

SN65HVD30 - SN65HVD39

SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008

3.3 V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS

FEATURES

- 1/8 Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Bus-Pin ESD Protection Exceeds 15 kV HBM
- Optional Driver Output Transition Times for Signaling Rates⁽¹⁾ of 1 Mbps, 5 Mbps and 26 Mbps
- Low-Current Standby Mode: < 1 μA
- Glitch-Free Power-Up and Power-Down
 Protection for Hot-Plugging Applications
- 5-V Tolerant Inputs
- Bus Idle, Open, and Short Circuit Failsafe
- Driver Current Limiting and Thermal Shutdown
- Meets or Exceeds the Requirements of ANSI TIA/EIA-485-A and RS-422 Compatible
- 5-V Devices available, SN65HVD50-59
- ⁽¹⁾ Line Signaling Rate is the number of voltage transitions made per second expressed in units of bps (bits per second).

APPLICATIONS

- Utility Meters
- DTE/DCE Interfaces
- Industrial, Process, and Building Automation
- Point-of-Sale (POS) Terminals and Networks

DESCRIPTION

The SN65HVD3X devices are 3-state differential line drivers and differential-input line receivers that operate with 3.3-V power supply.

IMPROVED REPLACEMENT FOR:

Each driver and receiver has separate input and output pins for full-duplex bus communication designs. They are designed for balanced transmission lines and inter-operation with ANSI TIA/EIA-485A, TIA/EIA-422-B, ITU-T v.11 and ISO 8482:1993 standard-compliant devices.

The SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36 and SN65HVD37 are fully enabled with no external enabling pins.

The SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38, and SN65HVD39 have active-high driver enables and active-low receiver enables. A low, less than 1μ A, standby current can be achieved by disabling both the driver and receiver.

All devices are characterized for ambient temperatures from -40°C to 85°C. Low power dissipation allows operation at temperatures up to 105°C or 125°C, depending on package option.

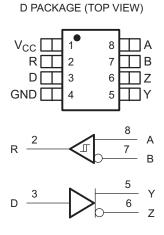
The preview devices SN65HVD36 and SN65HVD38 implement receiver equalization technology for improved jitter performance on differential bus applications with data rates up to 20 Mbps at cable lengths up to 160 meters.

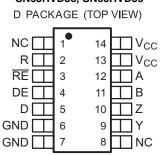
The preview devices SN65HVD37 and SN65HVD39 implement receiver equalization technology for improved jitter performance on differential bus applications with data rates in the range of 1 to 5 Mbps at cable lengths up to 1000 meters.

Part Number	Replace with	
xxx3491 xxx3490	SN65HVD33: SN65HVD30:	Better ESD protection (15kV vs 2kV or not specified) Higher Signaling Rate (26Mbps vs 20Mbps) Fractional Unit Load (64 Nodes vs 32)
MAX3491E MAX3490E	SN65HVD33: SN65HVD30:	Higher Signaling Rate (26Mbps vs 12Mbps) Fractional Unit Load (64 Nodes vs 32)
MAX3076E MAX3077E	SN65HVD33: SN65HVD30:	Higher Signaling Rate (26Mbps vs 16Mbps) Lower Standby Current (1 μA vs 10 $\mu A)$
MAX3073E MAX3074E	SN65HVD34: SN65HVD31:	Higher Signaling Rate (5Mbps vs 500kbps) Lower Standby Current (1 μA vs 10 $\mu A)$
MAX3070E MAX3071E	SN65HVD35: SN65HVD32:	Higher Signaling Rate (1Mbps vs 250kbps) Lower Standby Current (1 μA vs 10 $\mu A)$

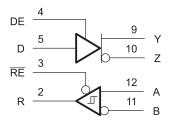
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65HVD30 - SN65HVD39


SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008


This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36, SN65HVD37

SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38, SN65HVD39

NC - No internal connection

18 A

17

14_ γ

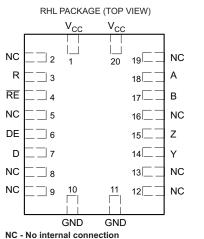
15

в

7

3

4


R

RE

DE _6

D

SN65HVD33

Submit Documentation Feedback

SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008

TEXAS INSTRUMENTS www.ti.com

AVAILABLE OPTIONS

SIGNALING RATE	UNIT LOADS	RECEIVER EQUALIZATION	ENABLES	BASE PART NUMBER	SOIC MARKING
26 Mbps		No	No	SN65HVD30	VP30
5 Mbps	1/8	No	No	SN65HVD31	VP31
1 Mbps	1/8	No	No	SN65HVD32	VP32
26 Mbps		No	Yes	SN65HVD33	65HVD33
5 Mbps	1/8	No	Yes	SN65HVD34	65HVD34
1 Mbps	1/8	No	Yes	SN65HVD35	65HVD35
26 Mbps		Yes	No	SN65HVD36	PREVIEW
5 Mbps	1/8	Yes	No	SN65HVD37	PREVIEW
26 Mbps		Yes	Yes	SN65HVD38	PREVIEW
5 Mbps	1/8	Yes	Yes	SN65HVD39	PREVIEW

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾ ⁽²⁾

		UNIT
V _{CC}	Supply voltage range	–0.3 V to 6 V
$V_{(A)}, V_{(B)}, V_{(Y)}, V_{(Z)}$	Voltage range at any bus terminal (A, B, Y, Z)	–9 V to 14 V
V _(TRANS)	Voltage input, transient pulse through 100 Ω . See Figure 12 (A, B, Y, Z) ⁽³⁾	–50 to 50 V
VI	Input voltage range (D, DE, RE)	-0.5 V to 7 V
P _{D(cont)}	Continuous total power dissipation	Internally limited ⁽⁴⁾
I _O	Output current (receiver output only, R)	11 mA

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

(3) This tests survivability only and the output state of the receiver is not specified.

(4) The thermal shutdown protection circuit internally limits the continuous total power dissipation. Thermal shutdown typically occurs when the junction temperature reaches 165°C.

DISSIPATION RATINGS

PACKAGE	JEDEC THERMAL MODEL	T _A < 25°C RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C RATING	T _A = 105°C RATING	T _A = 125°C RATING
	Low k	625 mW	5 mW/°C	325 mW		
SOIC (D) 8 pin	High k	1000 mW	8 mW/°C	520 mW	360 mW	
	Low k	765 mW	6.1 mW/°C	400 mW	275 mW	
SOIC (D) 14 pin	High k	1350 mW	10.8 mW/°C	705 mW	485 mW	270 mW
QFN (RHL) 20 pin	High k	1710 mW	13.7 mW/°C	890 mW	6150 mW	340 mW

SN65HVD30 - SN65HVD39

SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range unless otherwise noted

				MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage			3		3.6	
$V_{I} \text{ or } V_{IC}$	Voltage at any bus	s terminal (se	eparately or common mode)	-7 ⁽¹⁾		12	V
		SN65HVD	30, SN65HVD33, SN65HVD36, SN65HVD38			26	
1/t _{UI}	Signaling rate	SN65HVD	31, SN65HVD34, SN65HVD37, SN65HVD39			5	Mbps
		SN65HVD	32, SN65HVD35			1	
RL	Differential load re	ential load resistance			60		Ω
V _{IH}	High-level input vo	oltage	D, DE, RE	2		V _{CC}	
V _{IL}	Low-level input vo	ltage	D, DE, RE	0		0.8	V
V _{ID}	Differential input v	oltage		-12		12	
			Driver	-60			0
IOH	High-level output of	current	Receiver	-8			mA
			Driver			60	0
I _{OL}	Low-level output current		Receiver			8	mA
TJ	Junction temperate	ure		-40		150	°C

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

ELECTROSTATIC DISCHARGE PROTECTION

PARAMETER	TEST CONDITIONS	MIN TYP ⁽¹⁾ MAX	UNIT
Human body model	Bus terminals and GND	±16	
Human body model ⁽²⁾	All pins	±4	kV
Charged-device-model ⁽³⁾	All pins	±1	

All typical values at 25°C with 3.3-V supply.
 Tested in accordance with JEDEC Standard 22, Test Method A114-A.
 Tested in accordance with JEDEC Standard 22, Test Method C101.

4

Copyright © 2005–2008, Texas Instruments Incorporated

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDIT	MIN	TYP ⁽¹⁾	MAX	UNIT		
V _{I(K)}	Input clamp voltage		I _I = -18 mA		-1.5			V	
.,			I _O = 0	I _O = 0			V _{CC}		
	Standy state differen		$R_L = 54 \Omega$, See Figure 1 (RS-	-485)	1.5	2		V	
V _{OD(SS)}	Steady-state differential output voltage		$R_L = 100 \Omega$, See Figure 1 , ⁽²⁾	(RS-422)	2	2.3		v	
			$V_{test} = -7 V$ to 12 V, See Figu	ure 2	1.5				
$\Delta V_{OD(SS)} $	Change in magnitude of steady-state differential output voltage between states		$R_L = 54 \Omega$, See Figure 1 and Figure 2		-0.2		0.2	V	
V _{OD(RING)}	Differential Output V and undershoot	oltage overshoot	$R_L = 54 \Omega, C_L = 50 pF, See F$ Figure 3			10% ⁽³⁾	V		
	Peak-to-peak common-mode output voltage	HVD30, HVD33, HVD36, HVD38							
V _{OC(PP)}		HVD31, HVD34, HVD37, HVD39, HVD32, HVD35	See Figure 4		0.25		V		
V _{OC(SS)}	Steady-state commo voltage	n-mode output	See Figure 4				2.3	V	
$\Delta V_{OC(SS)}$	Change in steady-st output voltage	ate common-mode	See Figure 4		-0.05		0.05	v	
		HVD30, HVD31, HVD32, HVD36,	$V_{CC} = 0 V$, V_Z or $V_Y = 12 V$, Other input at 0 V				90		
$I_{Z(Z)}$ or	High-impedance	HVD32, HVD36, HVD37	$V_{CC} = 0 V$, V_Z or $V_Y = -7 V$, Other input at 0 V		-10				
$I_{Y(Z)}$	state output current HVD33		$\begin{array}{l} V_{CC} = 3 \; V \; or \; 0 \; V, \; DE = 0 \; V \\ V_{Z} \; or \; V_{Y} = 12 \; V \end{array}$	Other input			90	μA	
		HVD35, HVD38, HVD39		at 0 V	-10				
I _{Z(S)} or	Short Circuit outsut	Current	V_Z or $V_Y = -7 V$	Other input	-250		250	mA	
I _{Y(S)}	Short Circuit output	Current	V_Z or V_Y = 12 V	at 0 V	-250		250		
l _l	Input current	D, DE			0		100	μΑ	
C _(OD)	Differential output ca	pacitance	$V_{OD} = 0.4 \sin (4E6\pi t) + 0.5 V$, DE at 0 V		16		pF	

All typical values are at 25°C and with a 3.3-V supply. (1)

 V_{CC} is 3.3 Vdc ± 5%

(2) (3) 10% of the peak-to-peak differential output voltage swing, per TIA/EIA-485 SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAM	ETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
		HVD30, HVD33, HVD36, HVD38		4	10	18		
t _{PLH}	Propagation delay time, low-to-high-level output	HVD31, HVD34, HVD37, HVD39		25	38	65	ns	
	low to high lovel output	HVD32, HVD35		120	175	305		
		HVD30, HVD33, HVD36, HVD38		4	9	18		
t _{PHL}	Propagation delay time, high-to-low-level output	HVD31, HVD34, HVD37, HVD39		25	38	65	ns	
	nign-to-iow-ievel output	HVD32, HVD35		120	175	305		
		HVD30, HVD33, HVD36, HVD38	_	2.5	5	12		
t _r	Differential output signal rise time	HVD31, HVD34, HVD37, HVD39	R _L = 54 Ω, C _L = 50 pF, See Figure 5	20	37	60	ns	
		HVD32, HVD35		120	185	300		
		HVD30, HVD33, HVD36, HVD38	_	2.5	5	12		
t _f	Differential output signal fall time	HVD31, HVD34, HVD37, HVD39	_	20	35	60	ns	
		HVD32, HVD35	_	120	180	300		
		HVD30, HVD33, HVD36, HVD38	_		0.6		ns	
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	HVD31, HVD34, HVD37, HVD39	_		2.0			
- (1)		HVD32, HVD35	_		5.1			
	Propagation delay time,	HVD33, HVD38				45		
t _{PZH1}	high-impedance-to-high-level output	HVD34, HVD39				235	ns	
		HVD35	- R _L = 110 Ω, RE at 0 V, D = 3 V and S1 = Y, or			490		
	Propagation delay time,	HVD33, HVD38	D = 0 V and S1 = Z			25	5 ns	
t _{PHZ}	high-level-to-high-impedance	HVD34, HVD39	See Figure 6			65		
	output	HVD35	_			165		
	Propagation delay time,	HVD33, HVD38				35		
t _{PZL1}	high-impedance-to-low-level	HVD34, HVD39				190	ns	
	output	HVD35	- R _L = 110 Ω, RE at 0 V, D = 3 V and S1 = Z. or			490	-	
	Propagation delay time,	HVD33, HVD38	D = 0 V and S1 = Y			30		
t _{PLZ}	low-level-to-high-impedance	HVD34, HVD39	See Figure 7			120	ns	
	output	HVD35	_			290	-	
t _{PZH2}	Propagation delay time, standby				4000	ns		
t _{PZL2}	Propagation delay time, standby	$ \begin{array}{l} R_{L} = 110 \ \Omega, \ \overline{RE} \ \text{at } 3 \ V, \\ D = 3 \ V \ \text{and} \ S1 = Z, \ \text{or} \\ D = 0 \ V \ \text{and} \ S1 = Y \\ See \ Figure \ 7 \end{array} $			4000	ns		

(1) All typical values are at 25° C and with a 3.3-V supply.

Copyright © 2005–2008, Texas Instruments Incorporated

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMET	ER	TEST CONDITION	ONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going differentia voltage	l input threshold	$I_{O} = -8 \text{ mA}$				-0.02	V
V _{IT-}	Negative-going differentia	al input threshold	I _O = 8 mA		-0.20			v
V_{hys}	Hysteresis voltage (VIT+	- V _{IT-})				50		mV
V _{IK}	Enable-input clamp volta	ge	I _I = -18 mA		-1.5			V
V	Output voltage		$V_{ID} = 200 \text{ mV}, I_O = -8 \text{ mA}, S_O$	ee Figure 8	2.4			N/
Vo			$V_{ID} = -200 \text{ mV}, I_O = 8 \text{ mA}, S_O$			0.4	V	
I _{O(Z)}	_{Z)} High-impedance-state output current $V_0 = 0$ or		$V_0 = 0 \text{ or } V_{CC}, \overline{RE} \text{ at } V_{CC}$	0 or V _{CC} , RE at V _{CC}			1	μA
		HVD31, HVD32, HVD34, HVD35, HVD37, HVD39	$V_A \text{ or } V_B = 12 \text{ V}$	Other input at 0V		0.05	0.1	mA
			V_A or V_B = 12 V, V_{CC} = 0 V			0.06	0.1	
			$V_A \text{ or } V_B = -7 \text{ V}$		-0.10	-0.04		
I _A or	Due issue summer		V_A or V_B = -7 V, V_{CC} = 0 V		-0.10	-0.03		
IB	Bus input current		$V_A \text{ or } V_B = 12 \text{ V}$			0.20	0.35	
		HVD30, HVD33,	V_A or V_B = 12 V, V_{CC} = 0 V	Other input at		0.24	0.4	mA
		HVD36, HVD38	$V_A \text{ or } V_B = -7 \text{ V}$	0V	-0.35	-0.18		
			V_A or V_B = -7 V, V_{CC} = 0 V		-0.25	-0.13		
IIH	Input current, RE		V _{IH} = 0.8 V or 2 V		-60			μA
CID	Differential input capacita	ance	$V_{ID} = 0.4 \sin (4E6\pi t) + 0.5 V,$	DE at 0 V		15		pF

(1) All typical values are at 25° C and with a 3.3-V supply.

SUPPLY CURRENT CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARA	METER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
		HVD30				2.1		
		HVD31, HVD32	D at 0 V or V_{CC} and No Load			6.4	mA	
		HVD36, HVD37				7.9		
		HVD33				1.8		
		HVD34, HVD35	RE at 0 V, D at 0 V or V _{CC} , DE at 0 V, No load (Receiver enabled and driver disabled)			2.2	mA	
		HVD38, HVD39				3.8		
Icc	Supply current	HVD33, HVD34, HVD35, HVD38, HVD39	$\overline{\text{RE}}$ at $V_{CC},$ D at $V_{CC},$ DE at 0 V, No load (Receiver disabled and driver disabled)		0.022	1	μΑ	
		HVD33				2.1		
		HVD34, HVD35	\overline{RE} at 0 V, D at 0 V or V _{CC} , DE at V _{CC} ,			6.5		
		HVD38	No load (Receiver enabled and driver enabled)			3.5		
		HVD39				8	mA	
		HVD33				1.8	mA	
		HVD34, HVD35	\overline{RE} at V _{CC} , D at 0 V or V _{CC} , DE at V _{CC}			6.2		
		HVD38	No load (Receiver disabled and driver enabled)			2.5		
		HVD39				7		

(1) All typical values are at 25° C and with a 3.3-V supply.

SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARA	METER	TEST C	CONDITIONS	MIN TYP ⁽¹⁾	MAX	UNIT
	Dropogation dolou time	HVD30, HVD33, HVD36, HVD38			26	45	
t _{PLH}	Propagation delay time, low-to-high-level output	HVD31, HVD32, HVD34, HVD35, HVD37, HVD39			47	70	
	Propagation delay time,	HVD30, HVD33, HVD36, HVD38			29	45	
t _{PHL}	L high-to-low-level output	HVD31, HVD32, HVD34, HVD35, HVD37, HVD39	V _{ID} = -1.5 V to 1.5 V, C _L = 15 pF, See Figure 9		49	70	
t _{sk(p)}	Pulse skew (t _{PHI} – t _{PI H})	HVD30, HVD33, HVD36, HVD37, HVD38, HVD39				7	
on(p)		HVD31, HVD34, HVD32, HVD35				10	~~
t _r	Output signal rise time					5	ns
t _f	Output signal fall time				6		
t _{PHZ}	Output disable time from hig	jh level	DE at 3 V			20	
t _{PZH1}	Output enable time to high I	evel	DE al S V	$C_L = 15 \text{ pF},$ See Figure 10	20		
t _{PZH2}	PZH2 Propagation delay time, standby-to-high-level output		DE at 0 V	coorriguio ro	4000		
t _{PLZ}	PLZ Output disable time from low level		DE at 3 V			20	
t _{PZL1}	PZL1 Output enable time to low level			C _L = 15 pF, See Figure 11		20	
t _{PZL2}	Propagation delay time, star	ndby-to-low-level output	DE at 0 V	guori		4000	

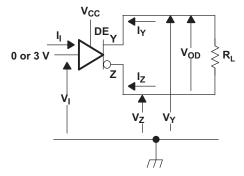
(1) All typical values are at 25°C and with a 3.3-V supply

RECEIVER EQUALIZATION CHARACTERISTICS

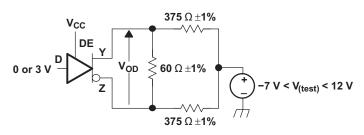
over recommended operating conditions unless otherwise noted

I	PARAMETER	TEST CONDI	TIONS		DEVICE	MIN TYP ⁽¹⁾	MAX	UNIT
				0 m	HVD36, HVD38	PREVIEW		
				100	HVD33 ⁽²⁾	PREVIEW		
				100 m	HVD36, HVD38	PREVIEW		
			25 Mbps	lbps	HVD33 ⁽²⁾	PREVIEW		
				150 m	HVD36, HVD38	PREVIEW		
				200 m	HVD33 ⁽²⁾	PREVIEW		
				200 111	HVD36, HVD38	PREVIEW		
				200 m	HVD33 ⁽²⁾	PREVIEW		
	Peak-to-peak eye-pattern jitter			200 m	HVD36, HVD38 PREVIEW	PREVIEW		
		Pseudo-random NRZ code	10 Mbps 250 m HVD36, HVD38 PREVIEW HVD33 ⁽²⁾ PREVIEW	PREVIEW]		
t _{j(pp)}		with a bit pattern length of 2 ¹⁶ –1, Belden 3105A cable		200 111	HVD36, HVD38	PREVIEW		ns
				300 m	HVD33 ⁽²⁾	PREVIEW		
				300 m	HVD36, HVD38	PREVIEW		
			5 Mbps 500 m HVD34 ⁽²⁾	PREVIEW				
			5 Mbps	500 m	HVD37, HVD39	PREVIEW		
					HVD33 ⁽²⁾	PREVIEW		
			2 Mhna	500 m	HVD34 ⁽²⁾	PREVIEW		
			3 Mbps	500 m	HVD36, HVD38	PREVIEW		
					HVD37, HVD39	HVD37, HVD39 PREVIEW		
			1 Mbpc	1000 m	HVD34 ⁽²⁾	PREVIEW		
			1 Mbps	1000 11	HVD37, HVD39	PREVIEW		

(1) All typical values are at $V_{CC} = 5 V$, and temperature = 25°C. (2) The HVD33 and the HVD34 do not have receiver equalization but are specified for comparison.



SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008


DEVICE POWER DISSIPATION - PD

	PARAMETER		TEST CONDITIONS	VALUE	UNITS	
		SOIC 8		JEDEC Low-K model	231	
		SOIC-8		JEDEC High-K model	135	
θ_{JA}	Junction-to-Ambient Thermal Resistance		SOIC-14	JEDEC Low-K model	163	°C/W
			3010-14	JEDEC High-K model	92	
			QFN-20		73	
			SOIC-8		44	
θ_{JB}	Junction-to- Board Thermal Resistance	to- Board Thermal Resistance SO			61	°C/W
	θ _{JC} Junction-to-Case Thermal Resistance		SOIC-8		43	
θ_{JC}			SOIC-14		59	°C/W
		QFN-20		14		
	Power Dissipation		HVD30,33	$V_{CC} = 3.3V, T_J = 25^{\circ}C, R_L = 60 \Omega,$		mW
	Driver and receiver enabled, 50% duty cycle	Typical	HVD31,34	$C_L = 50 \text{ pF (driver)},$ $C_L = 15 \text{ pF (receiver)}$		
-	square-wave signal at signaling rate: HVD30,33 at 25 Mbps,		HVD32,35			
PD	HVD31,34 at 5 Mbps,		HVD30,33	$V_{CC} = 3.6V, T_J = 140^{\circ}C, R_L = 54$ $\Omega, C_L = 50 \text{ pF} (\text{driver}),$	197	
	HVD32,35 at 1 Mbps	Worst-case	HVD31,34		213	
			HVD32,35	– C _L = 15 pF (receiver)	248	
T_{SD}	Thermal Shut-down Junction Temperature				170	°C

PARAMETER MEASUREMENT INFORMATION

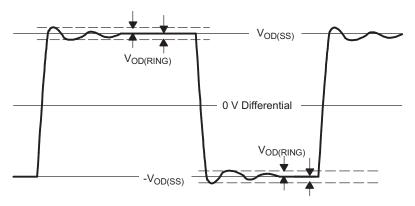


Figure 3. $V_{OD(RING)}$ Waveform and Definitions

 $V_{OD(RING)}$ is measured at four points on the output waveform, corresponding to overshoot and undershoot from the $V_{OD(H)}$ and $V_{OD(L)}$ steady state values.

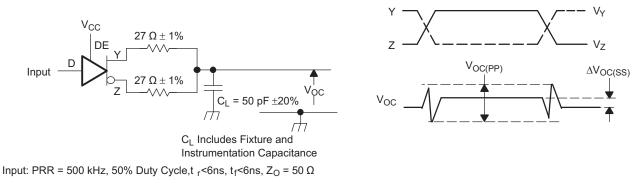
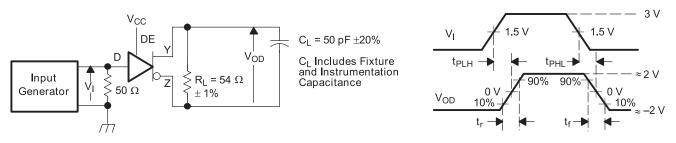
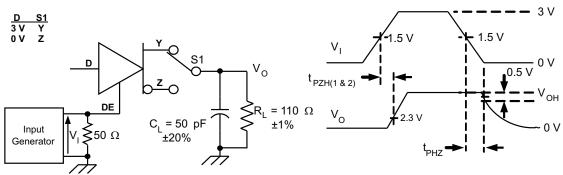



Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

PARAMETER MEASUREMENT INFORMATION (continued)



Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Texas fruments

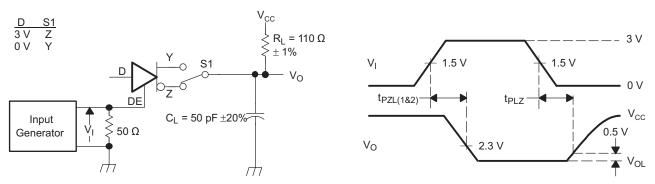

www.ti.com

Figure 5. Driver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 50 kHz, 50% Duty Cycle, $t_r < 6 \text{ ns}$, $t_f < 6 \text{ ns}$, $Z_0 = 50 \Omega$ C₁ Includes Fixture and Instrumentation Capacitance

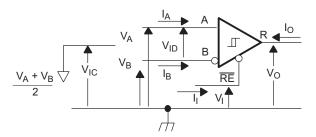
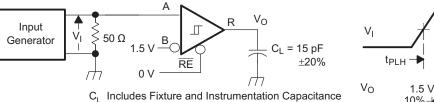
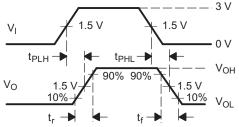
Figure 6. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

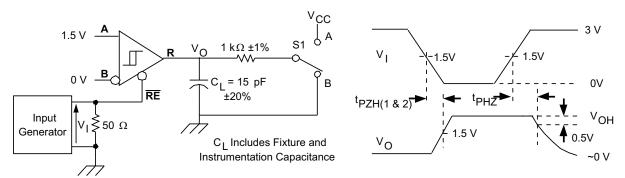
Generator: PRR = 50 kHz, 50% Duty Cycle, t_r < 6 ns, t_f < 6 ns, Z_0 = 50 Ω

C₁ Includes Fixture and Instrumentation Capacitance

Figure 7. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)


Figure 8. Receiver Voltage and Current Definitions

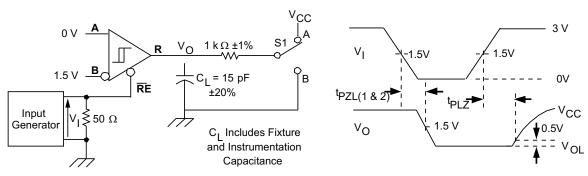

Generator: PRR = 500 kHz, 50% Duty Cycle, t $_{\rm r}$ <6 ns, t $_{\rm f}$ <6 ns, Z $_{\rm o}$ = 50 Ω

Figure 9. Receiver Switching Test Circuit and Voltage Waveforms

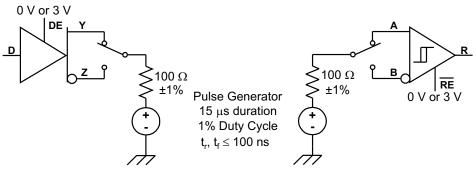
Generator: PRR = 50 kHz, 50% Duty Cycle, t_r < 6 ns, t_f < 6 ns, Z_0 = 50 Ω

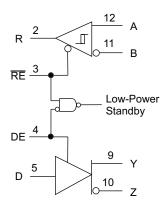
Figure 10. Receiver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: PRR = 50 kHz, 50% Duty Cycle, $t_{\rm r}$ < 6 ns, $t_{\rm f}$ < 6 ns, Z $_0$ = 50 $~\Omega$

Figure 11. Receiver Enable Time From Standby (Driver Disabled)

PARAMETER MEASUREMENT INFORMATION (continued)




Figure 12. Test Circuit, Transient Over Voltage Test

DEVICE INFORMATION

LOW-POWER STANDBY MODE

When both the driver and receiver are disabled (DE low and \overline{RE} high) the device is in standby mode. If the enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against inadvertently entering standby mode during driver/receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.

Figure 13. Low-Power Standby Logic Diagram

If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after the enable times given by t_{PZH2} and t_{PZL2} in the driver switching characteristics. If the D input is open when the driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe feature.

If only the receiver is re-enabled (\overline{RE} transitions to low) the receiver output is driven according to the state of the bus inputs (A and B) after the enable times given by t_{PZH2} and t_{PZL2} in the receiver switching characteristics. If there is no valid state on the bus the receiver responds as described in the failsafe operation section.

If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver outputs are valid.

Copyright © 2005–2008, Texas Instruments Incorporated

FUNCTION TABLES

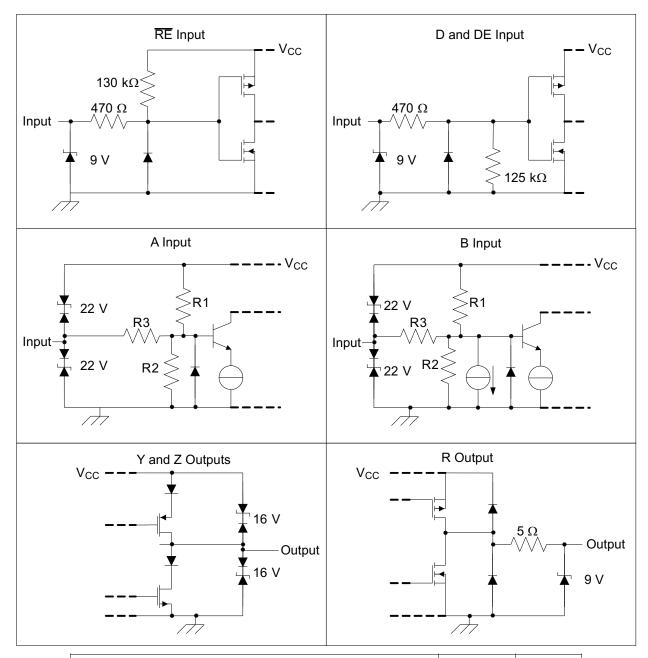
II	NPUTS	OUTPUTS			
D	DE	Y	Z		
Н	Н	Н	L		
L	Н	L	Н		
Х	L or open	Z	Z		
Open	Н	L	Н		

SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38, SN65HVD39 DRIVER

SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38, SN65HVD39 RECEIVER

DIFFERENTIAL INPUTS $V_{ID} = V_{(A)} - V_{(B)}$	ENABLE RE	OUTPUT R
$V_{ID} \leq -0.2 V$	L	L
$-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.02 \text{ V}$	L	?
$-0.02 \text{ V} \leq \text{V}_{\text{ID}}$	L	Н
Х	H or open	Z
Open Circuit	L	Н
Idle circuit	L	Н
Short Circuit, $V_{(A)} = V_{(B)}$	L	Н

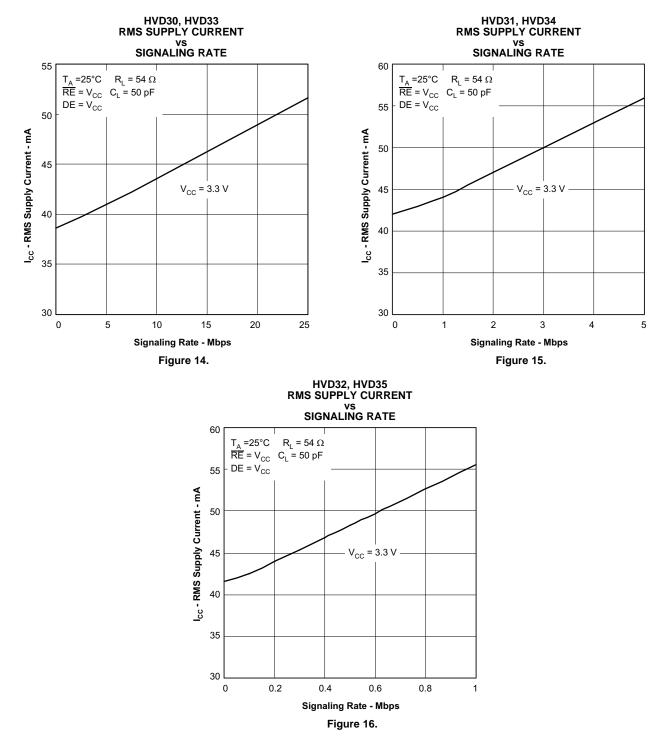
SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36, SN65HVD37 DRIVER


	OUTPUTS					
INPUT D	Y	Z				
Н	Н	L				
L	L	Н				
Open	L	Н				

SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36, SN65HVD37 RECEIVER

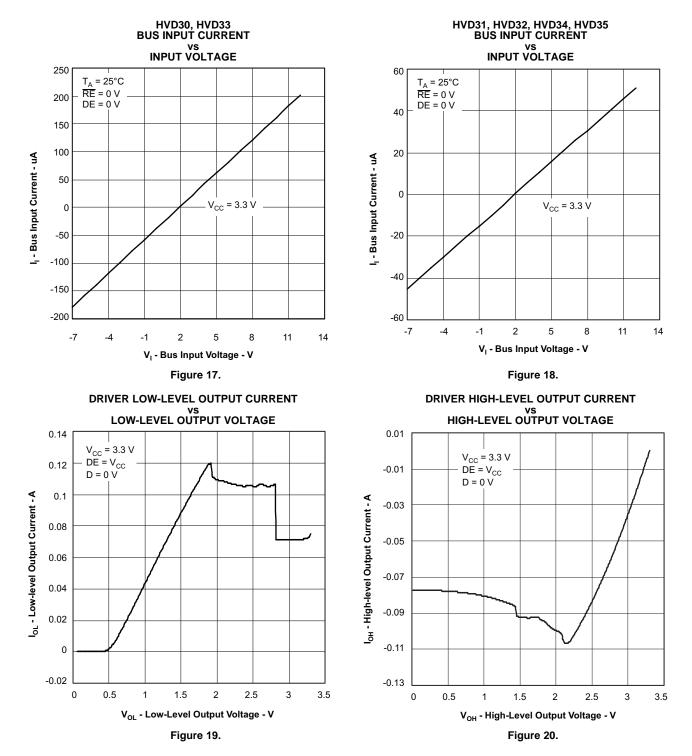
DIFFERENTIAL INPUTS $V_{ID} = V_{(A)} - V_{(B)}$	OUTPUT R
$V_{ID} \leq -0.2 V$	L
$-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.02 \text{ V}$?
$-0.02 \text{ V} \leq \text{V}_{\text{ID}}$	Н
Open Circuit	Н
Idle circuit	Н
Short Circuit, $V_{(A)} = V_{(B)}$	Н

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

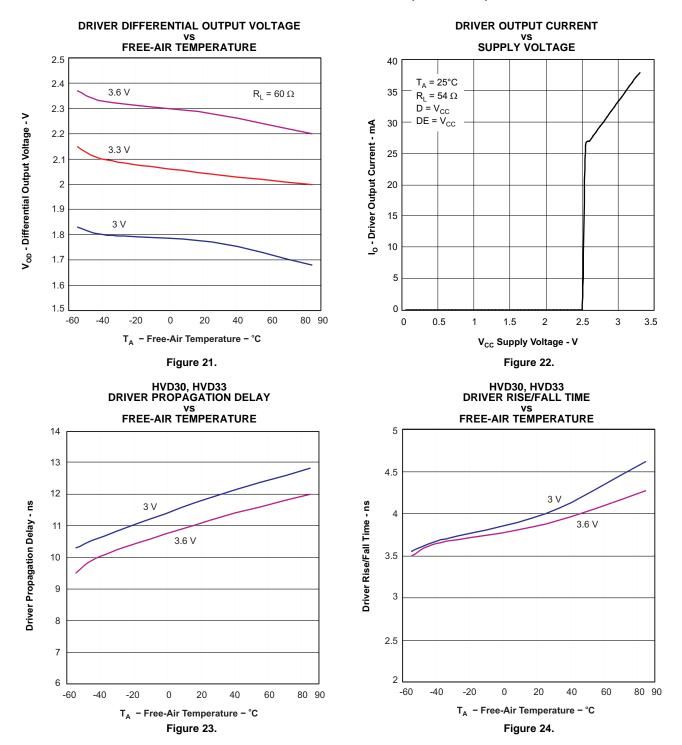


	R1/R2	R3
SN65HVD30, SN65HVD33, SN65HVD36, SN65HVD38	9 kΩ	45 kΩ
SN65HVD31, SN65HVD32, SN65HVD34, SN65HVD35 SN65HVD37, SN65HVD38, SN65HVD39	36 kΩ	180 kΩ

Copyright © 2005–2008, Texas Instruments Incorporated

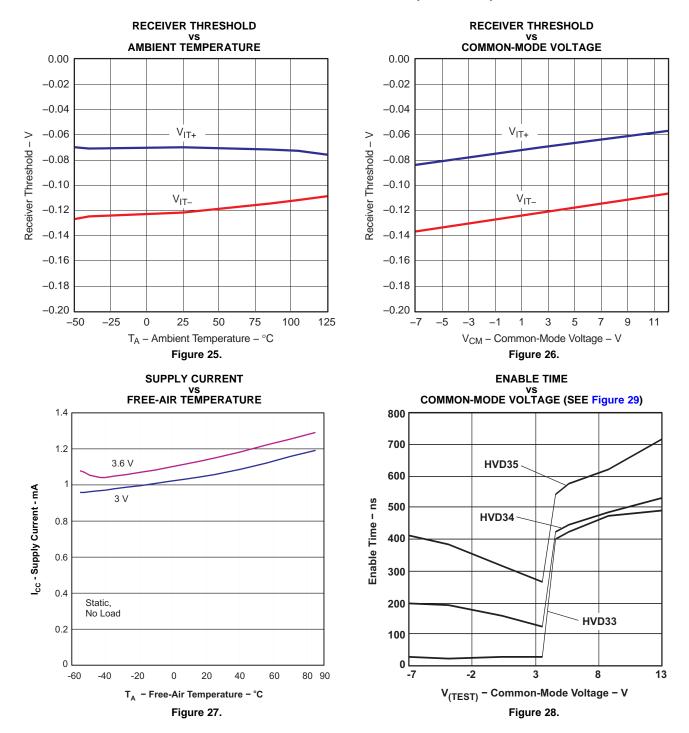

SLLS665E-SEPTEMBER 2005-REVISED MARCH 2008

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS (continued)

Copyright © 2005–2008, Texas Instruments Incorporated


TEXAS INSTRUMENTS www.ti.com

TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

$\textbf{375}~\Omega \pm \textbf{1\%}$ \sim -7 V < V_(TEST) < 12 V D **60** Ω ξ V_{OD} ±1% 0 or 3 V z DE $\textbf{375}~\Omega \pm \textbf{1\%}$ Input **50** Ω Generato 50% t_{pZH}(diff) V_{OD} (high) 1.5 V 0 V t_{pZL}(diff) -1.5 V V_{OD} (low)

TYPICAL CHARACTERISTICS (continued)

Figure 29. Driver Enable Time From DE to $\rm V_{OD}$

The time $t_{pZL}(x)$ is the measure from DE to $V_{OD}(x)$. V_{OD} is valid when it is greater than 1.5 V.

12-Feb-2008

PACKAGING INFORMATION

TEXAS INSTRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65HVD30D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD30DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD30DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD30DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD31D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD31DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD31DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD31DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD32D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD32DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD32DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD32DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD33D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD33DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD33DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD33DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD34D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD34DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD34DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD34DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD35D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD35DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD35DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD35DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

 $^{(1)}$ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

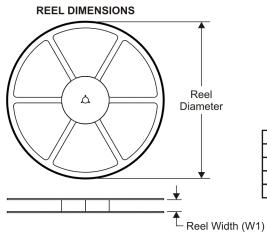
OBSOLETE: TI has discontinued the production of the device.

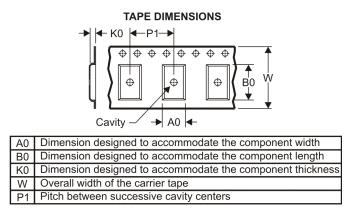
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

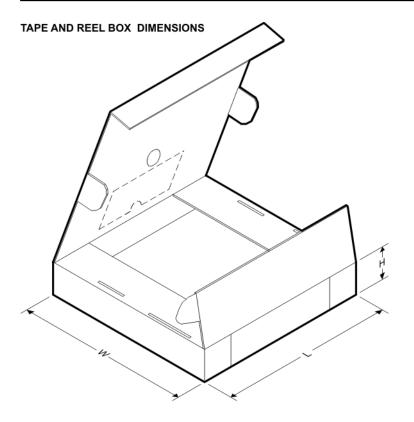

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

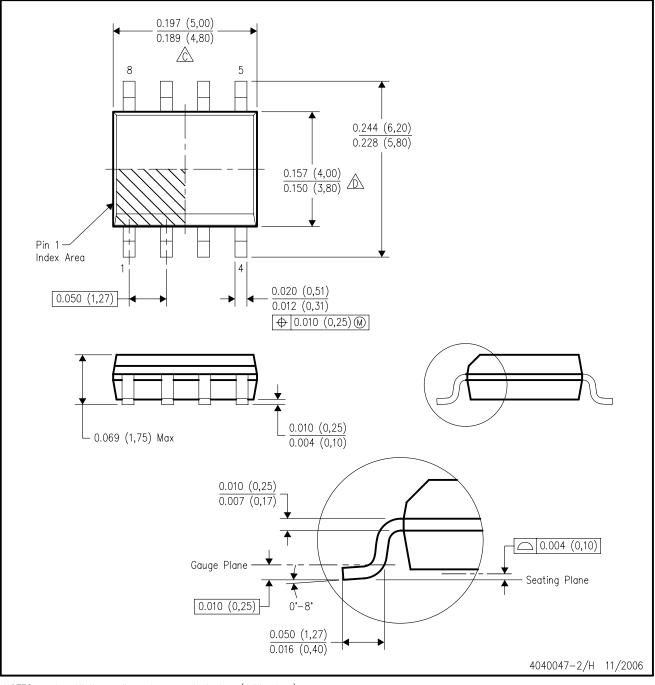
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD30DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD31DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD32DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD33DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN65HVD34DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN65HVD35DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

11-Mar-2008



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65HVD30DR	SOIC	D	8	2500	346.0	346.0	29.0
SN65HVD31DR	SOIC	D	8	2500	346.0	346.0	29.0
SN65HVD32DR	SOIC	D	8	2500	346.0	346.0	29.0
SN65HVD33DR	SOIC	D	14	2500	346.0	346.0	33.0
SN65HVD34DR	SOIC	D	14	2500	346.0	346.0	33.0
SN65HVD35DR	SOIC	D	14	2500	346.0	346.0	33.0

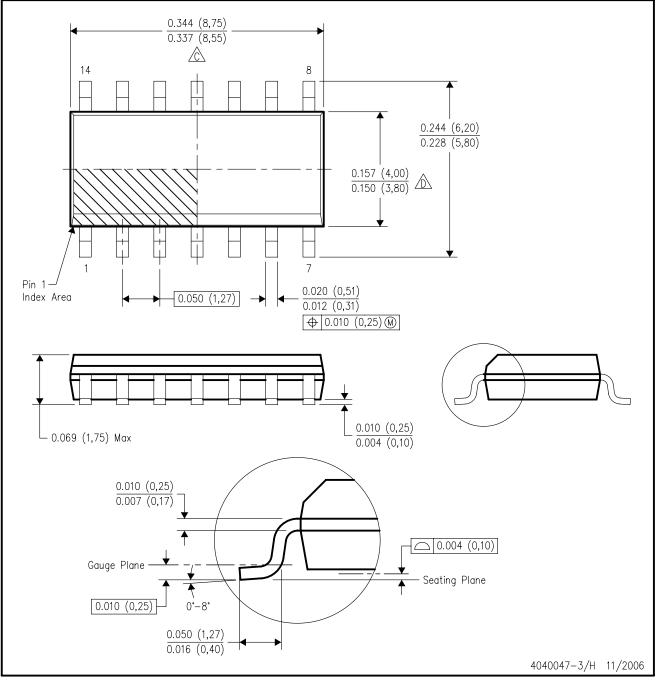
D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.


Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated