PTAT, voltage on pin $1 = 0.3V$ and $1.3V$	
Reference voltage, V _{REF}	18	1.15	1.25	1.31	V	Typical temperature coefficient = $+0.1$ mV/°C	
V _{REF} source current	18			20	μA		
V _{REF} sink current	18			1.0	μA		
Data Amplifier							
DATA OP sink current	21	25			μA	Output logic low, pin 21 voltage = $0.3V$	
DATA OP leakage current	21			1.0	μA	Output logic high, pin 21 voltage = $V_{CC}2$	
Output mark:space ratio	21	7:9		9:7		Preamble at 1200 baud, $\Delta f = 4kHz$,	
						pin $26 = 0V$, BRF capacitor = $560pF$,	
						DATA OP pullup resistor = $200k\Omega$	
Battery Economy							
Power down I _{CC} 1	11		0.5	10	μA	Pin 20 = logic low	
Power down I _{CC} 2	22		2.0	10	μA	Pin 20 = logic low	
BEC input logic high	20	V _{cc} 2-0.3V		V _{cc} 2	V.	Powered up	
BEC input logic low	20	0		0.3	V	Powered down	
BEC input current	20	-1.0		1.0	μA	Powered up	
BEC input current	20	-1.0		1.0	μA	Powered down	
Battery Flag							
V _{BATT} trigger point	28	1.04	1.08	1.12	V	Current sunk by pin 23 = $1\mu A$	
BATT FLAG sink current	23			1.0	μA	Pin 28 voltage = 1.04V	
BATT FLAG sink current	23	1.0			μΑ	Pin 28 voltage = 1.12V	
BATT FLAG sink current	23	25			μΑ	Pin 28 voltage = 1.14V	
V _{BATT} input voltage	28			2.0	v.		
V _{BATT} input current	28	-1.0		1.0	μA	$V_{BATT} = 1.14V$	
V _{BATT} input current	28	-1.0		1.0	μΑ	$V_{BATT} = 1.04V$	

Continued...

ELECTRICAL CHARACTERISTICS (1) (Cont.)

Electrical Characteristics (1) are guaranteed over the following range of operating conditions unless otherwise stated $T_{AMB} = +25^{\circ}C$, $V_{CC}1 = 1.3V$, $V_{CC}2 = 2.7V$

			Value			
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions
Mixers						
LO DC bias voltage	12,14		V _{cc} 1		V	
Gain to TPI	3,5,8,12	38	42	46	dB	LO inputs (12, 14) driven in quadrature: 45mVrms at 450MHz, CW. Mixer inputs (3, 5) driven differentially: 0.45mVrms at 450.004MHz, CW.
Gain to TPQ	3,5,14, 17	38	42	46	dB	As gain to TPI
Match of gain to TPI and TPQ	3,5,8, 12,14,17	-1	0	+1	dB	As gain toTPI
Audio AGC						
IAGC OP max. sink current	30		45		μA	TPI, TPQ signals limiting
IAGC OP leakage current	30			1	μA	No signal applied
AFC						
AFC DC current, I _{AFC4k5}	19		0.0		μA	$f_{C} = f_{LO} + 4.5 \text{kHz}, CW$
AFC DC current	19	I _{AFC4k5} +0⋅2	I _{AFC4k5} +0⋅7		μA	$f_{\rm C} = f_{\rm LO} + 2.5 \text{kHz}, \text{CW}$
AFC DC current	19		I _{AFC4k5} −0·9	I _{AFC4k5} −0·2	μA	$f_{C} = f_{LO} + 6.5 \text{kHz}, \text{CW}$
Bit Rate Filter Control						
BRF CNT input logic high	26	V _{CC} 2 −0·3		V _{CC} 2	V	2400 baud
BRF CNT input logic low	26	0		0.1	V	1200 baud
Tristate I/P current window	26	-0.4		+0.4	μA	512 baud
BRF 1 output current	27		3.5		μΑ	Pin 26 logic high
BRF 1 output current	27		1.7		μΑ	Pin 26 logic low
BRF 1 output current	27		0.74		μΑ	Pin 26 logic tristate (open circuit)
BRF CNT input high current		-7.5		+15	μΑ	
BRF CNT input low current	26	-7.5		+7.5	μA	

ELECTRICAL CHARACTERISTICS (2)

Electrical Characteristics (2) are guaranteed over the following range of operating conditions unless otherwise stated. Characteristics are tested at room temperature only and are guaranteed by characterisation test or design. $T_{AMB} = -10^{\circ}C$ to $+55^{\circ}C$, $V_{CC}1 = 1.4V$ to 2.0V, $V_{CC}2 = 2.3V$ to 3.2V. $V_{CC}1 < V_{CC}2 - 0.8V$

		Value					
Characteristic	Pin	Min.	Тур. Мах.		Units	Conditions	
Supply voltage, V _{CC} 1	11	0.95	1.3	2.7	V	V _{CC} 1≤V _{CC} 2−0⋅8V at ≥25°C only	
Supply voltage, V _{CC} 2	22	1.9	2.7	3.5	V		
Supply current, I _{CC} 1	11		1.60	2.4	mA	Including IRF	
Supply current, I _{CC} 2	22		350	510	μA		
1 volt regulator, V _{REG}	7	0.93	1.0	1.05	V	$I_{LOAD} = 3mA$, external PNP($\beta \ge 100$, $V_{CE} = 0.1V$)	
1 volt regulator load current	7	0.25		3	mA	External PNP($h_{FE} \ge 100, V_{CE} = 0.1V$)	
LNA current source, IRF	1	375	500	800	μA	PTAT, voltage on pin $1 = 0.3V$ and $1.3V$	
Reference voltage, V _{REF}	18	1.13	1.25	1.33	V	Typical temperature coefficient = $+0.1$ mV/°C	
V _{REF} source current	18			18	μA		
V _{REF} sink current	18			0.8	μA		
Turn-on time			9		ms	Stable data O/P when 3dB above sensitivity.	
						$C_{VREF} = 2 \cdot 2 \mu F$	
Turn-off time			2		ms	Fall to 10% of steady state $I_{CC}1$. $C_{VREF} = 2.2 \mu F$	
Data Amplifier							
DATA OP sink current	21	22			μA	Output logic low, pin 21 voltage = $0.3V$	
DATA OP leakage current	21			1.5	μA	Output logic high, pin 21 voltage = $V_{CC}2$	
Output mark:space ratio	21	7:9		9:7		Preamble at 1200 baud, $\Delta f = 4kHz$,	
						pin $26 = 0V$, BRF capacitor = $560pF$,	
						DATA OP pullup resistor = $200k\Omega$	
Battery Economy							
Power down I _{CC} 1	11		0.5	12	μA	Pin 20 = logic low	
Power down I _{CC} 2	22		2.0	12	μA	Pin 20 = logic low	
BEC input logic high	20	$V_{CC}2-0.3V$		V _{cc} 2	V	Powered up	
BEC input logic low	20	0		0.3	V	Powered down	
BEC input current	20	-1.5		1.5	μA	Powered up	
BEC input current	20	-1.5		1.5	μA	Powered down	
Battery Flag							
V _{BATT} trigger point	28	1.04	1.08	1.12	V	Current sunk by pin 23 = $1\mu A$	
BATT FLAG sink current	23			2	μA	Pin 28 voltage = 1.04V	
BATT FLAG sink current	23	2			μA	Pin 28 voltage = 1.12V	
BATT FLAG sink current	23	20			μA	Pin 28 voltage = 1.14V	
V _{BATT} input voltage	28			2.0	V		
V _{BATT} input current	28	-1.5		1.5	μA	$V_{BATT} = 1.14V$	
V _{BATT} input current	28	-1.5		1.5	μA	$V_{BATT} = 1.04V$	

Continued...

ELECTRICAL CHARACTERISTICS (2) (Cont.)

Electrical Characteristics (2) are guaranteed over the following range of operating conditions unless otherwise stated. Characteristics are tested at room temperature only and are guaranteed by characterisation test or design. $T_{AMB} = -10^{\circ}C$ to $+55^{\circ}C$, $V_{CC}1 = 1.4V$ to 2.0V, $V_{CC}2 = 2.3V$ to 3.2V. $V_{CC}1 < V_{CC}2 - 0.8V$

			Value				
Characteristic	Pin	Min.	Тур.	Max.	Units	Conditions	
Mixers							
LO DC bias voltage	12,14		V _{cc} 1		V		
Gain to TPI	3,5,8,12	35	42	46	dB	LO inputs (12, 14) driven in quadrature: 45mVrms at 450MHz, CW.	
						Mixer inputs (3, 5) driven differentially: 0-45mVrms at 450-004MHz, CW.	
Gain to TPQ	3,5,14, 17	35	42	46	dB	As gain to TPI	
Match of gain to TPI and TPQ	3,5,8, 12,14,17	-1.5	0	+1.5	dB	As gain toTPI	
Audio AGC							
IAGC OP max. sink current	30	30	45	70	μA	TPI, TPQ signals limiting	
IAGC OP leakage current	30	00		1	μΑ	No signal applied	
AFC							
AFC DC current, I _{AFC4k5}	19		0.0		μA	$f_{C} = f_{LO} + 4.5 kHz, CW$	
AFC DC current	19	I _{AFC4k5} +0⋅1	I _{AFC4k5} +0∙7		μA	$f_{C} = f_{LO} + 2.5 \text{kHz}, \text{CW}$	
AFC DC current	19		I _{AFC4k5} −0·9	I _{AFC4k5} −0·1	μA	$f_{C} = f_{LO} + 6.5 \text{kHz}, \text{CW}$	
Bit Rate Filter Control							
BRF CNT input logic high	26	V _{CC} 2 −0⋅3		V _{cc} 2	V	2400 baud	
BRF CNT input logic low	26	0		0.1	V	1200 baud	
Tristate I/P current window	26	-0.4		+0-4	μA	512 baud	
BRF 1 output current	27		3.5		μA	Pin 26 logic high	
BRF 1 output current	27		1.7		μΑ	Pin 26 logic low	
BRF 1 output current	27		0.74		μΑ	Pin 26 logic tristate (open circuit)	
BRF CNT input high current		-10		+10	μΑ		
BRF CNT input low current	26	-10		+10	μA		

RECEIVER CHARACTERISTICS (450MHz)

Receiver Characteristics (450MHz) are guaranteed over the following range of operating conditions unless otherwise stated. Characteristics are not tested but are guaranteed by characterisation test or design. All measurements made using the characterisation circuit Fig. 5. See Application Note AN137 for details of test method.

 $T_{AMB} = -10^{\circ}$ C to $+55^{\circ}$ C, $V_{CC}1 = 1.04$ V to 2.0V, $V_{CC}2 = 2.3$ V to 3.2V, $V_{CC}1 < V_{CC}2 - 0.8$ V, carrier frequency = 450MHz, BER = 1 in 30, AFC open loop. LNA gain set such that an RF signal of -73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p-p at TPI and TPQ. LNA noise figure <2dB

		Value					
Characteristic	Min.	Тур.	Max.	Units	Conditions		
Sensitivity		-128 -126 -123	-122 -119	dBm dBm dBm	512bps, $\Delta f = 4.5$ kHz 1200bps, $\Delta f = 4.0$ kHz 2400bps, $\Delta f = 4.5$ kHz. LO = -15 dBm		
Intermodulation, IP3	50 48	57 55 53		dB dB dB	512bps, $\Delta f = 4.5$ kHz 1200bps, $\Delta f = 4.0$ kHz 2400bps, $\Delta f = 4.5$ kHz. LO = -15 dBm. Channel spacing 25kHz		
Adjacent Channel	62•5 60	70 69 66		dB dB dB	512bps, $\Delta f = 4.5$ kHz 1200bps, $\Delta f = 4.0$ kHz 2400bps, $\Delta f = 4.5$ kHz. LO = -15 dBm. Channel spacing 25kHz		
Deviation Acceptance Up Down Up Down Up Down	+1.8 -2.7 +1.7 -3	+1.9 -2.5 +3.0 -2.3 +2.5 -2.3	+4.6 -1.7 +4.6 -1.7	kHz kHz kHz kHz kHz kHz	512bps, $\Delta f = 4.5$ kHz, no AFC 512bps, $\Delta f = 4.5$ kHz, no AFC 1200bps, $\Delta f = 4.0$ kHz, no AFC 1200bps, $\Delta f = 4.0$ kHz, no AFC 2400bps, $\Delta f = 4.5$ kHz, no AFC 2400bps, $\Delta f = 4.5$ kHz, no AFC		
Centre Frequency Acceptance	±2•0 ±2•0	±2·8 ±2·5 ±2·5	±2·9 ±3·2	kHz kHz kHz	512bps, $\Delta f = 4.5$ kHz, no AFC 1200bps, $\Delta f = 4.0$ kHz, no AFC 2400bps, $\Delta f = 4.5$ kHz, no AFC		
AFC Capture Range (AFC Closed Loop)		±4 ±3·5 ±4		kHz kHz kHz	512bps, $\Delta f = 4.5$ kHz. All at sensitivity +3dB or above 1200bps, $\Delta f = 4.0$ kHz. All at sensitivity +3dB or above 2400bps, $\Delta f = 4.5$ kHz. All at sensitivity +3dB or above		

RECEIVER CHARACTERISTICS (280MHz)

Receiver Characteristics (280MHz) are guaranteed over the following range of operating conditions unless otherwise stated. Characteristics are not tested but are guaranteed by characterisation test or design. All measurements made using the characterisation circuit Fig. 5. See Application Note AN137 for details of test method.

 $T_{AMB} = -10^{\circ}C$ to $+55^{\circ}C$, $V_{CC}1 = 1.04V$ to 2.0V, $V_{CC}2 = 2.3V$ to 3.2V, $V_{CC}1 < V_{CC}2 - 0.8V$, carrier frequency = 280MHz, BER = 1 in 30, AFC open loop. LNA gain set such that an RF signal of -73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p-p at TPI and TPQ. LNA noise figure <2dB

		Value			Conditions		
Characteristic	Min.	Тур.	Max.	Units			
Sensitivity	-128 -127	-129 -127 -124	-124 -121	dBm dBm dBm	512bps, Δf = 4·5kHz 1200bps, Δf = 4·0kHz 2400bps, Δf = 4·5kHz. LO = -15dBm		
Intermodulation, IP3	52 49	57 56 53.5	60 57	dB dB dB	512bps, $\Delta f = 4.5$ kHz 1200bps, $\Delta f = 4.0$ kHz 2400bps, $\Delta f = 4.5$ kHz. LO = -15 dBm. Channel spacing 25kHz		
Adjacent Channel	62·5 60	72 69 60	80 77	dB dB dB	512bps, $\Delta f = 4.5$ kHz 1200bps, $\Delta f = 4.0$ kHz 2400bps, $\Delta f = 4.5$ kHz. LO = -15 dBm. Channel spacing 25kHz		
Deviation Acceptance Up Down Up Down Up Down	+1.8 -3.8 +1.7 -3.0	+1.9 -2.5 +3.0 -2.9 +2.5 -2.3	+4.6 -1.7 +4.6 -1.7	kHz kHz kHz kHz kHz kHz	512bps, $\Delta f = 4.5$ kHz, no AFC 512bps, $\Delta f = 4.5$ kHz, no AFC 1200bps, $\Delta f = 4.0$ kHz, no AFC 1200bps, $\Delta f = 4.0$ kHz, no AFC 2400bps, $\Delta f = 4.5$ kHz, no AFC 2400bps, $\Delta f = 4.5$ kHz, no AFC		
Centre Frequency Acceptance	±2•0 ±2•0	±3·1 ±2·9 ±2·5	±3·1 ±3·2	kHz kHz kHz	512bps, $\Delta f = 4.5$ kHz, no AFC 1200bps, $\Delta f = 4.0$ kHz, no AFC 2400bps, $\Delta f = 4.5$ kHz, no AFC		
AFC Capture Range (AFC Closed Loop)		±4 ±3·5 ±4		kHz kHz kHz	512bps, $\Delta f = 4.5$ kHz. All at sensitivity +3dB or above 1200bps, $\Delta f = 4.0$ kHz. All at sensitivity +3dB or above 2400bps, $\Delta f = 4.5$ kHz. All at sensitivity +3dB or above		
1MHz Blocking	67 65	75 75 73	78 76	dB dB dB	512bps, $\Delta f = 4.5$ kHz 1200bps, $\Delta f = 4.0$ kHz 2400bps, $\Delta f = 4.5$ kHz. LO = -15dBm		
Mark:space amplitude modulation acceptance	20	23		dB	2400bps, R14 = 120k Ω (Fig. 5), room temperature only. See Note.		

NOTE

The mark:space amplitude acceptance is the maximum amplitude ratio which can occur (for example due to Simulcast conditions) with 2400bps, using a POCSAG decoder with R14 = $120k\Omega$ to achieve an 80% call rate and the lower amplitude set at a sensitivity of +20dB. the maxima and minima of the amplitude modulation correspond to the positive and negative (or vice versa) frequency shifts of the FSK modulation.

OPERATION OF SL6679

Low Noise Amplifier

To achieve optimum performance it is necessary to incorporate a Low Noise RF Amplifier at the front end of the receiver. This is easily biased using the on-chip voltages and current source provided. All voltages and current sources used for bias of the RF amplifier, receiver and mixers should be RF decoupled using 1nF capacitors. The receiver also requires a stable Local Oscillator at the required channel frequency.

Local Oscillator

The Local Oscillator signal is applied to the device in phase quadrature. This can be achieved with the use of two RC networks operating at their $-3dB/45^{\circ}$ transfer characteristic. The RC characteristics for I and Q channels are combined to give a full 90° phase differential between the LO ports of the device. Each LO port also requires an equal level of drive from the oscillator. This is achieved by forming the two RC networks into a power divider.

Gyrator Filters

The on-chip filters include an adjustable gyrator filter. This may be adjusted by changing the value of the resistor connected between pin 13 and GND. This allows adjustment of the filters' cutoff frequency and allows for compensation for possible process variations.

Audio AGC (Fig. 3)

The Audio AGC consists of a current sink which is controlled by the audio (baseband) signal. It has three parameters that may be controlled by the user. These are the attack (turn on) time, decay (duration) time and threshold level. The attack time is simply determined by the value of the external capacitor connected to TCADJ. The external capacitor is in series with an internal 100k Ω resistor and the time constant of this circuit dictates the attack time of the AGC.

i.e. $t_{ATTACK} = 100k\Omega \times C18$

The decay time is determined by the external resistor connected in parallel with the capacitor CTC. The decay time is simply

$t_{DECAY} = R17 \times C18$

When a large audio (baseband) signal is incident on the input to the AGC circuit, the variable current source is turned on. This causes a voltage drop across R13. The voltage potential between V_{REF} and the voltage on pin 31 causes a current to flow in pin 30. This charges up C18 through the 100k Ω internal resistor. As the voltage across the capacitor increases, a current source is turned on and this sinks current from pin 32. The current sink on pin 32 can be used to drive

the external AGC circuit by causing a PIN diode to conduct, reducing the signal to the RF amplifier.

RF AGC

The RF AGC is an automatic gain control loop that protects the mixer's RF inputs, Pins 3 and 5, from large out of band RF signals. The loop consists of an RF received signal strength indicator which detect the signal at the inputs of the mixers. This RSSI signal is then used to control the LNA current source (pin 1).

Regulator

The on-chip regulator should be used in conjunction with a suitable PNP transistor to achieve regulation. As the transistor forms part of the regulator feedback loop the transistor should exhibit the following characteristics:

$$H_{FE}$$
>100 for V_{CE} > = 0.1

If no external transistor is used, the maximum current sourcing capability of the regulator is limited to 30μ A.

Automatic Frequency Control (Fig. 4)

The Automatic Frequency Control consists of a detection circuit which gives a current output at AFC OP whose magnitude and sign is a function of the difference between the local oscillator (f_{LO}) and carrier frequencies (f_C). This output current is then filtered by an off-chip integrating capacitor. The integrator's output voltage is used to control a voltage control crystal oscillator. This closes the AFC feedback loop giving the automatic frequency control function. For an FSK modulated incoming RF carrier, the AFC OP current's polarity is positive, i.e. current is sourced for $f_{LO} < f_C < f_{LO} + 4kHz$ and negative, i.e. current is sunk, for $f_{LO} > f_C > f_{LO} - 4kHz$. The magnitude of the AFC OP current is a function of frequency offset and the transmitted data's bit stream. If the carrier frequency, (f_C), equals the local oscillator frequency, (f_{LO}) then the magnitude of the current is zero.

BIT RATE FILTER CONTROL

The logic level on pin 26 controls the cutoff frequency of the 1st order bit rate for a given bit rate filter capacitor at pin 27. This allows the cutoff frequency to be changed between f_C , $2f_C$ and $0.43f_C$ through the logic level on pin 26. This function is achieved by changing the value of the current in the 4φ detector's output stage. A logic zero (0V to 0.1V) on pin 26 gives a cutoff frequency of f_C a logic one ($V_{CC}2-0.3V$ to $V_{CC}2$) gives a cutoff frequency of $2f_C$ and an open circuit at pin 26 gives a cutoff frequency of $0.43f_C$.

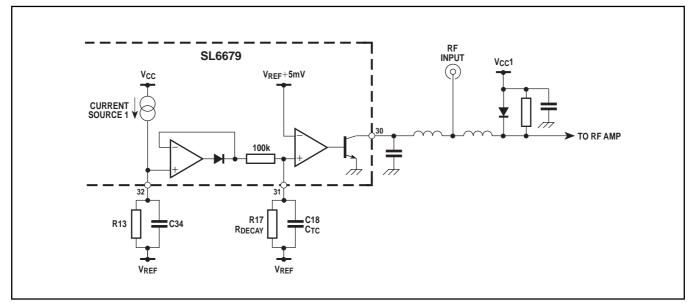


Fig.3 AGC schematic

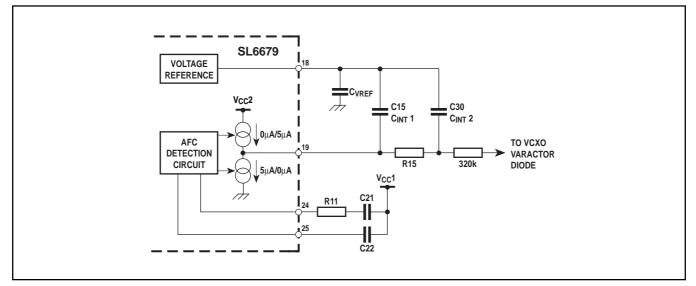


Fig. 4 AFC schematic

Peak deviation	Baud rate	Component (Fig. 4)			
(kHz)	(bps)	C22	C21	R11	
3.5	512, 1200, 2400	750pF	2∙0nF	15kΩ	
4	512, 1200, 2400	560pF	1.5nF	$15k\Omega$	
4.5	512, 1200, 2400	510pF	1⋅3nF	$15k\Omega$	
5	512, 1200, 2400	470pF	1⋅2nF	$15k\Omega$	
5.5	512, 1200, 2400	430pF	1∙1nF	$15k\Omega$	

Table 2 AFC defining components

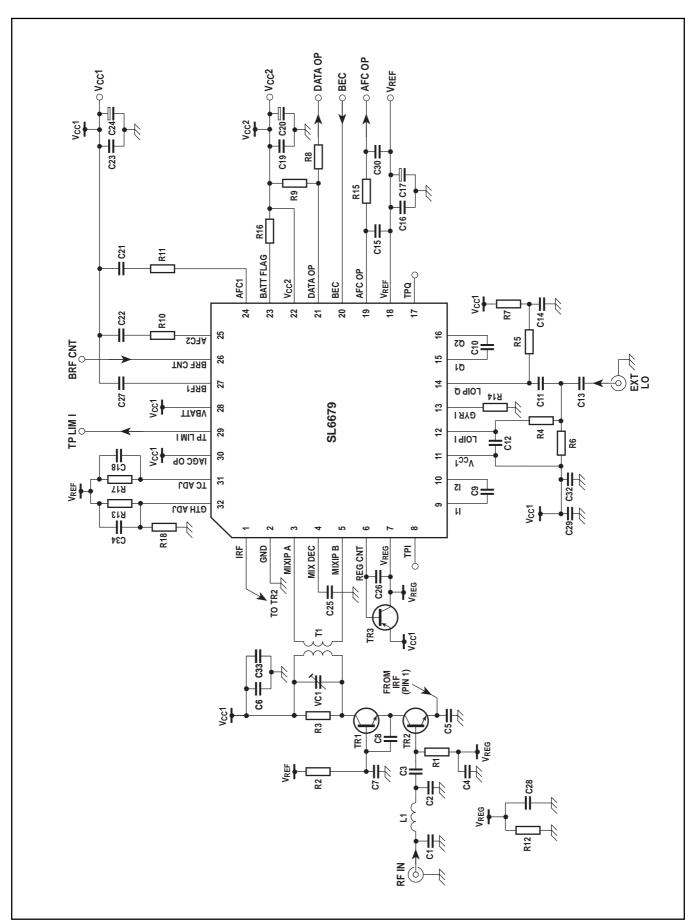


Fig. 5 SL6679 characterisation circuit (see Tables 3 and 4 for component values)

Resi	istors	Capacitors		Capacit	Capacitors (cont.)		Inductors
R1 R2 R3	4·7kΩ 4·7kΩ 1·5kΩ	C1 C2 C3	12pF O/C 220nF	C18 C19 C20	100nF 1nF 2⋅2μF	L1 T1	56nH 30nH 1:1, Coilcraft M1686-A
R4	100Ω	C4	1nF	C21	2.2μi 1.5nF		Transistors
R5	100Ω	C5	1nF	C22	560pF	TR1	Toshiba 2SC5065
R6	100Ω	C6	1nF	C23	1nF	TR2	Toshiba 2SC5065
R7	100Ω	C7	1nF	C24	2•2µF	TR3	FMMT589 (Zetex ZTX550)
R8	$430 k\Omega$	C8	3∙3pF	C25	100nF		
R9	$220k\Omega$	C9	4∙7nF	C26	100nF		
R10	S/C	C10	4∙7nF	C27	560pF		
R11	15kΩ	C11	4∙7pF	C28	1nF		
R12	2kΩ	C12	5∙6pF	C29	1nF		
R13	39kΩ	C13	1nF	C30	1nF		
R14	$180 k\Omega$	C14	1nF	C32	100nF		
R15	$430 k\Omega$	C15	1nF	C33	100nF		
R16	$220k\Omega$	C16	1nF	C34	100nF		
R17	$220k\Omega$	C17	2•2µF	VC1	3-10pF		
R18	3 · 3MΩ						

Table 3 Component list for	280MHz characterisation board

Resi	istors	Сара	acitors	Capacit	ors (cont.)		Inductors
R1 R2	4·7kΩ 4·7kΩ	C1 C2	0/C 0/C	C18 C19	100nF 1nF	L1 T1	47nH 16nH 1:1, Coilcraft Q4123-A
R3 R4	1·5kΩ 100Ω	C3 C4	1nF 1nF	C20 C21	2∙2µF 1∙5nF		Transistors
R5	100Ω	C5	1nF	C22	560pF	TR1	Philips BFT25A
R6	100Ω	C6	1nF	C23	1nF	TR2	Philips BFT25A
R7	100Ω	C7	1nF	C24	2•2µF	TR3	FMMT589 (Zetex ZTX550)
R8	$430 k\Omega$	C8	3∙3pF	C25	100nF		
R9	$220k\Omega$	C9	4∙7nF	C26	100nF		
R10	S/C	C10	4∙7nF	C27	560pF		
R11	15kΩ	C11	3∙9pF	C28	1nF		
R12	2kΩ	C12	3∙3pF	C29	1nF		
R13	39kΩ	C13	1nF	C30	1nF		
R14	$180 k\Omega$	C14	1nF	C32	100nF		
R15	$430 k\Omega$	C15	1nF	C33	100nF		
R16	$220k\Omega$	C16	1nF	C34	100nF		
R17	$220k\Omega$	C17	2•2µF	VC1	3-10pF		
R18	3.3MΩ						

Table 4 Component list for 450MHz characterisation board

TYPICAL DC PARAMETERS (FIGS. 6 TO 8)

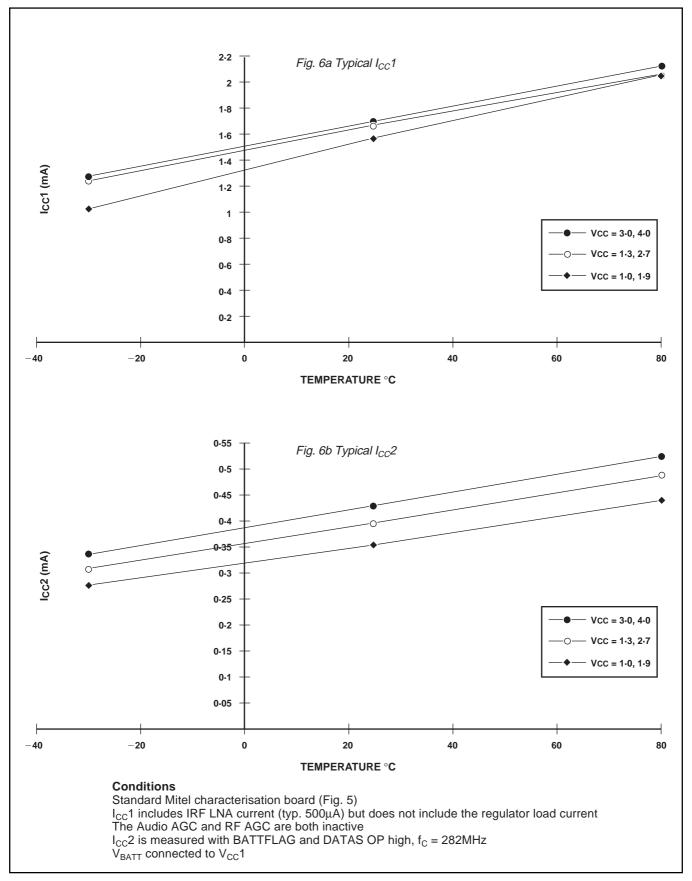


Fig. 6 Typical I_{CC} 1 and I_{CC} 2 v. supply and temperature

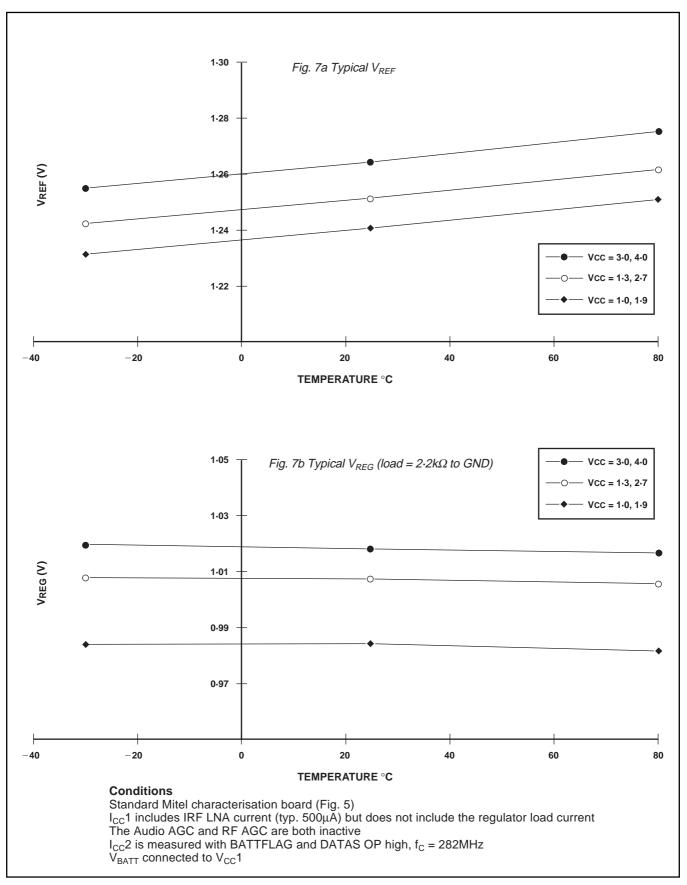


Fig. 7 Typical V_{REF} and V_{REG} v. supply and temperature

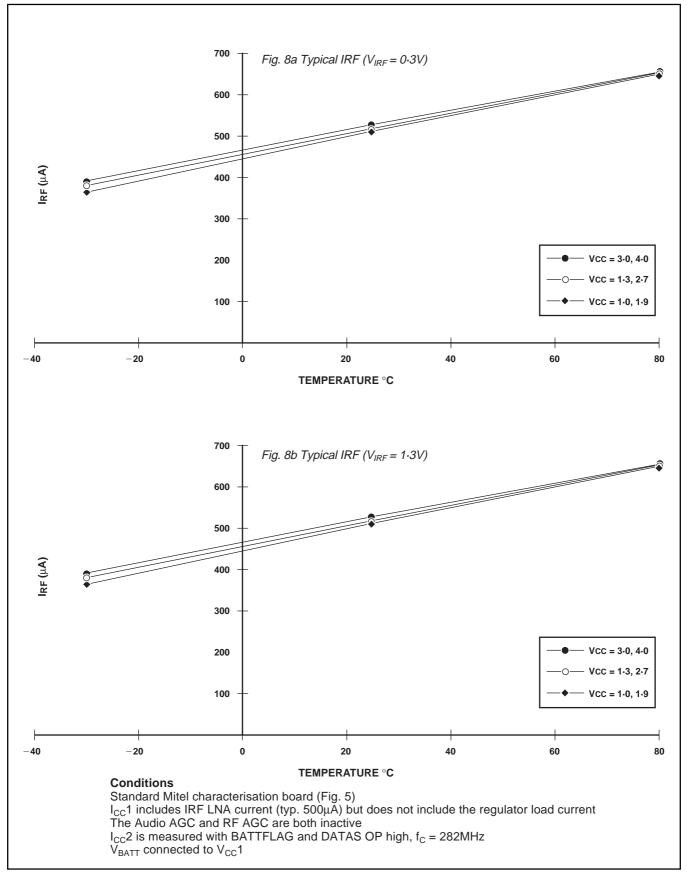


Fig. 8 Typical I_{RF} v. supply and temperature

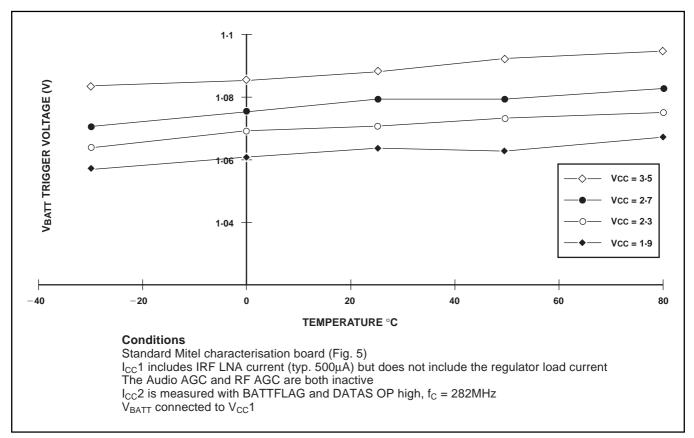


Fig. 9 Typical battery flag trigger voltage ($V_{BATTFLAG} = V_{CC}/2$) v. supply and temperature

TYPICAL AC PARAMETERS (FIGS. 10 TO 13)



Fig. 10 Typical sensitivity v. supply and temperature

Fig. 11 Typical IP3 and adjacent channel v. supply and temperature

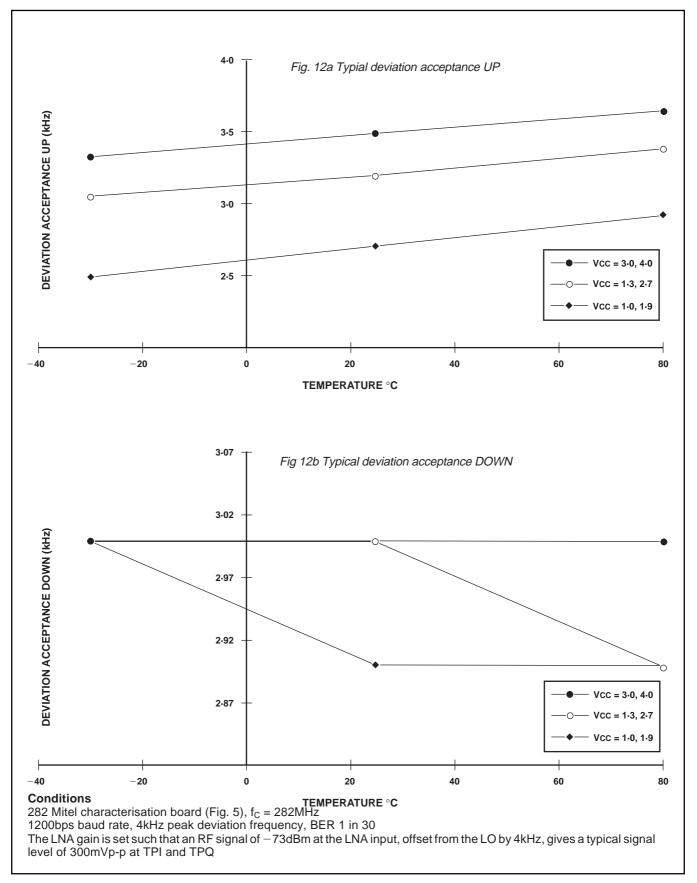


Fig. 12 Typical deviation acceptance v. supply and temperature

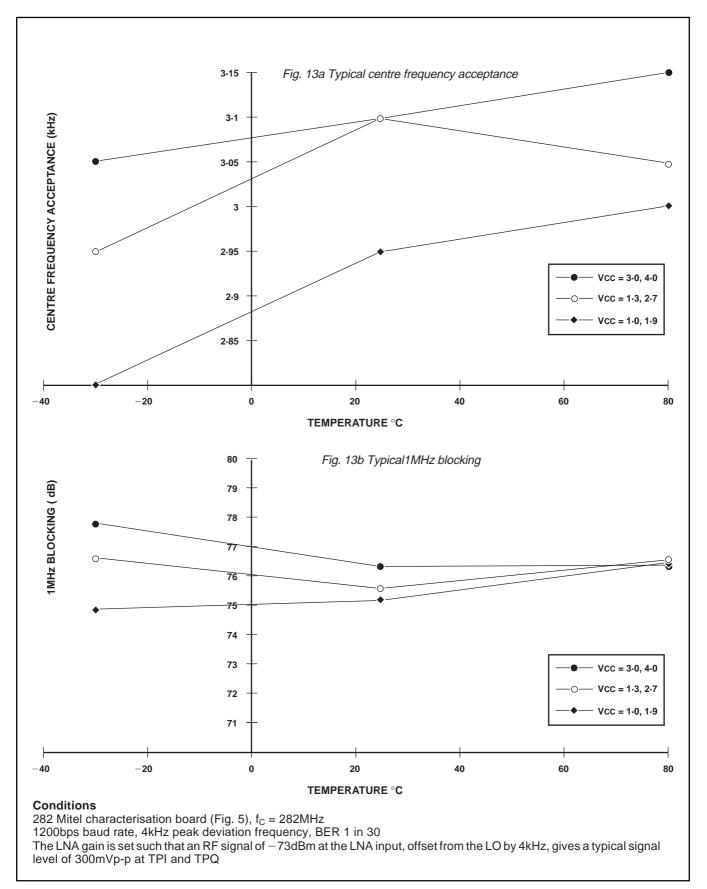


Fig. 13 Typical centre frequency acceptance and 1MHz blocking v. supply and temperature

Symbol Altern. Dimensions Control Dimensions A 2.52 In Inches A 2.52 NIN D 39.60 40.41 L 1.259 1.591 E 39.60 40.41 L 1.7.91 0.695 E 39.60 40.41 L 1.559 1.591 E 39.60 40.41 L 1.559 0.705 E 39.60 40.41 L 1.559 0.705 E 1.40 0.045 0.020 L1 1.42 0.045 0.020 L1 4.27 4.88 0.168 0.192 N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
NOTES:- 1 INDEX MARK INDICATES AT REF CORNER 2 PLATING BARS CAN APPEAR IN VARIOUS 2 PLATING BARS CAN APPEAR IN VARIOUS & SHOULD NOT BE USED FOR ORIENTATION ISSUE 1 2 ACN 201923 203635 MITT APPD. 1 6JAN97 2DEC97 MITT	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
NDEX MARK INDICATES AT REF CORNER & CAN BE ANY SHAFE PLATING BARS CAN APPEAR IN VARIOUS POSITIONS & SHOULD NOT BE USED FOR ORIENTATION PURPOSES This drawing	
ng supersedes 418/ED/39506/106 issue 2 ORIGINATING SITE: SWINDON Title: Outline Drawing for 144 PGA (POWER) (AC Drawing Number GPD00289	

Image: Second state Provide the state	APPROVED	DATE	ACN	ISSUE	© Mitel																	
$\frac{1}{11} = \frac{1}{2}$	VED	25	20		Ð			Notes		INDEX												
$\frac{1}{p_{N}} + \frac{1}{p_{N}} + $		0CT96)1348	1			n 1 inc ontrollir ne top mensio mensio			CORNE	_	>	e									
ottom package body size by a max. of 0.15 mm.		6JNF9	20707	2			ng dim packar n D1 r n b dr ity, me	-		∕ تح									- T		<u>/</u>	N.
ottom package body size by a max. of 0.15 mm.		9	6				may b ensions ge bod and E1 bes no es no			>		0			 							
ottom package body size by a max. of 0.15 mm.							y size do no t inclui at se	_	b	_ [
ottom package body size by a max. of 0.15 mm.							n millir may b t inclu de dam sating j															
ottom package body size by a max. of 0.15 mm.							neters. re sma de mou nbar pr plane (•														
ottom package body size by a max. of 0.15 mm.							r, dot Iller thc Juld pro- cotusion 3, to b												_ Ľ		<u> </u>	v
ottom package body size by a max. of 0.15 mm.		<	<u> </u>				or bot an the otusion. 					_										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							h. bottor mm r				F				Ē				-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C	\cap				n pack max.) ()											>		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			\Box				rage br).25mi	2												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\left(\right)$	\sum				ody siz		m)	1	d				<u> </u>				لے ا			
							e by c	[-F=	<u>با ال</u>	-									6	
							1 max.		-	┙┌	_		0.1	1	12		1		= - /	2		
		($\gamma + \gamma$				of 0.1													76		
			J U				15 mm	0					_									1
Control Dimensions in millimetres Altern. Dimensions in inches MIN MAX In inches 9.00 BSC 0.02 0.047 9.00 BSC 0.354 BSC 7.00 BSC 0.276 BSC 9.00 BSC 0.037 0.047 9.00 BSC 0.354 BSC 7.00 BSC 0.012 0.018 0.30 0.45 0.012 0.018 0.80 BSC 0.012 0.018 0.90 0.20 0.004 0.030 0.80 BSC 0.012 0.018 0.90 0.20 0.004 0.030 0.80 BSC 0.004 0.030 0.90 0.20 0.004 0.003 BSC 0.004 0.008 0.030 0.80 BSC 0.004 0.003 BSC 0.004 0.008 0.018 0.004 0.004 0.008 0.018 BSC 0.018 0.004 0.008 BSC <td< td=""><td></td><td>Drawi</td><td></td><td>Title:</td><td>ORIG</td><td>This d</td><td>·</td><td>onforr</td><td>NOTE</td><td></td><td>Z</td><td>C</td><td>σ</td><td>юГ</td><td>- [-]</td><td></td><td>30</td><td>A2</td><td>A1</td><td></td><td>Symbol</td><td></td></td<>		Drawi		Title:	ORIG	This d	·	onforr	NOTE		Z	C	σ	юГ	- [-]		30	A2	A1		Symbol	
Dimensions Ilimetres Immetres Immetres Immetres In inches MIN Altern. Dimensions in inches MIN MAX 1.20 0.15 0.02 0.02 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.008 SQUARE SQUA		ing Nur	1 2C (7x7)	Pack	NATING	rawing						0.09	•	U.45	<u>~ 7.(</u>	9.0	<u>).</u> 1.6	0.95	0.05		Control	
ions Altern. Dimensions s Altern. Dimensions in inches NX MIN MAX 0 0.047 5 0.002 0.002 C 0.037 0.047 C 0.037 0.047 C 0.0354 BSC C 0.012 0.031 BSC 0.004 0.003 SQUARE SQUARE C MS-026 ABA Iss. (SWNDON SWNDON SWNDON Dutline Drawing for FP (TP) mm, Body+2.0 mm		nber	us ių x1.0)	kage (SITE:	supers								30 U.,)0 BS			5			Dimens	
Altern. Dimensions in inches MIN MAX 0.047 0.002 0.004 0.037 0.047 0.0354 BSC 0.012 0.04 0.012 0.018 0.012 0.018 0.004 0.008 atures 2 026 ABA Iss. (0N Drawing for 3 3 3 3 3 3 3 3 3 3 3 3 3	700)))	mm, [Jutline	SWIND	;edes 4		C MS	SQU				ў Б	С П						Ň	Suoi:	
ern. Dimensions in inches <u>1110 MAX</u> <u> 0.047</u> 002 0.006 0037 0.041 0.354 BSC 004 0.008 004 0.008 004 0.008 004 0.008 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]	Body+	Draw	ON	118/ED		i-026	ARE		2	ature:						0	· ·		Alt	
m nensions <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u> <u>BSC</u>			2.0 m	ing fo		/51612						JU4		0.031).354	<u>).354</u>		002 (ern. Din	
			Ē	ſ		2/001 (SS.				0.000	0.018	U.U.SU BSC				0.041	0.006	MAX 0.047	nension:	

	•			
otes: . Dim 1 . Dim 2 . Con 1 . Con 2 . Loc	es: The chamfer on th located within the Controlling dimension D do no Dimension D do no Dimension b does total in excess of	 - ZD - ZD - 2D <li< td=""><td>Image Image <td< td=""><td>bol in inches bol in inches MIN MAX MIN MAX 0.053 0.06 0.053 0.05 0.033 REF 0.033 REF 0.016 0.015 0.025 BSC 0.010 0.011 0.010 0.011 0.010 0.011 0.011 0.021 0.021 0.011 0.031 0.011 0.04 0.011 0.05 0.011 0.06 0.011</td></td<></td></li<>	Image Image <td< td=""><td>bol in inches bol in inches MIN MAX MIN MAX 0.053 0.06 0.053 0.05 0.033 REF 0.033 REF 0.016 0.015 0.025 BSC 0.010 0.011 0.010 0.011 0.010 0.011 0.011 0.021 0.021 0.011 0.031 0.011 0.04 0.011 0.05 0.011 0.06 0.011</td></td<>	bol in inches bol in inches MIN MAX MIN MAX 0.053 0.06 0.053 0.05 0.033 REF 0.033 REF 0.016 0.015 0.025 BSC 0.010 0.011 0.010 0.011 0.010 0.011 0.011 0.021 0.021 0.011 0.031 0.011 0.04 0.011 0.05 0.011 0.06 0.011
e				ORIGINATING SITE: SWINDON
	-	2		ackage Outline
	201930 20	207316	MITEL SEMICONDILTOR	R 28L QSOP-0.150" Body Width(QP)
(N	27FEB9724AUG99	AUG99		Drawing Number
				GPD00292

http://www.mitelsemi.com

World Headquarters - Canada Tel: +1 (613) 592 2122

Fax: +1 (613) 592 6909

North America Tel: +1 (770) 486 0194 Fax: +1 (770) 631 8213 **Asia/Pacific** Tel: +65 333 6193 Fax: +65 333 6192 Europe, Middle East, and Africa (EMEA) Tel: +44 (0) 1793 518528 Fax: +44 (0) 1793 518581

Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively "Mitel") is believed to be reliable. However, Mitel assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or other intellectual property rights owned by Mitel.

This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel's conditions of sale which are available on request.

M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation Mitel Semiconductor is an ISO 9001 Registered Company Copyright 1999 MITEL Corporation All Rights Reserved Printed in CANADA

TECHNICAL DOCUMENTATION - NOT FOR RESALE