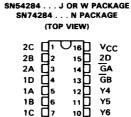
MAY 1972 - REVISED MARCH 1988


- Fast Multiplication of Two Binary Numbers
 8-Bit Product in 40 ns Typical
- Expandable for N-Bit-by-n-Bit Applications:
 16-Bit Product in 70 ns Typical
 32-Bit Product in 103 ns Typical
- Fully Compatible with Most TTL Circuits
- Diode-Clamped Inputs Simplify System Design

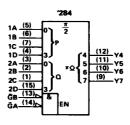
description

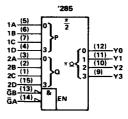
These high-speed TTL circuits are designed to be used in high-performance parallel multiplication applications. When connected as shown in Figure A, these circuits perform the positive-logic multiplication of two 4-bit binary words. The eight-bit binary product is generated with typically only 40 nanoseconds delay.

This basic four-by-four multiplier can be utilized as a fundamental building block for implementing larger multipliers. For example, the four-by-four building blocks can be connected as shown in Figure B to generate submultiple partial products. These results can then be summed in a Wallace tree, and, as illustrated, will produce a 16-bit product for the two eight-bit words typically in 70 nanoseconds. SN54H183/SN74H183 carry-save adders and SN54S181/SN74S181 rithmetic logic units with the SN54S182/SN74S182 look-ahead generator are used to achieve this high performance. The scheme is expandable for implementing N × M bit multipliers.

The SN54284 and SN54285 are characterized for operation over the full military temperature range of -55°C to 125°C; the SN74284 and SN74285 are characterized for operation from 0°C to 70°C.

SN54285 . . . J OR W PACKAGE SN74285 . . . N PACKAGE (TOP VIEW)


GND


9 🗌

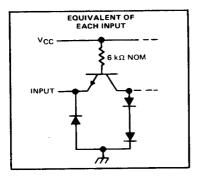
Y7

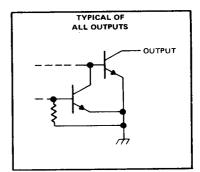
2C	ď٦	$ abla_{i0}$	Vcc
2B		15	2D
2A	Пз	14[]	ĞΑ
1D	□4	13 🛛	GB
1A	Дъ	12	Y0
1B	□6	11	Y1
1C	Ū٦	10 🗍	Y2
GND	[]8	9 🗍	Y3

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Taxas instruments standard warranty. Production processing does not necessarily include testing of all parameters.




2-787

2

TI Devices

schematics

2

BINARY INPUTS

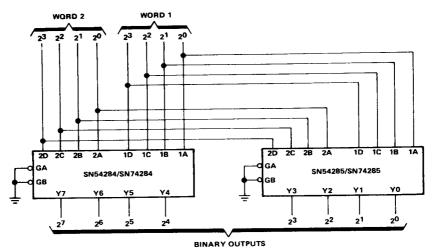
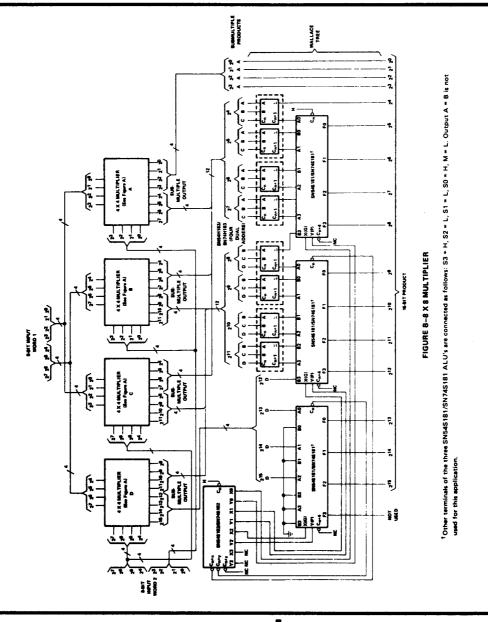



FIGURE A-4 X 4 MULTIPLIER

2-789

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 	. 7 V
Input voltage, VCC (see Note 1)				. 5.5 V
Storage temperature range	SN/4 Circu	115	 -65°C	to 150°C
Storage temperature range			 . ,	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	· · · · · · · · · · · · · · · · · · ·	SN54284 SN54285			SN74284 SN74285		
	MIN	NOM	MAX	MIN	NOM	MAX	_
	4.5	5	5.5	4.75	5	5.25	l v
Supply voltage, V _{CC}			5.5			5.5	T v
High-level output voltage, VOH			16	 		16	mA
Low-level output current, IQL	-55		125	1		70	°c
Operating free-air temperature, TA			125				

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†	MIN	TYP‡	MAX	UNI
			2			V
VIH.	High-level input voltage				0.8	V
VIL	Low-level input voltage	14 1411 L = 12 mA	\rightarrow		-1.5	\vdash_{∇}
<u> </u>	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA	+			+-
IOH High-level output current		V _{CC} = MIN, V _{IH} = 2 V,	ļ	40	40	μΑ
	High-level output current	V _{IL} = 0.8 V, V _{OH} = 5.5 V				↓_
VOL Low-level output voltage		VCC = MIN, IOL = 12 mA			0.4	1
	V _{IH} = 2 V,				1 ×	
	VIL = 0.8 V IOL = 16 mA	- 1		0.45	<u> </u>	
	VCC = MAX, VI = 5.5 V			1	m	
1	Input current at maximum input voltage	""	+		40	μ/
IH.	High-level input current	V _{CC} = MAX, V _I = 2.4 V			-1	m
IL.	Low-level input current	V _{CC} = MAX, V ₁ = 0.4 V				+
ICC Supply current		VCC = MAX, SN54284, SN542	85			
	T _A = 125°C, N package only			99		
	See Note 2				- mA	
	Supply current	VCC = MAX, SN54284, SN542	85	92	110	4
		See Note 2 SN74284, SN74	85	92	130	1

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type

switching characteristics, VCC = 5 V, TA = 25°C

TEST CONDITIONS	MIN	TYP	MAX	UNIT
C ₁ = 30 pF to GND,		20	30	ns
		20	30	113
		40	60	ns
		40	60	1 "`
	TEST CONDITIONS $C_L = 30 \text{ pF to GND},$ $R_{L1} = 300 \Omega \text{ to VCC},$ $R_{L2} = 600 \Omega \text{ to GND},$ See Note 3	C _L = 30 pF to GND, R _{L1} = 300 Ω to V _{CC} , R _{L2} = 600 Ω to GND,	CL = 30 pF to GND. 20 RL1 = 300 Ω to VCC. 20 RL2 = 600 Ω to GND, 40	C _L = 30 pF to GND. 20 30 R _{L1} = 300 Ω to VCC. 20 30 R _{L2} = 600 Ω to GND, 40 60

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

2-790

 $[\]ddagger_{All\ typical\ values\ are\ at\ V_{CC}}$ = 5 V, \top_{A} = 25°C.

NOTE 2: With outputs open and both enable inputs grounded, I_{CC} is measured first by selecting an output product which contains three or more high-level bits, then by selecting an output product which contains four low-level bits.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com