

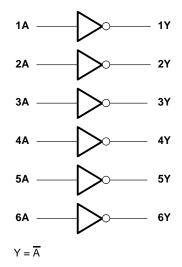
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other production processing does not necessarily include testing of all parameters.

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

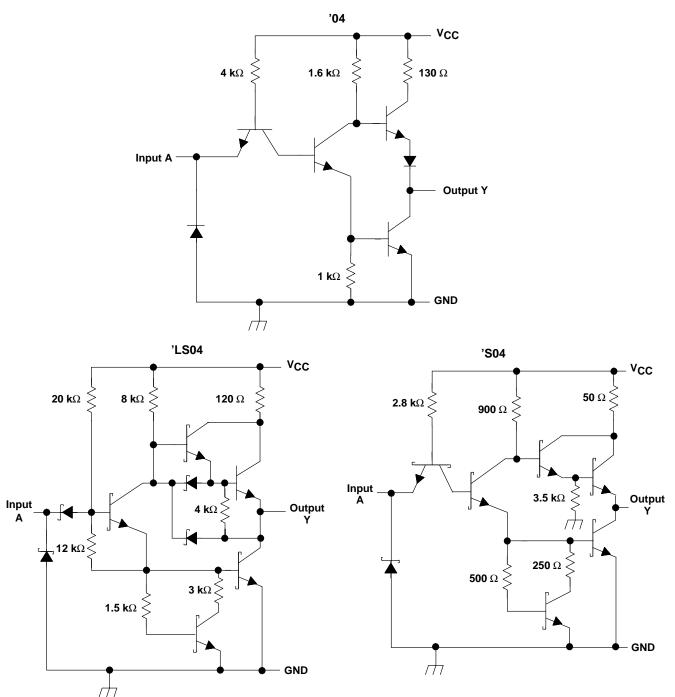
ORDERING INFORMATION										
TA	PAC	CKAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING						
		Tube	SN7404N	SN7404N						
	PDIP – N	Tube	SN74LS04N	SN74LS04N						
		Tube	SN74S04N	SN74S04N						
		Tube	SN7404D	7404						
		Tube	SN74LS04D	LS04						
0°C to 70°C	SOIC – D	Tape and reel	SN74LS04DR	1304						
		Tube	SN74S04D	- S04						
		Tape and reel	SN74S04DR	304						
	SOP – NS	Tape and reel	SN7404NSR	SN7404						
	30F - N3	Tape and reel	SN74LS04NSR	74LS04						
	SSOP – DB	Tape and reel	SN74LS04DBR	LS04						
		Tube	SN5404J	SN5404J						
		Tube	SNJ5404J	SNJ5404J						
	CDIP – J	Tube	SN54LS04J	SN54LS04J						
	CDIP – J	Tube	SN54S04J	SN54S04J						
		Tube	SNJ54LS04J	SNJ54LS04J						
–55°C to 125°C		Tube	SNJ54S04J	SNJ54S04J						
		Tube	SNJ5404W	SNJ5404W						
	CFP – W	Tube	SNJ54LS04W	SNJ54LS04W						
		Tube	SNJ54S04W	SNJ54S04W						
	LCCC – FK	Tube	SNJ54LS04FK	SNJ54LS04FK						
		Tube	SNJ54S04FK	SNJ54S04FK						


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each inverter)

(00001111	
INPUT A	OUTPUT Y
Н	L
L	Н

logic diagram (positive logic)



SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

schematics (each gate)

Resistor values shown are nominal.

SDLS029B – DECEMBER 1983 – REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

	e Note 1)	
Package thermal impeda	nce, θ_{JA} (see Note 2): D package	
	DB package	
	N package	
	NS package	
Storage temperature ran	ge, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			SN5404			SN7404		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			16			16	mA
Т _А	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			au at		SN5404			SN7404		UNIT
PARAMETER	TEST CONDITIONS [‡]			MIN	TYP§	MAX	MIN	ΤΥΡ§	MAX	UNIT
VIK	$V_{CC} = MIN,$	l _l = –12 mA				-1.5			-1.5	V
VOH	$V_{CC} = MIN,$	V _{IL} = 0.8 V,	I _{OH} = -0.4 mA	2.4	3.4		2.4	3.4		V
VOL	$V_{CC} = MIN,$	V _{IH} = 2 V,	I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
lį	V _{CC} = MAX,	VI = 5.5 V				1			1	mA
ЧН	V _{CC} = MAX,	VI = 2.4 V				40			40	μΑ
۱ _{IL}	V _{CC} = MAX,	V _I = 0.4 V				-1.6			-1.6	mA
IOS	V _{CC} = MAX			-20		-55	-18		-55	mA
ІССН	V _{CC} = MAX,	V _I = 0 V			6	12		6	12	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			18	33		18	33	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}C$.

¶ Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST (TEST CONDITIONS		SN5404 SN7404		UNIT
		(001101)			MIN	TYP	MAX	
^t PLH	А	v	R _L = 400 Ω,	C _I = 15 pF		12	22	ns
^t PHL	7	I	NC = 400 32,	0L = 13 pi		8	15	115

SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

recommended operating conditions

		s	N54LS0	4	S	N74LS04	4	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
Τ _Α	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			avet	S	N54LS04	4	S	N74LS04	1	UNIT	
PARAMETER	TEST CONDITIONS [†]			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK	V _{CC} = MIN,	lj = -18 mA				-1.5			-1.5	V	
Vон	V _{CC} = MIN,	$V_{IL} = MAX,$	I _{OH} = -0.4 mA	2.5	3.4		2.7	3.4		V	
Ver		V _{IH} = 2 V	$I_{OL} = 4 \text{ mA}$		0.25	0.4			0.4	V	
VOL	$V_{CC} = MIN,$	vIH = ∠ v	IOL = 8 mA					0.25	0.5	v	
lj	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA	
IIН	V _{CC} = MAX,	V _I = 2.7 V				20			20	μΑ	
١ _{IL}	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA	
IOS§	V _{CC} = MAX			-20		-100	-20		-100	mA	
ІССН	V _{CC} = MAX,	$V_{I} = 0 V$			1.2	2.4		1.2	2.4	mA	
ICCL	V _{CC} = MAX,	VI = 4.5 V			3.6	6.6		3.6	6.6	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25° C.

§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST (TEST CONDITIONS		N54LS04 N74LS04		UNIT
		(001101)			MIN	TYP	MAX	
^t PLH	Δ	v	Y $R_L = 2 k\Omega$, C			9	15	ns
^t PHL	7	I	NL – 2 KS2,	C _L = 15 pF		10	15	113

SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

recommended operating conditions

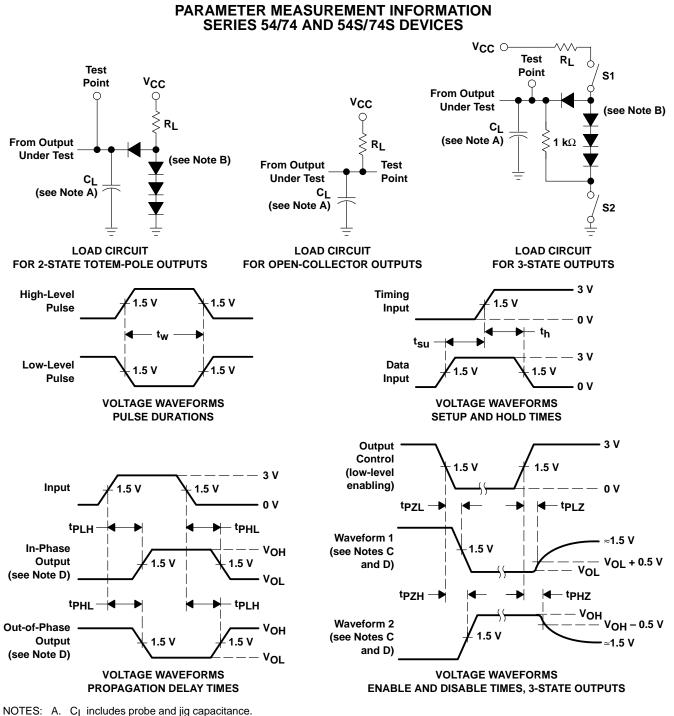
		5	SN54S04		5	SN74S04		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-1			-1	mA
IOL	Low-level output current			20			20	mA
Т _А	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEAT CONDITI			SN54S04		5	6N74S04		UNIT
FARAIVIETER	TEST CONDITIONS [†]			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	$V_{CC} = MIN,$	lj = – 18 mA				-1.2			-1.2	V
VOH	$V_{CC} = MIN,$	$V_{IL} = 0.8 V,$	I _{OH} = –1 mA	2.5	3.4		2.7	3.4		V
VOL	$V_{CC} = MIN,$	V _{IH} = 2 V,	I _{OL} = 20 mA			0.5			0.5	V
lj	V _{CC} = MAX,	VI = 5.5 V				1			1	mA
IIН	V _{CC} = MAX,	VI = 2.7 V				50			50	μA
ΙL	V _{CC} = MAX,	V _I = 0.5 V				-2			-2	mA
IOS§	$V_{CC} = MAX$			-40		-100	-40		-100	mA
ІССН	V _{CC} = MAX,	V _I = 0 V			15	24		15	24	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			30	54		30	54	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25° C.


§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST (CONDITIONS	-	N54S04 N74S04		UNIT
		(001-01)			MIN	TYP	MAX	
^t PLH	А	V	R ₁ = 280 Ω,	C _I = 15 pF		3	4.5	ns
^t PHL	7	•	NL = 200 32,	0L = 10 pi		3	5	113
^t PLH	А	V	R ₁ = 280 Ω,	C _I = 50 pF		4.5		ns
^t PHL	A	I	NL = 200 32,	0L = 30 pr		5		115

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

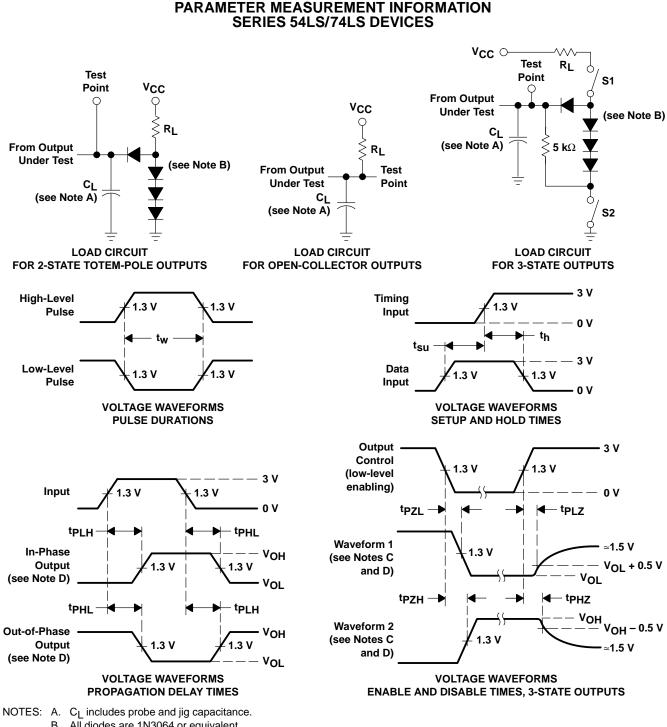

- B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL. E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω ; t_f and t_f \leq 7 ns for Series 54/74 devices and t_f and t_f \leq 2.5 ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

SDLS029B - DECEMBER 1983 - REVISED FEBRUARY 2002

B. All diodes are 1N3064 or equivalent.

C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.

E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.

F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω , t_f \leq 1.5 ns, t_f \leq 2.6 ns.

G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated