－$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range，QML Processing
－Processed to MIL－PRF－38535（QML）
－Performance
－SMJ320C30－40（50－ns Cycle）
40 MFLOPS 20 MIPS
－SMJ320C30－50（40－ns Cycle）
50 MFLOPS
25 MIPS
－Two 1K－Word $\times$ 32－Bit Single－Cycle Dual－Access On－Chip RAM Blocks
－Validated Ada Compiler
－64－Word $\times$ 32－Bit Instruction Cache
－32－Bit Instruction and Data Words， 24－Bit Addresses
－ 40 ／32－Bit Floating－Point／Integer Multiplier and Arithmetic Logic Unit（ALU）
－Parallel ALU and Multiplier Execution in a Single Cycle
－On－Chip Direct Memory Access（DMA） Controller for Concurrent I／O and CPU Operation
－Integer，Floating－Point，and Logical Operations
－One 4K－Word $\times$ 32－Bit Single－Cycle Dual－Access On－Chip ROM Block
description
－Two 32－Bit External Ports （24－and 13－Bit Address）
－Two Serial Ports With Support for 8－／16－／24－／32－Bit Transfers
－Packaging
－181－Pin Grid Array Ceramic Package （GB Suffix）
－196－Pin Ceramic Quad Flatpack With Nonconductive Tie－Bar（HFG Suffix）
－SMD Approval for 40－and 50－MHz Versions
－Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units（ARAUs）
－Zero－Overhead Loops With Single－Cycle Branches
－Interlocked Instructions for Multiprocessing Support
－32－Bit Barrel Shifter
－Eight Extended－Precision Registers （Accumulators）
－Two－and Three－Operand Instructions
－Conditional Calls and Returns
－Block Repeat Capability
－Fabricated Using Enhanced Performance Implanted CMOS（EPIC ${ }^{\text {TM }}$ ）by Texas Instruments
－Two 32－Bit Timers

The SMJ320C30 internal busing and special digital signal processor（DSP）instruction set has the speed and flexibility to execute up to 50 MFLOPS．The SMJ320C30 device optimizes speed by implementing functions in hardware that other processors implement through software or microcode．This hardware－intensive approach provides performance previously unavailable on a single chip．The emphasis on total system cost has resulted in a less expensive processor that can be designed into systems currently using costly bit－slice processors．
－SMJ320C30－40：50－ns single－cycle execution time，5\％supply
－SMJ320C30－50：40－ns single－cycle execution time，5\％supply

[^0]
## description (continued)

## 181-Pin GB Grid Array Package

 (BOTTOM VIEW)A B C DEFGHJKLMNPR


196-Pin HFG Quad Flatpack (TOP VIEW)


The SMJ320C30 can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of these features.

General-purpose applications are enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, two external interface ports, two timers, two serial ports, and multiple interrupt structure. The SMJ320C30 supports a wide variety of system applications from host processor to dedicated coprocessor.

High-level language support is implemented easily through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.

For additional information when designing for cold temperature operation, please see Texas Instruments application report 320C3x, 320C4x and 320MCM42x Power-up Sensitivity at Cold Temperature, literature number SGUA001.
functional block diagram


## memory map

Figure 1 shows the memory map for the SMJ320C30. See the TMS320C3x User's Guide (literature number SPRU031) for a detailed description of this memory mapping. Figure 2 shows the reset, interrupt, and trap vector/branches memory-map locations. Figure 3 shows the peripheral bus memory-mapped registers.


Figure 1. Memory Map
memory map (continued)

| 00h | Reset |
| :---: | :---: |
| 01h | INTO |
| 02h | INT1 |
| 03h | INT2 |
| 04h | $\overline{\text { INT3 }}$ |
| 05h | XINTO |
| 06h | RINTO |
| 07h | XINT1 |
| 08h | RINT1 |
| 09h | TINTO |
| OAh | TINT1 |
| OBh | DINT |
| 0Ch | Reserved |
| 20h | TRAP 0 |
|  | - |
| 3Bh | TRAP 27 |
| $\begin{aligned} & \text { 3Ch } \\ & \text { 3Fh } \end{aligned}$ | Reserved |

(a) Microprocessor Mode

| 00h | Reset |
| :---: | :---: |
| 01h | INTO |
| 02h | INT1 |
| 03h | INT2 |
| 04h | INT3 |
| 05h | XINTO |
| 06h | RINTO |
| 07h | XINT1 |
| 08h | RINT1 |
| 09h | TINTO |
| OAh | TINT1 |
| OBh | DINT |
| OCh | Reserved |
| 20h | TRAP 0 |
|  | - |
| 3Bh | TRAP 27 |
| $\begin{aligned} & \text { 3Ch } \\ & \text { BFh } \end{aligned}$ | Reserved |

(a) Microcomputer Mode

Figure 2. Reset, Interrupt, and Trap Vector/Branches Memory-Map Locations

## memory map (continued)

| 808000h | DMA Global Control |
| :---: | :---: |
| 808004h | DMA Source Address |
| 808006h | DMA Destination Address |
| 808008h | DMA Transfer Counter |
| 808020h | Timer 0 Global Control |
| 808024h | Timer 0 Counter |
| 808028h | Timer 0 Period |
| 808030h | Timer 1 Global Control |
| 808034h | Timer 1 Counter |
| 808038h | Timer 1 Period Register |
| 808040h | Serial Port 0 Global Control |
| 808042h | FSX/DX/CLKX Serial Port 0 Control |
| 808043h | FSR/DR/CLKR Serial Port 0 Control |
| 808044h | Serial Port 0 R/X Timer Control |
| 808045h | Serial Port 0 R/X Timer Counter |
| 808046h | Serial Port 0 R/X Timer Period |
| 808048h | Serial Port 0 Data Transmit |
| 80804Ch | Serial Port 0 Data Receive |
| 808050h | Serial Port 1 Global Control |
| 808052h | FSX/DX/CLKX Serial Port 1 Control |
| 808053h | FSR/DR/CLKR Serial Port 1 Control |
| 808054h | Serial Port 1 R/X Timer Control |
| 808055h | Serial Port 1 R/X Timer Counter |
| 808056h | Serial Port 1 R/X Timer Period |
| 808058h | Serial Port 1 Data Transmit |
| 80805Ch | Serial Port 1 Data Receive |
| 808060h | Expansion-Bus Control |
| 808064h | Primary-Bus Control |

†Shading denotes reserved address locations
Figure 3. Peripheral Bus Memory-Mapped Registers ${ }^{\dagger}$

## pin functions

This section gives signal descriptions for the SMJ320C30 devices in the microprocessor mode. The following tables list each signal, the number of pins, type of operating mode(s) (that is, input, output, or high-impedance state as indicated by I, O, or Z, respectively), and a brief function description. All pins labeled NC have special functions and should not be connected by the user. A line over a signal name (for example, RESET) indicates that the signal is active low (true at logic-0 level). The signals are grouped according to functions.

Pin Functions

| PIN <br> NAME | QTY $\ddagger$ | TYPE† | DESCRIPTION | CONDITIONS WHEN SIGNAL IS Z TYPE§ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRIMARY BUS INTERFACE |  |  |  |  |  |  |
| D31-D0 | 32 | 1/O/Z | 32-bit data port of the primary bus interface | S | H |  |
| A23-A0 | 24 | O/Z | 24-bit address port of the primary bus interface | S | H | R |
| R/W | 1 | O/Z | Read/write for primary bus interface. R/ $\overline{\mathrm{W}}$ is high when a read is performed and low when a write is performed over the parallel interface. | S | H | R |
| $\overline{\text { STRB }}$ | 1 | O/Z | External access strobe for the primary bus interface | S | H |  |
| $\overline{\mathrm{RDY}}$ | 1 | I | Ready. $\overline{\text { RDY }}$ indicates that the external device is prepared for a primary bus interface transaction to complete. |  |  |  |
| $\overline{\text { HOLD }}$ | 1 | 1 | Hold for primary bus interface. When $\overline{\mathrm{HOLD}}$ is a logic low, any ongoing transaction is completed. A23-A0, D31-D0, STRB, and R/W are in the high-impedance state and all transactions over the primary bus interface are held until HOLD becomes a logic high or the NOHOLD bit of the primary bus control register is set. |  |  |  |
| $\overline{\text { HOLDA }}$ | 1 | O/Z | Hold acknowledge for primary bus interface. $\overline{\mathrm{HOLDA}}$ is generated in response to a logic low on $\overline{H O L D}$. HOLDA indicates that A23-A0, D31-D0, STRB , and $R / \bar{W}$ are in the high-impedance state and that all transactions over the bus are held. $\overline{\text { HOLDA }}$ is high in response to a logic high of HOLD or when the NOHOLD bit of the primary bus control register is set. | S |  |  |
| EXPANSION BUS INTERFACE |  |  |  |  |  |  |
| XD31-XD0 | 32 | I/O/Z | 32-bit data port of the expansion bus interface | S |  | R |
| XA12-XA0 | 13 | O/Z | 13-bit address port of the expansion bus interface | S |  | R |
| XR/W | 1 | O/Z | Read/write signal for expansion bus interface. When a read is performed, XR/ $\overline{\mathrm{W}}$ is held high; when a write is performed, XR/W is low. | S |  | R |
| $\overline{\text { MSTRB }}$ | 1 | O/Z | External memory access strobe for the expansion bus interface | S |  |  |
| $\overline{\text { OSTRB }}$ | 1 | O/Z | External I/O access strobe for the expansion bus interface | S |  |  |
| $\overline{\text { XRDY }}$ | 1 | 1 | Ready signal. $\overline{\text { XRDY }}$ indicates that the external device is prepared for an expansion bus interface transaction to complete. |  |  |  |
| CONTROL SIGNALS |  |  |  |  |  |  |
| RESET | 1 | I | Reset. When $\overline{\text { RESET }}$ is a logic low, the device is in the reset condition. When $\overline{\text { RESET }}$ becomes a logic high, execution begins from the location specified by the reset vector. |  |  |  |
| $\overline{\mathrm{INT3}}-\overline{\mathrm{INTO}}$ | 4 | I | External interrupts |  |  |  |
| $\overline{\text { IACK }}$ | 1 | O/Z | Interrupt acknowledge. $\overline{\mathrm{IACK}}$ is set to a logic high by the IACK instruction. $\overline{\mathrm{IACK}}$ can be used to indicate the beginning or end of an interrupt-service routine. | S |  |  |
| MC/ $\overline{\mathrm{MP}}$ | 1 | 1 | Microcomputer/microprocessor mode |  |  |  |
| XF1, XF0 | 2 | I/O/Z | External flags. XF1 and XF0 are used as general-purpose I/Os or to support interlocked processor instructions. | S |  | R |

[^1]| Pin Functions (Continued) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NAME | QTY $\ddagger$ | TYPE† | DESCRIPTION |  | YPE§ |
| SERIAL PORT 0 SIGNALS |  |  |  |  |  |
| CLKX0 | 1 | I/O/Z | Serial port 0 transmit clock. CLKX0 is the serial-shift clock for the serial port 0 transmitter. | S | R |
| DX0 | 1 | I/O/Z | Data transmit output. Serial port 0 transmits serial data on DX0. | S | R |
| FSX0 | 1 | I/O/Z | Frame synchronization pulse for transmit. The FSX0 pulse initiates the transmit-data process over DXO. | S | R |
| CLKR0 | 1 | I/O/Z | Serial port 0 receive clock. CLKR0 is the serial-shift clock for the serial port 0 receiver. | S | R |
| DR0 | 1 | I/O/Z | Data receive. Serial port 0 receives serial data on DRO. | S | R |
| FSR0 | 1 | I/O/Z | Frame synchronization pulse for receive. The FSR0 pulse initiates the receive-data process over DRO. | S | R |
| SERIAL PORT 1 SIGNALS |  |  |  |  |  |
| CLKX1 | 1 | I/O/Z | Serial port 1 transmit clock. CLKX1 is the serial-shift clock for the serial port 1 transmitter. | S | R |
| DX1 | 1 | 1/O/Z | Data transmit output. Serial port 1 transmits serial data on DX1. | S | R |
| FSX1 | 1 | I/O/Z | Frame synchronization pulse for transmit. The FSX1 pulse initiates the transmit-data process over DX1. | S | R |
| CLKR1 | 1 | I/O/Z | Serial port 1 receive clock. CLKR1 is the serial-shift clock for the serial port 1 receiver. | S | R |
| DR1 | 1 | I/O/Z | Data receive. Serial port 1 receives serial data on DR1. | S | R |
| FSR1 | 1 | I/O/Z | Frame synchronization pulse for receive. The FSR1 pulse initiates the receive-data process over DR1. | S | R |
| TIMER 0 SIGNALS |  |  |  |  |  |
| TCLK0 | 1 | I/O/Z | Timer clock 0 . As an input, TCLK0 is used by timer 0 to count external pulses. As an output, TCLK0 outputs pulses generated by timer 0 . | S | R |
| TIMER 1 SIGNALS |  |  |  |  |  |
| TCLK1 | 1 | I/O/Z | Timer clock 1. As an input, TCLK1 is used by timer 1 to count external pulses. As an output, TCLK1 outputs pulses generated by timer 1 . | S | R |
| SUPPLY AND OSCILLATOR SIGNALS (see Note 1) |  |  |  |  |  |
| $\mathrm{V}_{\text {D }}$ | 4 | I | 5-V supply ${ }^{\text {I }}$ |  |  |
| $\mathrm{IODV}_{\text {DD }}$ | 2 | 1 | 5-V supply ${ }^{\text {I }}$ |  |  |
| ADV ${ }^{\text {DD }}$ | 2 | I | 5-V supply ${ }^{\text {I }}$ |  |  |
| PDV ${ }^{\text {DD }}$ | 1 | I | 5-V supply $\\|$ |  |  |
| $\mathrm{DDV}_{\text {DD }}$ | 2 | I | 5-V supply ${ }^{\text {I }}$ |  |  |
| MDV ${ }^{\text {DD }}$ | 1 | I | 5-V supply ${ }^{\text {I }}$ |  |  |
| $\mathrm{V}_{\text {SS }}$ | 4 | I | Ground |  |  |
| DVSS | 4 | I | Ground |  |  |
| $\mathrm{CV}_{\text {SS }}$ | 2 | I | Ground |  |  |

$\dagger \mathrm{I}=$ input, $\mathrm{O}=$ output, $\mathrm{Z}=$ high-impedance state, $\mathrm{NC}=$ no connect
$\ddagger$ For GB package
$\S S=\overline{\text { SHZ }}$ active, $\mathrm{H}=\overline{\mathrm{HOLD}}$ active, $\mathrm{R}=\overline{\mathrm{RESET}}$ active
II Recommended decoupling capacitor is $0.1 \mu \mathrm{~F}$.
NOTE 1: $\quad \mathrm{CV}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SS}}$, and $\mathrm{IV}_{\text {SS }}$ are on the same plane.

Pin Functions (Continued)

| PIN <br> NAME | QTY $\ddagger$ | TYPE† | DESCRIPTION | CONDITIONS WHEN SIGNAL IS Z TYPE§ |
| :---: | :---: | :---: | :---: | :---: |
| SUPPLY AND OSCILLATOR SIGNALS (see Note 1) (CONTINUED) |  |  |  |  |
| IVSS | 1 | 1 | Ground |  |
| VBBP | 1 | NC | VBB pump oscillator output |  |
| V SUBS | 1 | 1 | Substrate pin. Tie to ground |  |
| X1 | 1 | 0 | Output from the internal oscillator for the crystal. If a crystal is not used, X1 must be left unconnected. |  |
| X2/CLKIN | 1 | 1 | Input to the internal oscillator from the crystal or a clock |  |
| H1 | 1 | O/Z | External H1 clock. H1 has a period equal to twice CLKIN. | S |
| H3 | 1 | O/Z | External H3 clock. H3 has a period equal to twice CLKIN. | S |
| RESERVED (see Note 2) |  |  |  |  |
| EMU0-EMU2 | 3 | 1 | Reserved. Use pullup resistors to 5 V |  |
| EMU3 | 1 | O/Z | Reserved | S |
| EMU4/ $\overline{\text { SHZ }}$ | 1 | 1 | Shutdown high impedance. When active, EMU4/ $\overline{\mathrm{SHZ}}$ shuts down the SMJ320C30 and places all pins in the high-impedance state. EMU4/SHZ is used for board-level testing to ensure that no dual-drive conditions occur. CAUTION: A low on $\overline{\mathrm{SHZ}}$ corrupts SMJ320C30 memory and register contents. Reset the device with SHZ high to restore it to a known operating condition. |  |
| EMU5, EMU6 | 2 | NC | Reserved |  |
| RSV0-RSV4 | 5 | I | Reserved. Tie pins directly to 5 V |  |
| RSV5-RSV10 | 6 | 1/O | Reserved. Use pullups on each pin to 5 V |  |
| Locator | 1 | NC | Reserved |  |

$\dagger \mathrm{I}=$ input, $\mathrm{O}=$ output, $\mathrm{Z}=$ high-impedance state, $\mathrm{NC}=$ No Connect
$\ddagger$ For GB package
§ $S=\overline{S H Z}$ active, $H=\overline{\text { HOLD }}$ active, $\mathrm{R}=\overline{\mathrm{RESET}}$ active
NOTES: 1. $\mathrm{CV}_{S S}, \mathrm{~V}_{S S}, \mathrm{IV}_{S S}$ are on the same plane.
2. The connections specified for the reserved pins must be followed. For best results, $18-\mathrm{k} \Omega-22-\mathrm{k} \Omega$ pullup resistors are recommended. All $5-\mathrm{V}$ supply pins must be connected to a common supply plane, and all ground pins must be connected to a common ground plane.

Pin Assignments

| PIN |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NUMBER |  | NAME |
| $\begin{gathered} \text { GB } \\ \text { PKG } \end{gathered}$ | $\begin{aligned} & \text { HFG } \\ & \text { PKG } \end{aligned}$ |  | $\begin{gathered} \hline \text { GB } \\ \text { PKG } \end{gathered}$ | $\begin{aligned} & \hline \text { HFG } \\ & \text { PKG } \end{aligned}$ |  | $\begin{gathered} \text { GB } \\ \text { PKG } \end{gathered}$ | $\begin{aligned} & \text { HFG } \\ & \text { PKG } \end{aligned}$ |  | $\begin{gathered} \text { GB } \\ \text { PKG } \end{gathered}$ | $\begin{aligned} & \hline \text { HFG } \\ & \text { PKG } \end{aligned}$ |  | $\begin{gathered} \text { GB } \\ \text { PKG } \end{gathered}$ | $\begin{aligned} & \hline \text { HFG } \\ & \text { PKG } \end{aligned}$ |  |
| F15 | 82 | A0 | C5 | 139 | D5 | P2 | 195 | DX1 | L2 | 185 | RSV6 | R8 | 29 | XD11 |
| G12 | 81 | A1 | D6 | 138 | D6 | F14 | 83 | EMU0 | K4 | 186 | RSV7 | R9 | 30 | XD12 |
| G13 | 80 | A2 | A4 | 137 | D7 | E15 | 84 | EMU1 | M1 | 187 | RSV8 | P9 | 31 | XD13 |
| G14 | 79 | A3 | B5 | 136 | D8 | F13 | 85 | EMU2 | L3 | 188 | RSV9 | N9 | 32 | XD14 |
| G15 | 78 | A4 | C6 | 135 | D9 | E14 | 86 | EMU3 | M2 | 189 | RSV10 | R10 | 33 | XD15 |
| H15 | 77 | A5 | A5 | 134 | D10 | F12 | 87 | EMU4/SHZ | D12 | 100 | $\mathrm{ADV}^{\text {DD }}{ }^{\dagger}$ | M9 | 34 | XD16 |
| H14 | 72 | A6 | B6 | 133 | D11 | C1 | 155 | EMU5 | H11 | 64 | $\mathrm{ADV}^{\text {DD }}{ }^{\dagger}$ | P10 | 35 | XD17 |
| J15 | 71 | A7 | D7 | 132 | D12 | M6 | 11 | EMU6 | D4 | 114 | $\mathrm{DDV}^{\text {DD }}{ }^{\dagger}$ | R11 | 36 | XD18 |
| J14 | 70 | A8 | A6 | 131 | D13 | B3 | 145 | H1 | E8 | 147 | $\mathrm{DDV}^{\text {DD }}{ }^{\dagger}$ | N10 | 37 | XD19 |
| J13 | 69 | A9 | C7 | 130 | D14 | A1 | 146 | H3 | L8 | 15 | $\mathrm{IODV}_{\text {DD }}{ }^{\dagger}$ | P11 | 38 | XD20 |
| K15 | 68 | A10 | B7 | 129 | D15 | C2 | 152 | X1 | M12 | 16 | $\mathrm{IODV}_{\text {DD }}{ }^{\dagger}$ | R12 | 39 | XD21 |
| J12 | 67 | A11 | A7 | 128 | D16 | B1 | 151 | X2/CLKIN |  | 49 | $\mathrm{IODV}_{\text {DD }}{ }^{\dagger}$ | M10 | 40 | XD22 |
| K14 | 66 | A12 | A8 | 127 | D17 | P4 | 9 | TCLK0 | H5 | 162 | $M^{\text {M }} \mathrm{VDD}^{\dagger}$ | N11 | 41 | XD23 |
| L15 | 65 | A13 | B8 | 122 | D18 | N5 | 10 | TCLK1 |  | 163 | $M^{\text {M }} \mathrm{VDD}^{\dagger}$ | P12 | 42 | XD24 |
| K13 | 63 | A14 | A9 | 121 | D19 | G2 | 169 | XFO | M4 | 1 | $\mathrm{PDV}_{\text {DD }}{ }^{\dagger}$ | R13 | 43 | XD25 |
| L14 | 62 | A15 | B9 | 120 | D20 | G3 | 168 | XF1 | B2 | 51 | $\mathrm{CV}_{\text {SS }}{ }^{\text {¢ }}$ | R14 | 44 | XD26 |
| M15 | 61 | A16 | C9 | 119 | D21 | D3 | 154 | $V_{\text {BBP }}$ | P14 | 52 | $\mathrm{CV}_{S S}{ }^{\text {§ }}$ | M11 | 45 | XD27 |
| K12 | 60 | A17 | A10 | 118 | D22 | E4 | 153 | $\mathrm{V}_{\text {SUBS }}$ |  | 25 | $\mathrm{V}_{\text {DD }}{ }^{\ddagger}$ | N12 | 46 | XD28 |
| L13 | 59 | A18 | D9 | 117 | D23 | H4 | 123 | $\mathrm{V}_{\text {DD }}{ }^{\ddagger}$ |  | 26 | $\mathrm{V}_{\text {DD }}{ }^{\ddagger}$ | P13 | 47 | XD29 |
| M14 | 58 | A19 | B10 | 116 | D24 | D8 | 73 | $\mathrm{V}_{\text {DD }}{ }^{\ddagger}$ |  | 172 | $\mathrm{V}_{\text {DD }}{ }^{\ddagger}$ | R15 | 48 | XD30 |
| N15 | 57 | A20 | A11 | 115 | D25 | M8 | 74 | $\mathrm{V}_{\text {DD }}{ }^{\ddagger}$ |  | 173 | $V_{\text {DD }}{ }^{\ddagger}$ | P15 | 53 | XD31 |
| M13 | 56 | A21 | C10 | 113 | D26 | H12 | 124 | $\mathrm{V}_{\text {DD }}{ }^{\ddagger}$ | C8 | 28 | $\mathrm{V}_{\text {SS }}{ }^{\text {§ }}$ |  | 2 | DV ${ }_{\text {DD }}$ |
| L12 | 55 | A22 | B11 | 112 | D27 | N8 | 27 | $\mathrm{V}_{\text {SS }}{ }^{\text {§ }}$ | H3 | 75 | $\mathrm{V}_{\text {SS }}{ }^{\text {§ }}$ |  | 101 | $D V_{\text {DD }}$ |
| N14 | 54 | A23 | A12 | 111 | D28 | A13 | 107 | XA0 | H13 | 76 | $\mathrm{V}_{\text {SS }}{ }^{\text {§ }}$ | C3 | 50 | $D V_{S S}{ }^{\text {a }}$ |
| E5 |  | LOCATOR/NC | D10 | 110 | D29 | A14 | 106 | XA1 |  | 125 | $\mathrm{V}_{\text {SS }}{ }^{\text {§ }}$ | C13 | 98 | DV ${ }_{\text {SS }}{ }^{\text {a }}$ |
| G1 | 170 | IACK | C11 | 109 | D30 | D11 | 105 | XA2 |  | 126 | $\mathrm{V}_{\text {SS }}{ }^{\text {§ }}$ | N3 | 148 | DV ${ }_{\text {SS }}{ }^{\text {a }}$ |
| H2 | 171 | INTO | B12 | 108 | D31 | C12 | 104 | ХАЗ |  | 149 | $\mathrm{V}_{\text {SS }}{ }^{\text {¢ }}$ | N13 | 196 | DV ${ }_{\text {SS }}{ }^{\text {a }}$ |
| H1 | 176 | INT1 | F3 | 161 | HOLD | B13 | 103 | XA4 |  | 150 | $\mathrm{V}_{\text {SS }}{ }^{\text {S }}$ | B14 | 96 | $1 \mathrm{~V}_{\text {SS }} \mathrm{S}^{\text {I }}$ |
| J1 | 177 | INT2 | E2 | 160 | HOLDA | A15 | 102 | XA5 |  | 174 | $\mathrm{V}_{\text {SS }}{ }^{\text {S }}$ |  | 97 | $\mathrm{IV}_{\mathrm{SS}}{ }^{\text {§ }}$ |
| J2 | 178 | INT3 | D2 | 156 | XRDY | B15 | 95 | XA6 |  | 175 | $\mathrm{V}_{\text {SS }}{ }^{\text {§ }}$ |  |  |  |
| D15 | 88 | MC/ MP | D1 | 159 | XR/W | C14 | 94 | XA7 |  | 99 | $\mathrm{V}_{\text {SUBS }}$ |  |  |  |
| E3 | 157 | MSTRB | P3 | 4 | FSR0 | E12 | 93 | XA8 | R4 | 12 | XD0 |  |  |  |
| E1 | 164 | $\overline{\mathrm{RDY}}$ | R2 | 7 | FSX0 | D13 | 92 | XA9 | P5 | 13 | XD1 |  |  |  |
| F1 | 167 | RESET | N4 | 5 | CLKR0 | C15 | 91 | XA10 | N6 | 14 | XD2 |  |  |  |
| G4 | 166 | R/W | M5 | 6 | CLKX0 | D14 | 90 | XA11 | R5 | 17 | XD3 |  |  |  |
| F2 | 165 | $\overline{\text { STRB }}$ | R1 | 3 | DR0 | E13 | 89 | XA12 | P6 | 18 | XD4 |  |  |  |
| F4 | 158 | IOSTRB | R3 | 8 | DX0 | J3 | 179 | RSV0 | M7 | 19 | XD5 |  |  |  |
| C4 | 144 | D0 | M3 | 191 | FSR1 | J4 | 180 | RSV1 | R6 | 20 | XD6 |  |  |  |
| D5 | 143 | D1 | P1 | 194 | FSX1 | K1 | 181 | RSV2 | N7 | 21 | XD7 |  |  |  |
| A2 | 142 | D2 | L4 | 192 | CLKR1 | K2 | 182 | RSV3 | P7 | 22 | XD8 |  |  |  |
| A3 | 141 | D3 | N2 | 193 | CLKX1 | L1 | 183 | RSV4 | R7 | 23 | XD9 |  |  |  |
| B4 | 140 | D4 | N1 | 190 | DR1 | K3 | 184 | RSV5 | P8 | 24 | XD10 |  |  |  |

[^2]absolute maximum ratings over operating case temperature range (unless otherwise noted) $\dagger$

| Supply voltage range, $\mathrm{V}_{\mathrm{CC}}$ (see Note 3) | -0.3 V to 7 V |
| :---: | :---: |
| Input voltage range, $\mathrm{V}_{\text {I }}$ | -0.3 V to 7 V |
| Output voltage range, $\mathrm{V}_{\mathrm{O}}$ | -0.3 V to 7 V |
| Continuous power dissipation (see Note 4) | 3.15 W |
| Operating case temperature range, $\mathrm{T}_{\mathrm{C}}$ | $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |
| Storage temperature range, $\mathrm{T}_{\text {stg }}$ | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 3. All voltage values are with respect to $\mathrm{V}_{\mathrm{SS}}$.
4. Actual operating power is less. This value was obtained under specially produced worst-case test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both primary and extension buses at the maximum rate possible. See normal (lCC) current specification in the electrical characteristics table and also read Calculation of TMS320C30 Power Dissipation Application Report (literature number SPRA020).

## recommended operating conditions (see Note 5)

|  |  | MIN | NOM $\ddagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {DD }}$ | Supply voltage ( $\mathrm{AV}_{\mathrm{DD}}$, etc.) | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {SS }}$ | Supply voltage (CVSS, etc.) |  | 0 |  | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | 2.1 |  | $\mathrm{V}_{\mathrm{DD}}+0.3^{*}$ | V |
| $\mathrm{V}_{\text {TH }}$ | High-level input voltage for CLKIN | 3 |  | $\mathrm{V}_{\mathrm{DD}}+0.3^{*}$ | V |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage | -0.3 * |  | 0.8 | V |
| IOH | High-level output current |  |  | - 300 | $\mu \mathrm{A}$ |
| IOL | Low-level output current |  |  | 2 | mA |
| $\mathrm{T}_{\mathrm{C}}$ | Operating case temperature (see Note 6) | -55 |  | 125 | ${ }^{\circ} \mathrm{C}$ |

$\ddagger$ All nominal values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$ (ambient-air temperature) $=25^{\circ} \mathrm{C}$.

* This parameter is not production tested.

NOTE 5: All input and output voltage levels are TTL compatible.
NOTE 6: $T_{C}$ MAX at maximum rated operating conditions at any point on the case, $T_{C}$ MIN at initial (time zero) power up

## electrical characteristics over recommended ranges of supply voltage (unless otherwise noted) (see Note 5)

| PARAMETER |  |  | TEST CONDITIONS $\dagger$ | MIN | TYP $\ddagger$ | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage |  | $\mathrm{V}_{\mathrm{DD}}=\mathrm{MIN}, \quad \mathrm{IOH}=\mathrm{MAX}$ | 2.4 | 3 |  | V |
| VOL | Low-level output voltage | For XA12-XA0 | $\mathrm{V}_{\mathrm{DD}}=\mathrm{MIN}, \quad \mathrm{IOL}=\mathrm{MAX}$ |  |  | 0.6 * | V |
|  |  | All others | $\mathrm{V}_{\mathrm{DD}}=\mathrm{MIN}, \quad \mathrm{IOL}=\mathrm{MAX}$ |  | 0.3 | 0.6 | V |
| IZ | High-impedance current |  | $V_{D D}=$ MAX |  |  | $\pm 20$ | $\mu \mathrm{A}$ |
| 1 | Input current |  | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\mathrm{DD}}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| IIP | Input current |  | Inputs with internal pullups (see Note 7) | -600 |  | 20 | $\mu \mathrm{A}$ |
| IIC | Input current (X2/CLKIN) |  | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\mathrm{DD}}$ |  |  | $\pm 50$ | $\mu \mathrm{A}$ |
| ICC | Supply current |  | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{MAX}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{t}_{\mathrm{C}(\mathrm{Cl})}=\mathrm{MIN}, \text { See Note } 8 \\ & \hline \end{aligned}$ |  | 200 | 600 | mA |
| IDD | Supply current, standby; IDLE2, clock shut off |  | $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 50 |  | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Input capacitance |  |  |  |  | 15* | pF |
| $\mathrm{C}_{0}$ | Output capacitance |  |  |  |  | $20^{*}$ | pF |
| $\mathrm{C}_{\mathrm{X}}$ | X2/CLKIN capacitance |  |  |  |  | 25* | pF |

$\dagger$ For conditions shown as MIN/MAX, use the appropriate value specified in recommended operating conditions.
$\ddagger$ All typical values are at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

* This parameter is not production tested.

NOTES: 5. All input and output voltage levels are TTL compatible.
7. Pins with internal pullup devices: $\overline{\mathrm{NTO}}-\overline{\mathrm{NT3}}, \mathrm{MC} / \overline{\mathrm{MP}}, \mathrm{RSV} 0-\mathrm{RSV10}$. Although RSV0-RSV10 have internal pullup devices, external pullups should be used on each pin as identified in the pin function tables.
8. Actual operating current is less than this maximum value. This value was obtained under specially produced worst-case test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation of TMS320C30 Power Dissipation Application Report (literature number SPRA020).

## PARAMETER MEASUREMENT INFORMATION



$$
\text { Where: } \begin{array}{ll}
\mathrm{I}_{\mathrm{OL}} & =2 \mathrm{~mA} \text { (all outputs) } \\
\mathrm{I}_{\mathrm{OH}} & =300 \mu \mathrm{~A} \text { (all outputs) } \\
\mathrm{V}_{\mathrm{LOAD}} & =\text { Selected to emulate } 50 \Omega \text { termination (typical value }=1.54 \mathrm{~V} \text { ). } \\
\mathrm{C}_{\mathrm{T}} & =80-\mathrm{pF} \text { typical load-circuit capacitance }
\end{array}
$$

Figure 4. Test Load Circuit

## PARAMETER MEASUREMENT INFORMATION (CONTINUED)

## signal transition levels

TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V . Output transition times are specified as follows:

- For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be no longer high is 2 V and the level at which the output is said to be low is 1 V .
- For a low-to-high transition, the level at which the output is said to be no longer low is 1 V and the level at which the output is said to be high is 2 V .


Figure 5. TTL-Level Outputs
Transition times for TTL-compatible inputs are specified as follows:

- For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is 2.1 V and the level at which the input is said to be low is 0.8 V .
- For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is 0.8 V and the level at which the input is said to be high is 2.1 V .


Figure 6. TTL-Level Inputs

## PARAMETER MEASUREMENT INFORMATION (CONTINUED)

## timing parameter symbology

Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. To shorten the symbols, some of the terminal names and other related terminology have been abbreviated as follows, unless otherwise noted:

| A | A23-A0 | IACK | $\overline{\text { IACK }}$ |
| :---: | :---: | :---: | :---: |
| ASYNCH | Asynchronous reset signals include XFO, XF1, CLKXO, DXO, FSX0, CLKR0, DR0, FSR0, CLKX1, DX1, FSX1, CLKR1, DR1, FSR1, TCLK0, and TCLK1 | INT | INT3-INT0 |
| CH | CLKX includes CLKX0 and CLKX1 | IOS | $\overline{\text { OSTRB }}$ |
| Cl | CLKIN | (M)S | $\overline{(M) S T R B}$ includes $\overline{\text { MSTRB }}$ and $\overline{\text { STRB }}$ |
| CONTROL | Control signals include $\overline{\text { STRB }}$, $\overline{\text { MSTRB }}$, and $\overline{\text { IOSTRB }}$ | RDY | $\overline{\text { RDY }}$ |
| D | D31-D0 | RESET | RESET |
| DR | Includes DR0, DR1 | RW | R/W |
| DX | Includes DX0, DX1 | S | $\overline{\text { STRB }}$ |
| FS | FSX/R includes FSX0, FSX1, FSR0, and FSR1 | SCK | CLKX/R includes CLKX0, CLKX1, CLKR0, and CLKR1 |
| FSR | Includes FSR0, FSR1 | TCLK | TCLK0, TCLK1 |
| FSX | Includes FSX0, FSX1 | (X)A | Includes A23-A0 and XA12-XA0 |
| GPIO | General-purpose input/output; peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1 | (X)D | Includes D31-D0 and XD31-XD0 |
| H | Includes H1, H3 | XF | XFx includes XF0 and XF1 |
| H1 | H1 | XFO | XFO |
| H3 | H3 | XF1 | XF1 |
| HOLD | HOLD | (X)RDY | Includes $\overline{\mathrm{RDY}}$ and $\overline{\mathrm{XRDY}}$ |
| HOLDA | HOLDA | (X)RW | (X)R/W includes $R / \bar{W}$ and $X R / \bar{W}$ |

SMJ320C30 DIGITAL SIGNAL PROCESSOR

## X2/CLKIN, H1, and H3 timing

The following table defines the timing parameters for the X2/CLKIN, H1, and H 3 interface signals. See the RESET timing in Figure 20 for CLKIN to H 1 and H 3 delay specification.
timing parameters for X2/CLKIN, H1, H3 (see Note 5, Figure 7, Figure 8, and Figure 9)

| NO. $\dagger$ |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 1 | $\mathrm{tf}_{\mathrm{f}}(\mathrm{Cl})$ | Fall time, CLKIN |  | 5* |  | 5* | ns |
| 2 | $\mathrm{t}_{\mathrm{w}}$ (CIL) | Pulse duration, CLKIN low, $\mathrm{t}_{\mathrm{C}}(\mathrm{Cl})=\mathrm{MIN}$ (see Note 9) | 9 |  | 7 |  | ns |
| 3 | ${ }^{\text {w }}$ (CIH) | Pulse duration, CLKIN high, $\mathrm{t}_{\mathrm{C}(\mathrm{Cl})}=\mathrm{MIN}$ (see Note 9) | 9 |  | 7 |  | ns |
| 4 | $\operatorname{tr}_{( }(\mathrm{Cl})$ | Rise time, CLKIN |  | 5* |  | 5* | ns |
| 5 | $\mathrm{t}_{\mathrm{C}(\mathrm{Cl})}$ | Cycle time, CLKIN | 25 | 303 | 20 | 303 | ns |
| 6 | $\mathrm{t}_{\mathrm{f}}(\mathrm{H})$ | Fall time, H1/H3 |  | 3 |  | 3 | ns |
| 7 | $\mathrm{t}_{\mathrm{w}(\mathrm{HL})}$ | Pulse duration, $\mathrm{H} 1 / \mathrm{H} 3$ low (see Note 10) | P - 5 |  | P - 5 |  | ns |
| 8 | $\mathrm{t}_{\mathrm{w}}(\mathrm{HH})$ | Pulse duration, $\mathrm{H} 1 / \mathrm{H} 3$ high (see Note 10) | P - 6 |  | P - 6 |  | ns |
| 9 | $\operatorname{tr}(\mathrm{H})$ | Rise time, $\mathrm{H} 1 / \mathrm{H} 3$ |  | 3 |  | 3 | ns |
| 9.1 | $\mathrm{t}_{\mathrm{d}(\mathrm{HL}-\mathrm{HH})}$ | Delay time, from H 1 low to H 3 high or from H 3 low to H 1 high | 0 | 4 | 0 | 4 | ns |
| 10 | $\mathrm{t}_{\mathrm{c}(\mathrm{H})}$ | Cycle time, $\mathrm{H} 1 / \mathrm{H} 3$ | 50 | 606 | 40 | 606 | ns |

$\dagger$ Numbers in this column match those used in Figure 7, Figure 8, and Figure 9.

* This parameter is not production tested.

NOTES:
5. All input and output voltage levels are TTL compatible.
9. Rise and fall times, assuming a $35-65 \%$ duty cycle, are incorporated within this specification (see Figure 6).
10. $P=t_{C(C l)}$


Figure 7. X2/CLKIN Timing

## DIGITAL SIGNAL PROCESSOR

timing parameters for X2/CLKIN, H1, H3 (see Note 5, Figure 7, Figure 8, and Figure 9) (continued)


Figure 8. H1/H3 Timings


Figure 9. CLKIN to H1/H3 as a Function of Temperature (Typical)

SMJ320C30
DIGITAL SIGNAL PROCESSOR
memory read/write timing
The following table defines memory read/write timing parameters for (M)STRB.
timing parameters for a memory $[(\bar{M})$ STRB $=0]$ read/write (see Figure 10 and Figure 11)

| NO.† |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 11 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{~L}-(\mathrm{M}) \mathrm{SL}]}$ | Delay time, H1 low to (M)STRB low | 0 | 10 | 0 | 4 | ns |
| 12 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{~L}-(\mathrm{M}) \mathrm{SH}]}$ | Delay time, H 1 low to (M)STRB high | 0 | 6 | 0 | 4 | ns |
| 13.1 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{RWL})}$ | Delay time, H1 high to R/W low | 0 | 9 | 0 | 7 | ns |
| 13.2 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{H}-(\mathrm{X}) \mathrm{RWL}]}$ | Delay time, H 1 high to (X)R/W low | 0 | 13 | 0 | 11 | ns |
| 14.1 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{~L}-\mathrm{A})}$ | Delay time, H1 low to A valid | 0 | 11 | 0 | 9 | ns |
| 14.2 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{~L}-(\mathrm{X}) \mathrm{A}]}$ | Delay time, H1 low to (X)A valid | 0 | 9 | 0 | 8 | ns |
| 15.1 | $\mathrm{t}_{\text {su( }}$ (D-H1L)R | Setup time, D valid before H1 low (read) | 14 |  | 10 |  | ns |
| 15.2 | $\mathrm{t}_{\text {sul }}(\mathrm{X}) \mathrm{DR}$-H1L]R | Setup time, (X)D before H1 low (read) | 16 |  | 14 |  | ns |
| 16 | th[H1L-(X)D]R | Hold time, (X)D after H1 low (read) | 0 |  | 0 |  | ns |
| 17.1 | $\mathrm{t}_{\text {su }}$ (RDY-H1H) | Setup time, $\overline{\mathrm{RDY}}$ before H 1 high | 8 |  | 6 |  | ns |
| 17.2 | $\mathrm{t}_{\text {sul }}[(\mathrm{X}) \mathrm{RDY}$ - H 1 H$]$ | Setup time, $\overline{(X) R D Y}$ before H 1 high |  |  |  |  | ns |
| 18 | th[H1H-(X)RDY] | Hold time, (X)RDY after H 1 high | 0 |  | 0 |  | ns |
| 19 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{H}-(\mathrm{X}) \mathrm{RWH}] \mathrm{W}}$ | Delay time, H 1 high to ( X$) \mathrm{R} / \overline{\mathrm{W}}$ high (write) |  | 9 |  | 7 | ns |
| 20 | $\left.\left.\mathrm{tv}^{\text {[H1LL }} \mathrm{X}\right) \mathrm{D}\right] \mathrm{W}$ | Valid time, (X)D after H1 low (write) |  | 17 |  | 14 | ns |
| 21 | th[H1H-(X)D]W | Hold time, (X)D after H1 high (write) | 0 |  | 0 |  | ns |
| 22.1 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{A})}$ | Delay time, H 1 high to A valid on back-to-back write cycles (write) |  | 15 |  | 12 | ns |
| 22.2 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{H}-(\mathrm{X}) \mathrm{A}]}$ | Delay time, H 1 high to (X)A valid on back-to-back write cycles (write) |  | 21 |  | 18 | ns |
| 26 | $\mathrm{t}_{\mathrm{d}}[\mathrm{A}-(\mathrm{X}) \mathrm{RDY}]$ | Delay time, $\overline{(X) R D Y}$ from A valid |  | $7{ }^{*}$ |  | $6{ }^{*}$ | ns |

$\dagger$ Numbers in this column match those used in Figure 10 and Figure 11.

* This parameter is not production tested.
memory read/write timing (continued)


NOTE A: $\overline{(\mathrm{M}) \text { STRB }}$ remains low during back-to-back read operations.
Figure 10. Timing for Memory [(M)STRB $=0$ ] Read
memory read/write timing (continued)


Figure 11. Timing for Memory [( $\overline{\mathrm{M}) \text { STRB }}=0]$ Write

## SMJ320C30

## DIGITAL SIGNAL PROCESSOR

SGUS014H - FEBRUARY 1991 - REVISED JUNE 2004

## memory read/write timing (continued)

The following table defines memory read timing parameters for IOSTRB.
timing parameters for a memory $(\overline{\overline{I O S T R B}}=0)$ read (see Figure 12)

| NO. $\dagger$ |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 27 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{IOSL})}$ | Delay time, H 1 high to $\overline{\text { OSTRB }}$ low | 0* | 9 | 0 * | 8 | ns |
| 28 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{IOSH})}$ | Delay time, H 1 high to $\overline{\text { IOSTRB }}$ high | 0* | 9 | 0* | 8 | ns |
| 29 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{~L}-(\mathrm{X}) \mathrm{RWWH}]}$ | Delay time, H 1 low to (X)R/ $\overline{\mathrm{W}}$ high | 0* | 9 | 0* | 8 | ns |
| 30 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{~L}-(\mathrm{X}) \mathrm{A}]}$ | Delay time, H1 low to (X)A valid | 0* | 9 | 0* | 8 | ns |
| 31 | $\left.\mathrm{t}_{\text {sul }}(\mathrm{X}) \mathrm{D}-\mathrm{H} 1 \mathrm{H}\right] \mathrm{R}$ | Setup time, (X)D before H 1 high | 13 |  | 11 |  | ns |
| 32 | th[H1H-(X)D]R | Hold time, (X)D after H 11 high | 0* |  | 0* |  | ns |
| 33 | $\left.\mathrm{t}_{\text {sul }}(\mathrm{X}) \mathrm{RD} \mathrm{Y}-\mathrm{H} 1 \mathrm{H}\right]$ | Setup time, $\overline{(\mathrm{X}) \mathrm{RDY}}$ before H 1 high | 9 |  | 8 |  | ns |
| 34 | th[H1H-(X)RDY] | Hold time, $\overline{(X) R D Y}$ after H 1 high | 0 |  | 0 |  | ns |

$\dagger$ Numbers in this column match those used in Figure 12.

* This parameter is not production tested.


Figure 12. Timing for Memory $(\overline{\text { IOSTRB }}=0)$ Read
memory read/write timing (continued)
The following table defines memory write timing parameters for $\overline{\text { IOSTRB }}$.
timing parameters for a memory ( $\overline{\overline{\mathrm{IOSTRB}}=0)}$ write (see Figure 13)

| NO. $\dagger$ |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 27 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{IOSL})}$ | Delay time, H1 high to $\overline{\text { IOSTRB }}$ low | 0* | 9 | 0* | 8 | ns |
| 28 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{IOSH})}$ | Delay time, H 1 high to $\overline{\text { OSTRB }}$ high | 0* | 9 | 0 * | 8 | ns |
| 29 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{~L}-(\mathrm{X}) \mathrm{RWWH}]}$ | Delay time, H 1 low to (X)R/ $\overline{\mathrm{W}}$ high | 0* | 9 | 0 * | 8 | ns |
| 30 | $\mathrm{t}_{\mathrm{d}[\mathrm{H} 1 \mathrm{~L}-(\mathrm{X}) \mathrm{A}]}$ | Delay time, H1 low to (X)A valid | 0* | 9 | $0^{*}$ | 8 | ns |
| 33 | $\mathrm{t}_{\text {sul }}(\mathrm{X}) \mathrm{RDY}$ - H 1 H$]$ | Setup time, $\overline{(X) R D Y}$ before H 1 high | 9 |  | 8 |  | ns |
| 34 | th[H1H-(X)RDY] | Hold time, $\overline{(\mathrm{X}) \mathrm{RDY}}$ after H 1 high | 0 |  | 0 |  | ns |
| 35 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{~L}-\mathrm{XRWL}}$ | Delay time, H 11 low to XR/ $\overline{\mathrm{W}}$ low | 0* | 13 | 0* | 11 | ns |
| 36 | $\mathrm{t}_{\mathrm{v}}[\mathrm{H} 1 \mathrm{H}(\mathrm{X}) \mathrm{D}] \mathrm{W}$ | Valid time, (X)D after H1 high |  | 25 |  | 20 | ns |
| 37 | th[H1L-(X)D] W | Hold time, (X)D after H1 low | 0 |  | 0 |  | ns |

$\dagger$ Numbers in this column match those used in Figure 13.

* This parameter is not production tested.


## H3




Figure 13. Timing for Memory $(\overline{\overline{O S T R B}}=0)$ Write

## SMJ320C30

## DIGITAL SIGNAL PROCESSOR

## XF0 and XF1 timing when executing LDFI or LDII

The following table defines the timing parameters for XF0 and XF1 during execution of LDFI or LDII.
timing parameters for XF0 and XF1 when executing LDFI or LDII (see Figure 14)

| NO.† |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 38 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 3 \mathrm{H}-\mathrm{XFOL})}$ | Delay time, H3 high to XF0 low |  | 13 |  | 12 | ns |
| 39 | $\mathrm{t}_{\text {su }}(\mathrm{XF} 1-\mathrm{H} 1 \mathrm{~L})$ | Setup time, XF1 valid before H1 low | 9 |  | 9 |  | ns |
| 40 | th(H1L-XF1) | Hold time, XF1 after H1 low | 0 |  | 0 |  | ns |

$\dagger$ Numbers in this column match those used in Figure 14.


Figure 14. Timing for XFO and XF1 When Executing LDFI or LDII

## XF0 timing when executing STFI and STII

The following table defines the timing parameters for the XFO pin during execution of STFI or STII.
timing parameters for XFO when executing STFI or STII (see Figure 15)

| NO.t |  | $\mathbf{3 2 0 C 3 0 - 4 0}$ |  | 320C30-50 | UNIT |
| ---: | ---: | ---: | ---: | ---: | :---: |
|  |  | MIN | MAX | MIN |  |$]$

$\dagger$ The number in this column matches that used in Figure 15.


Figure 15. Timing for XFO When Executing an STFI or STII

## SMJ320C30

## DIGITAL SIGNAL PROCESSOR

## XFO and XF1 timing when executing SIGI

The following table defines the timing parameters for the XF0 and XF1 pins during execution of SIGI.
timing parameters for XF0 and XF1 when executing SIGI (see Figure 16)

| NO.t |  | $\mathbf{3 2 0 C 3 0 - 4 0}$ | 320C30-50 | UNIT |  |
| :---: | :--- | :--- | ---: | ---: | :---: |
|  |  | MIN | MAX |  | MAX |$]$

$\dagger$ Numbers in this column match those used in Figure 16.


Figure 16. Timing for XF0 and XF1 When Executing SIGI

## loading when XFx is configured as an output

The following table defines the timing parameter for loading the XF register when the $\mathrm{XF} \times$ pin is configured as an output.
timing parameters for loading the XFx register when configured as an output pin (see Figure 17)

| NO. $\dagger$ |  |  | 320C30-40 | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN MAX | MIN | MAX |  |
| 45 | $\mathrm{t}_{\mathrm{V}}(\mathrm{H} 3 \mathrm{H}-\mathrm{XF})$ | Valid time, H3 high to XF valid | 13 |  | 12 | ns |

$\dagger$ The number in this column matches that used in Figure 17.


NOTE A: OUTXFx represents either bit 2 or 6 of the IOF register.
Figure 17. Timing for Loading XFx Register When Configured as an Output Pin

## changing XFx from an output to an input

The following table defines the timing parameters for changing the XFx pin from an output pin to an input pin.
timing parameters of XFx changing from output to input mode (see Figure 18)

| NO. $\dagger$ |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 46 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 3 \mathrm{H}-\mathrm{XFx})}$ | Delay time, XFx after H 3 high |  | 13* |  | 12* | ns |
| 47 | $\mathrm{t}_{\text {su }}(\mathrm{XFx}-\mathrm{H} 1 \mathrm{~L}$ ) | Setup time, XFx before H 1 low | 9 |  | 9 |  | ns |
| 48 | $\operatorname{th}(\mathrm{H} 1 \mathrm{~L}-\mathrm{XFx})$ | Hold time, XFx after H1 low | 0 |  | 0 |  | ns |

$\dagger$ Numbers in this column match those used in Figure 18.

* This parameter is not production tested.


NOTE A: İ/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register depending on whether XF0 or XF1, respectively, is being affected.

Figure 18. Timing for Change of XFx From Output to Input Mode
changing XFx from an input to an output
The following table defines the timing parameter for changing the XFx pin from an input pin to an output pin.
timing parameters of XFx changing from input to output mode (see Figure 19)

| NO. $\dagger$ |  |  | 320C30-40 | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN MAX | MIN | MAX |  |
| 49 | $\mathrm{t}_{\mathrm{d}}(\mathrm{H} 3 \mathrm{H}-\mathrm{XFIO})$ | Delay time, H3 high to XF switching from input to output | 17 |  | 17 | ns |

$\dagger$ The number in this column matches that used in Figure 19.


NOTE A: Ī/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register depending on whether XF0 or XF1, respectively, is being affected.

Figure 19. Timing for Change of XFx From Input to Output Mode

SGUS014H - FEBRUARY 1991 - REVISED JUNE 2004

## reset timing

$\overline{\text { RESET }}$ is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings are met, the exact sequence shown in Figure 20 occurs; otherwise, an additional delay of one clock cycle can occur. R/ $\bar{W}$ and $X R / \bar{W}$ are in the high-impedance state during reset and can be provided with a resistive pullup, nominally $18 \mathrm{k} \Omega$ to $22 \mathrm{k} \Omega$, to prevent spurious writes from occurring. The asynchronous reset signals include XF0/1, CLKX0/1, DX0/1, FSX0/1, CLKR0/1, DR0/1, FSR0/1, and TCLK0/1. HOLD is an asynchronous input and can be asserted during reset.
Resetting the device initializes the primary- and expansion-bus control registers to seven software wait states and, therefore, results in slow external accesses until these registers are initialized.

## timing parameters for $\overline{\operatorname{RESET}}\left[P=\mathrm{t}_{\mathbf{c}(\mathrm{CI})}\right]$ (see Figure 9 and Figure 20)

| NO. |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 50 | $\mathrm{t}_{\text {su }}$ (RESET) | Setup time, $\overline{\mathrm{RESET}}$ before CLKIN low | 10 | $\mathrm{P}^{*}$ | 10 | $\mathrm{P}^{*}$ | ns |
| 51 | $\mathrm{t}_{\mathrm{d}(\text { CLKINH-H1H) }}$ | Delay time, CLKIN high to H 1 high $\dagger$ | 2 | 14 | 2 | 10 | ns |
| 52 | $\mathrm{t}_{\mathrm{d}(\mathrm{CLKKINH}-\mathrm{H} 1 \mathrm{~L})}$ | Delay time, CLKIN high to H 1 low $\dagger$ | 2 | 14 | 2 | 10 | ns |
| 53 | $\mathrm{t}_{\text {su }}$ (RESETH-H1L) | Setup time, $\overline{\mathrm{RESET}}$ high before H 1 low after ten H 1 clock cycles | 9 |  | 7 |  | ns |
| 54 | $\mathrm{t}_{\mathrm{d}(\mathrm{CLKINH}-\mathrm{H} 3 \mathrm{~L})}$ | Delay time, CLKIN high to H3 low $\dagger$ | 2 | 14 | 2 | 10 | ns |
| 55 | $\mathrm{t}_{\mathrm{d}(\mathrm{CLKINH}-\mathrm{H} 3 \mathrm{H})}$ | Delay time, CLKIN high to H 3 high $\dagger$ | 2 | 14 | 2 | 10 | ns |
| 56 | $\mathrm{t}_{\text {dis }}(\mathrm{H} 1 \mathrm{H}-\mathrm{XD}$ ) | Disable time, H 1 high to ( X ) D high-impedance state |  | 15* |  | $12^{*}$ | ns |
| 57 | $\mathrm{t}_{\text {dis }}(\mathrm{H} 3 \mathrm{H}-\mathrm{XA})$ | Disable time, H 3 high to (X)A high-impedance state |  | 9* |  | 8* | ns |
| 58 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 3 \mathrm{H}-\mathrm{CONTROLH})}$ | Delay time, H 3 high to control signals high |  | 9* |  | $8^{*}$ | ns |
| 59 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{IACKH})}$ | Delay time, H 1 high to $\overline{\text { IACK }}$ high |  | 9* |  | 8* | ns |
| 60 | ${ }^{\text {dis }}$ (RESETL-ASYNCH) | Disable time, $\overline{\text { RESET }}$ low to asynchronous reset signals in the high-impedance state |  | 21* |  | 17* | ns |

[^3]reset timing (continued)


NOTES:
A. In this diagram X(D) includes D31-D0 and XD31-XD0.
B. In this diagram, ( X )A includes $\mathrm{A} 23-\mathrm{A} 0$ and XA12-XA0.
C. Control signals include $\overline{\text { STRB }}, \overline{M S T R B}$, and IOSTRB.
D. Asynchronous reset signals include XF1, XF0, CLKX0, DX0, FSX0, CLKR0, DR0, FSR0, CLKX1, DX1, FSX1, CLKR1, DR1, FSR1, TCLKO, and TCLK1.
E. In microprocessor mode, the reset vector is fetched twice, with seven software wait states each time. In micromputer mode, the reset vector is fetched twice, with no software wait states.

Figure 20. Timing for $\overline{\operatorname{Reset}}\left[\mathrm{P}=\mathrm{t}_{\mathrm{c}(\mathrm{CI})}\right]$

## SMJ320C30

## DIGITAL SIGNAL PROCESSOR

## interrupt-response timing

The following table defines the timing parameters for the $\overline{\mathrm{NT}}$ signals.

## timing parameters for $\overline{\mathrm{INT}} 3-\overline{\mathrm{INTO}}\left[\mathrm{Q}=\mathrm{t}_{\mathbf{c}(\mathrm{H})}\right]$ (see Figure 21)

| NO. |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 61 | $\mathrm{t}_{\text {su }}$ (INT) | Setup time, $\overline{\mathrm{NT} 3}-\overline{\mathrm{INT0}}$ before H 1 low | 13 |  | 10 |  | ns |
| 62 | $\mathrm{t}_{\mathrm{w}}($ INT $)$ | Pulse duration, $\overline{\mathrm{INT3}}-\overline{\mathrm{INTO}}$, to assure only one interrupt seen | Q | <2Q* | Q | $<2 Q^{*}$ | ns |

* This parameter is not production tested.

The interrupt (INT) pins are asynchronous inputs that can be asserted at any time during a clock cycle. The SMJ320C30 interrupts are level-sensitive, not edge-sensitive. Interrupts are detected on the falling edge of H 1 . Therefore, interrupts must be set up and held to the falling edge of H 1 for proper detection. The CPU and DMA respond to detected interrupts on instruction-fetch boundaries only.
For the processor to recognize only one interrupt on a given input, an interrupt pulse must be set up and held to:

- A minimum of one H 1 falling edge
- No more than two H 1 falling edges

The SMJ320C30 can accept an interrupt from the same source every two H 1 clock cycles.
If the specified timings are met, the exact sequence shown in Figure 21 occurs; otherwise, an additional delay of one clock cycle is possible.


Figure 21. Timing for $\overline{\mathrm{INT3}}-\overline{\mathrm{INTO}}$ Response $\left[\mathrm{Q}=\mathrm{t}_{\mathrm{c}(\mathrm{H})}\right]$

SMJ320C30 DIGITAL SIGNAL PROCESSOR

## interrupt-acknowledge timing

The $\overline{\text { IACK }}$ output goes active on the first half-cycle ( H 1 rising) of the decode phase of the IACK instruction and goes inactive at the first half-cycle (H1 rising) of the read phase of the IACK instruction.
The following table defines the timing parameters for the $\overline{\mathrm{IACK}}$ signal.

## timing parameters for $\overline{\text { IACK }}$ (see Figure 22)

| NO. $\dagger$ |  |  | 320C30-40 | 320C30-50 | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN MAX | MIN MAX |  |
| 63 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{H}-\mathrm{IACKL})}$ | Delay time, H 1 high to $\overline{\mathrm{IACK}}$ low | 9 | 7 | ns |
| 64 | $\mathrm{t}_{\mathrm{d}}(\mathrm{H} 1 \mathrm{H}-\mathrm{IACKH})$ | Delay time, H 1 high to $\overline{\mathrm{IACK}}$ high | 9 | 7 | ns |

$\dagger$ Numbers in this column match those used in Figure 22.


Figure 22. Timing for Interrupt-Acknowledge (IACK)
serial-port timing parameters (see Figure 23 and Figure 24)

| NO. |  |  | $\begin{aligned} & \text { CLOCK } \\ & \text { SOURCE } \end{aligned}$ | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | MAX | MIN | MAX |  |
| 65 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1-\mathrm{SCK})}$ | Delay time, H 1 high to internal CLKX/R |  |  | 13 |  | 10 | ns |
| 66 | ${ }_{\mathrm{c}}$ (SCK) | Cycle time, CLKX/R | CLKX/R ext | $\mathrm{t}_{\mathrm{c}(\mathrm{H})} \times 2.5^{*}$ |  | $\mathrm{t}_{\mathrm{c}(\mathrm{H})} \times 2.6^{*}$ |  | ns |
|  |  |  | CLKX/R int | $\mathrm{t}_{\mathrm{C}(\mathrm{H}) \times 2}$ | $\mathrm{t}_{\mathrm{C}(\mathrm{H})} \times 2^{32 *}$ | $\mathrm{t}_{\mathrm{C}(\mathrm{H}) \times 2}$ | $\mathrm{t}_{\mathrm{C}}(\mathrm{H}) \times 2^{32 *}$ |  |
| 67 | ${ }^{\text {tw }}$ (SCK) | Pulse duration, CLKX / R high/low | CLKX/R ext | $\mathrm{t}_{\mathrm{c}}(\mathrm{H})+12^{*}$ |  | $\mathrm{t}_{\mathrm{c}}(\mathrm{H})+10^{*}$ |  | ns |
|  |  |  | CLKX/R int | $\left[\mathrm{t}_{\mathrm{C}}(\mathrm{SCK})^{\prime} 2\right]-15$ | $\left.{ }^{[t} \mathrm{c}_{(S C K}\right)^{/ 2}{ }^{2}+5$ | $\left[t_{\text {c }}(\mathrm{SCK})^{/ 2}\right]^{-5}$ | $\left[t_{C}(\mathrm{SCK})^{/ 2}\right.$ 2] +5 |  |
| 68 | tr(SCK) | Rise time, CLKX/R |  |  | 7* |  | $6^{*}$ | ns |
| 69 | $\mathrm{tf}_{\text {( }}$ SCK) | Fall time, CLKX/R |  |  | 7* |  | $6^{*}$ | ns |
| 70 | $\mathrm{t}_{\mathrm{d}}(\mathrm{DX})$ | Delay time, CLKX to DX valid | CLKX ext |  | 30 |  | 24 | ns |
|  |  |  | CLKX int |  | 17 |  | 16 |  |
| 71 | $\mathrm{t}_{\text {su }}(\mathrm{DR})$ | Setup time, DR before CLKR low | CLKR ext | 9 |  | 9 |  | ns |
|  |  |  | CLKR int | 21 |  | 17 |  |  |
| 72 | $t_{\text {( }}(\mathrm{DR})$ | Hold time, DR from CLKR low | CLKR ext | 9 |  | 7 |  | ns |
|  |  |  | CLKR int | 0 |  | 0 |  |  |
| 73 | $\mathrm{t}_{\mathrm{d}}(\mathrm{FSX})$ | Delay time, CLKX to internal FSX high/low | CLKX ext |  | 27 |  | 22 | ns |
|  |  |  | CLKX int |  | 15 |  | 15 |  |
| 74 | $\mathrm{t}_{\text {su }}(\mathrm{FSR})$ | Setup time, FSR before CLKR low | CLKR ext | 9 |  | 7 |  | ns |
|  |  |  | CLKR int | 9 |  | 7 |  |  |
| 75 | th(FS) | Hold time, FSX/R input from CLKX/R low | CLKX/R ext | 9 |  | 7 |  | ns |
|  |  |  | CLKX/R int | 0 |  | 0 |  |  |
| 76 | $\mathrm{t}_{\text {su }}(\mathrm{FSX}$ ) | Setup time, external FSX before CLKX high | CLKX ext | $-\left[\mathrm{t}_{\mathrm{c}}(\mathrm{H})-8\right]$ | $\left[\mathrm{t}_{\mathrm{C}}(\mathrm{SCK})^{\prime} / 2\right]-10^{*}$ | $-\left[\mathrm{t}_{\mathrm{c}}(\mathrm{H})-8\right]$ | $\left[\mathrm{t}_{\mathrm{C}}(\mathrm{SCK}) / 2\right]-10^{\prime}$ | ns |
|  |  |  | CLKX int | $-\left[\mathrm{t}_{\mathrm{C}}(\mathrm{H})-21\right]$ | $t_{\text {c }}(\mathrm{SCK}) / 2^{*}$ | $-\left[\mathrm{t}_{\mathrm{C}}(\mathrm{H})-21\right]$ | $\mathrm{t}_{\mathrm{C}(\mathrm{SCK})} / 2^{*}$ |  |
| 77 | $\mathrm{td}_{\mathrm{d}}(\mathrm{CH}-\mathrm{DX}) \mathrm{V}$ | Delay time, CLKX to first DX bit, FSX precedes CLKX high | CLKX ext |  | 30 |  | 24 | ns |
|  |  |  | CLKX int |  | 18 |  | 14 |  |
| 78 | $\mathrm{t}_{\mathrm{d}(\text { FSX-DX) }} \mathrm{V}$ | Delay time, FSX to first DX bit, CLKX precedes FSX |  |  | 30 |  | 24 | ns |
| 79 | $t_{d D X Z}$ | Delay time, CL high impedanc data bit | KX high to $D X$ e following last |  | 17* |  | 14* | ns |

[^4]
## serial-port timing parameters (continued)

Unless otherwise indicated, the data-rate timings shown in Figure 23 and Figure 24 are valid for all serial-port modes, including handshake. See serial-port timing parameter tables.

Timing diagrams shown in Figure 23 and Figure 24 show operations with the serial port global-control register bits CLKXP $=$ CLKRP $=F S X P=F S R P=0$.

Timing diagrams shown in Figure 23 and Figure 24 depend upon the length of the serial-port word, n, where $\mathrm{n}=8,16,24$, or 32 bits, respectively.


Figure 23. Serial-Port Timing for Fixed-Data-Rate Mode


NOTE A: Timings not expressly specified for variable-data-rate mode are the same as those for fixed-data-rate mode.
Figure 24. Serial-Port Timing for Variable-Data-Rate Mode

## $\overline{\text { HOLD timing }}$

$\overline{\mathrm{HOLD}}$ is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings are met, the exact sequence shown in Figure 25 occurs; otherwise, an additional delay of one clock cycle is possible.
The "timing parameters for $\overline{\mathrm{HOLD}} / \overline{\mathrm{HOLDA}}$ " table defines the timing parameters for the $\overline{\mathrm{HOLD}}$ and $\overline{\mathrm{HOLDA}}$ signals.
The NOHOLD bit of the primary bus control register overrides the $\overline{\text { HOLD }}$ signal. When this bit is set, the device comes out of hold and prevents future hold cycles.
Asserting $\overline{\text { HOLD }}$ prevents the processor from accessing the primary bus. Program execution continues until a read from or a write to the primary bus is requested. In certain circumstances, the first write is pending, allowing the processor to continue until a second write is encountered.

## $\overline{\text { HOLD }} / \overline{\text { HOLDA }}$ timing (see Figure 25)

| NO.† |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 80 | $\mathrm{t}_{\text {su }}$ (HOLD) | Setup time, $\overline{\text { HOLD }}$ before H1 low | 13 |  | 10 |  | ns |
| 81 | $\mathrm{t}_{\mathrm{v}}$ (HOLDA) | Valid time, $\overline{\text { HOLDA }}$ after H1 low | 0* | 9 | 0* | 7 | ns |
| 82 | $\mathrm{t}_{\mathrm{w}}$ (HOLD) | Pulse duration, $\overline{\text { HOLD }}$ low | $2 \mathrm{t}_{\mathrm{C}(\mathrm{H})}$ |  | $2 \mathrm{t}_{\mathrm{C}(\mathrm{H})}$ |  | ns |
| 83 | $\mathrm{t}_{\mathrm{w}}$ (HOLDA) | Pulse duration, $\overline{\text { HOLDA }}$ low | $\mathrm{t}_{\mathrm{C}(\mathrm{H})}-5^{*}$ |  | $\mathrm{t}_{\mathrm{C}(\mathrm{H})}-5^{*}$ |  | ns |
| 84 | $\mathrm{t}_{\mathrm{d}(\mathrm{H} 1 \mathrm{~L}-\mathrm{SH}) \mathrm{H}}$ | Delay time, H 1 low to $\overline{\text { STRB }}$ high for a $\overline{\text { HOLD }}$ | 0 * | 9* | 0 * | 7* | ns |
| 85 | $\mathrm{t}_{\text {dis }}(\mathrm{H} 1 \mathrm{~L}-\mathrm{S})$ | Disable time, H 1 low to $\overline{\text { STRB }}$ high impedance | 0* | 9* | 0* | 8* | ns |
| 86 | ten(H1L-S) | Enable time, H1 low to $\overline{\text { STRB }}$ active | $0{ }^{*}$ | 9* | $0{ }^{*}$ | 7* | ns |
| 87 | $\mathrm{t}_{\text {dis }}(\mathrm{H} 1 \mathrm{~L}-\mathrm{RW})$ | Disable time, H 1 low to $\mathrm{R} / \overline{\mathrm{W}}$ high impedance | 0* | 9* | 0* | 8* | ns |
| 88 | ten(H1L-RW) | Enable time, H 1 low to $\mathrm{R} / \overline{\mathrm{W}}$ active | 0 * | 9* | 0 * | 7* | ns |
| 89 | $\mathrm{t}_{\operatorname{dis}(\mathrm{H} 1 \mathrm{~L}-\mathrm{A})}$ | Disable time, H 1 low to address high impedance | 0* | 9* | 0* | 8* | ns |
| 90 | $\operatorname{ten}(\mathrm{H} 1 \mathrm{~L}-\mathrm{A})$ | Enable time, H 11 low to address valid | $0^{*}$ | 13* | 0 * | $12^{*}$ | ns |
| 91 | $\mathrm{t}_{\text {dis }}(\mathrm{H} 1 \mathrm{H}-\mathrm{D})$ | Disable time, H 1 high to data high impedance | $0^{*}$ | 12* | 0* | 8* | ns |

$\dagger$ Numbers in this column are used in Figure 25.

* This parameter is not production tested.
$\overline{\text { HOLD }} / \overline{\text { HOLDA }}$ timing (continued)


NOTE A: $\overline{H O L D A}$ goes low in response to $\overline{\mathrm{HOLD}}$ going low and continues to remain low through one H 1 cycle after $\overline{\mathrm{HOLD}}$ returns to high.
Figure 25. Timing for $\overline{\text { HOLD }} / \overline{\text { HOLDA }}$

## SMJ320C30

## DIGITAL SIGNAL PROCESSOR

SOURCED FROM: SGUS014H - FEBRUARY 1991 - REVISED JUNE 2004

## general-purpose I/O timing

Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The contents of the internal-control registers associated with each peripheral define the modes for these pins.
peripheral pin I/O timing
The following table defines peripheral pin general-purpose I/O timing parameters.
timing parameters for peripheral pin general-purpose I/O (see Note 11 and Figure 26)

| NO.t |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 92 | $\left.\mathrm{t}_{\text {su( }} \mathrm{GPIOH} 1 \mathrm{~L}\right)$ | Setup time, general-purpose input before H1 low | 10* |  | 9* |  | ns |
| 93 | th(GPIOH1L) | Hold time, general-purpose input after H 1 low | 0* |  | 0 * |  | ns |
| 94 | $\mathrm{t}_{\mathrm{d}}(\mathrm{GPIOH} 1 \mathrm{H})$ | Delay time, general-purpose output after H 1 high |  | 13* |  | 10* | ns |

$\dagger$ Numbers in this column are used in Figure 26

* This parameter is not production tested.

NOTE 11: Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The modes of these pins are defined by the contents of internal control registers associated with each peripheral.


Figure 26. Timing for Peripheral Pin General-Purpose I/O

SMJ320C30
DIGITAL SIGNAL PROCESSOR
changing the peripheral pin I/O modes
The following tables show the timing parameters for changing the peripheral pin from a general-purpose output pin to a general-purpose input pin and the reverse.
timing parameters for peripheral pin changing from general-purpose output to input mode (see Note 12 and Figure 27)

| NO. $\dagger$ |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 95 | $\left.\mathrm{th}_{( } \mathrm{H} 1 \mathrm{H}\right)$ | Hold time after H 1 high |  | 13 |  | 10 | ns |
| 96 | $\left.\mathrm{t}_{\text {su( }} \mathrm{GPIOH} 1 \mathrm{~L}\right)$ | Setup time, peripheral pin before H 1 low | 9 |  | 9 |  | ns |
| 97 | $\mathrm{th}^{(\mathrm{GPIOH} 1 \mathrm{~L})}$ | Hold time, peripheral pin after H1 low | 0 |  | 0 |  | ns |

$\dagger$ Numbers in this column are used in Figure 27.
NOTE 12: Peripheral pins include CLKX0/1, CLKRO/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The modes of these pins are defined by the contents of internal control registers associated with each peripheral.


Figure 27. Timing for Change of Peripheral Pin From General-Purpose Output to Input Mode

## DIGITAL SIGNAL PROCESSOR

SOURCED FROM: SGUS014H - FEBRUARY 1991 - REVISED JUNE 2004
timing parameters for peripheral pin changing from general-purpose input to output mode (see Figure 28)

| NO. |  |  | 320C30-40 |  | 320C30-50 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX | MIN | MAX |  |
| 98 | $\mathrm{t}_{\mathrm{d}}(\mathrm{GPIOH} 1 \mathrm{H})$ | Delay time, H 1 high to peripheral pin switching from input to output |  | 13 |  | 10 | ns |



Figure 28. Timing for Change of Peripheral Pin From General-Purpose Input to Output Mode

SMJ320C30 DIGITAL SIGNAL PROCESSOR
timer pin (TCLK0 and TCLK1) timing
Valid logic-level periods and polarity are specified by the contents of the internal control registers.
The following table defines the timing parameters for the timer pin.
timing parameters for timer pin (TCLK0 and TCLK1) (see Figure 29)

| NO. |  |  |  | 320C30-40才 |  | 320C30-50才 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | MAX | MIN | MAX |  |
| 99 | $\mathrm{t}_{\text {su }}$ (TCLK-H1L) | Setup time, TCLK ext before H 1 low | TCLK ext | 10 |  | 8 |  | ns |
| 100 | th(TCLK-H1L) | Hold time, TCLK ext after H1 low | TCLK ext | 0 |  | 0 |  | ns |
| 101 | $\mathrm{t}_{\mathrm{d}}($ TCLK $-\mathrm{H} 1 \mathrm{H})$ | Delay time, H1 high to TCLK int valid | TCLK int | 9 |  | 9 |  | ns |
| 102 | $\mathrm{t}_{\mathrm{C}}$ (TCLK) | Cycle time, TCLK | TCLK ext | $\mathrm{t}_{\mathrm{C}(\mathrm{H})} \times 2.6^{*}$ |  | $\mathrm{t}_{\mathrm{C}(\mathrm{H})} \times 2.6^{*}$ |  | ns |
|  |  |  | TCLK int | $\mathrm{t}_{\mathrm{C}(\mathrm{H})} \times 2$ | $\mathrm{t}_{\mathrm{C}(\mathrm{H})} \times 2^{32 *}$ | $\mathrm{t}_{\mathrm{C}(\mathrm{H}) \times 2}$ | $\mathrm{t}_{\mathrm{C}(\mathrm{H})} \times 2^{32 *}$ | ns |
| 103 | $\mathrm{t}_{\mathrm{w}}$ (TCLK) | Pulse duration, TCLK high/low | TCLK ext | $\mathrm{t}_{\mathrm{c}(\mathrm{H})}+12^{*}$ |  | $\mathrm{t}_{\mathrm{c}(\mathrm{H})}+10^{*}$ |  | ns |
|  |  |  | TCLK int | [ $\mathrm{c}_{\mathrm{C}}$ (TCLK) ${ }^{\text {/2] }}$-5 | $\left[\mathrm{t}_{\mathrm{C}}(\mathrm{TCLK})^{/ 2}\right]+5$ | [ $\mathrm{t}_{\mathrm{C}}$ (TCLK) $\left./ 2\right]-5$ | $\left[\mathrm{t}_{\mathrm{C}}(\mathrm{TCLK})^{/ 2}\right]+5$ | ns |

$\dagger$ Numbers in this column are used in Figure 29.
$\ddagger$ Timing parameters 99 and 100 are applicable for a synchronous input clock. Timing parameters 102 and 103 are applicable for an asynchronous input clock.

* This parameter is not production tested.


NOTE A: Period and polarity of valid logic level are specified by contents of internal control registers.
Figure 29. Timing for Timer Pin

## SMJ320C30

## DIGITAL SIGNAL PROCESSOR

SOURCED FROM: SGUS014H - FEBRUARY 1991 - REVISED JUNE 2004

## $\overline{\text { SHZ }}$ pin timing

The following table defines the timing parameter for the $\overline{\mathrm{SHZ}}$ pin.
timing parameters for SHZ pin (see Figure 30)

| NO. $\dagger$ |  |  | $\begin{aligned} & \hline 320 C 30-40 \\ & 320 C 30-50 \end{aligned}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | MAX |  |
| 104 | $\mathrm{t}_{\text {dis }}(\mathrm{SHZ})$ | Disable time, $\overline{\text { SHZ }}$ low to all O, I/O high impedance | 0* | $3 \mathrm{P}+15^{*}$ | ns |
| 105 | ten(SHZ) | Enable time, $\overline{\mathrm{SHZ}}$ high to all O, I/O active | $0^{*}$ | 2P* | ns |

$\dagger$ Numbers in this column are used in Figure 30

* This parameter is not production tested.


NOTE A: Enabling $\overline{\text { SHZ }}$ destroys SMJ320C30 register and memory contents. Assert $\overline{\text { SHZ }}$ and reset the SMJ320C30 to restore it to a known condition.

Figure 30. Timing for SHZ

SMJ320C30 part order information


DEVICE $\qquad$
KGD = Known Good Die
$30=320 \mathrm{C} 30$
Figure 31. SMJ320C30 Device Nomenclature

## MECHANICAL DATA

HFG (S-CQFP-F196)
CERAMIC QUAD FLATPACK WITH TIE BAR


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Ceramic quad flatpack with flat leads brazed to nonconductive tie-bar carrier
D. This package can be hermetically sealed with a metal lid.
E. The terminals will be gold plated.
F. Falls within JEDEC MO-113 AB

The above data applies to the SMJ320C30 196-pin QFP.


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Index mark may appear on top or bottom depending on package vendor.
D. Pins are located within $0.010(0,25)$ diameter of true position relative to each other at maximum material condition and within $0.030(0,76)$ diameter relative to the edges of the ceramic.
E. This package can be hermetically sealed with metal lids or with ceramic lids using glass frit.
F. The pins can be gold plated or solder dipped.
G. Falls within MIL-STD-1835 CMGA7-PN and CMGA19-PN and JEDEC MO-067AG and MO-066AG, respectively

Thermal Resistance Characteristics

| PARAMETER | ${ }^{\circ} \mathbf{C} / \mathbf{W}$ |
| :---: | :---: |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | 26.6 |
| $\mathrm{R}_{\theta \mathrm{JJC}}$ | 1.1 |

The above data applies to the SMJ320C30 181-pin PGA.

PACKAGE OPTION ADDENDUM

## PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package <br> Type | Package <br> Drawing | Pins Package <br> Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5962-9052604$ MUA | ACTIVE | CFP | HFG | 196 | 1 | TBD | Call TI | Level-NC-NC-NC |
| $5962-9052604 M X A$ | ACTIVE | CPGA | GB | 181 | 1 | TBD | Call TI | Level-NC-NC-NC |
| $5962-9052604$ Q9A | OBSOLETE | XCEPT | KGD | 0 |  | TBD | Call TI | Call TI |
| $5962-9052605 M U A$ | ACTIVE | CFP | HFG | 196 | 4 | TBD | Call TI | Level-NC-NC-NC |
| $5962-9052605 M X A ~$ | ACTIVE | CPGA | GB | 181 | 1 | TBD | Call TI | Level-NC-NC-NC |
| $5962-9052605 Q X C ~$ | ACTIVE | CPGA | GB | 181 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SM320C30GBM40 | ACTIVE | CPGA | GB | 181 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SM320C30GBM50 | ACTIVE | CPGA | GB | 181 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SM320C30HFGM40 | ACTIVE | CFP | HFG | 196 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SM320C30HFGM50 | ACTIVE | CFP | HFG | 196 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SMJ320C30GBM40 | ACTIVE | CPGA | GB | 181 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SMJ320C30GBM50 | ACTIVE | CPGA | GB | 181 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SMJ320C30HFGM40 | ACTIVE | CFP | HFG | 196 | 1 | TBD | Call TI | Level-NC-NC-NC |
| SMJ320C30HFGM50 | ACTIVE | CFP | HFG | 196 | 4 | TBD | Call TI | Level-NC-NC-NC |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$ ): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine ( Br ) and Antimony ( Sb ) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Ceramic quad flatpack with flat leads brazed to non-conductive tie bar carrier
D. This package is hermetically sealed with a metal lid.
E. The leads are gold-plated and can be solder-dipped.
F. Leads not shown for clarity purposes
G. Falls within JEDEC MO-113AB


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Index mark can appear on top or bottom, depending on package vendor.
D. Pins are located within $0.010(0,25)$ diameter of true position relative to each other at maximum material condition and within $0.030(0,76)$ diameter relative to the edge of the ceramic.
E. This package can be hermetically sealed with metal lids or with ceramic lids using glass frit.
F. The pins can be gold-plated or solder-dipped.
G. Falls within MIL-STD-1835 CMGA7-PN

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

## Products

| Amplifiers | amplifier.ti.com |
| :--- | :--- |
| Data Converters | dataconverter.ti.com |
| DSP | dsp.ti.com |
| Interface | interface.ti.com |
| Logic | logic.ti.com |
| Power Mgmt | power.ti.com |
| Microcontrollers | microcontroller.ti.com |

## Applications

| Audio | www.ti.com/audio |
| :--- | :--- |
| Automotive | www.ti.com/automotive |
| Broadband | www.ti.com/broadband |
| Digital Control | www.ti.com/digitalcontrol |
| Military | www.ti.com/military |
| Optical Networking | www.ti.com/opticalnetwork |
| Security | www.ti.com/security |
| Telephony | www.ti.com/telephony |
| Video \& Imaging | www.ti.com/video |
| Wireless | www.ti.com/wireless |

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265


[^0]:    Please be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

[^1]:    $\dagger \mathrm{I}=$ input, $\mathrm{O}=$ output, $\mathrm{Z}=$ high-impedance state, $\mathrm{NC}=$ no connect
    $\ddagger$ For GB package
    § $\mathrm{S}=\overline{\mathrm{SHZ}}$ active, $\mathrm{H}=\overline{\mathrm{HOLD}}$ active, $\mathrm{R}=\overline{\mathrm{RESET}}$ active

[^2]:    $\dagger_{A D V}$, $D_{D D}$ DD $, ~ I O D V_{D D}, M D V_{D D}$, and $P D V_{D D}$ are on a common plane internal to the device.
    $\ddagger V_{D D}$ is on a common plane internal to the device.
    § VSS, $\mathrm{CV}_{S S}$, and IV $\mathrm{VSS}_{\text {a }}$ are on a common plane internal to the device.
    II DVSS is on a common plane internal to the device.

[^3]:    $\dagger$ See Figure 9 for temperature dependence for the $40-\mathrm{MHz}$ SMJ320C30.

    * This parameter is not production tested.

[^4]:    * This parameter is not production tested.

